You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

569 lines
23 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "Marlin.h"
#include "UBL.h"
#include "planner.h"
#include <avr/io.h>
#include <math.h>
extern float destination[XYZE];
extern void set_current_to_destination();
static void debug_echo_axis(const AxisEnum axis) {
if (current_position[axis] == destination[axis])
SERIAL_ECHOPGM("-------------");
else
SERIAL_ECHO_F(destination[X_AXIS], 6);
}
void debug_current_and_destination(char *title) {
// if the title message starts with a '!' it is so important, we are going to
// ignore the status of the g26_debug_flag
if (*title != '!' && !ubl.g26_debug_flag) return;
const float de = destination[E_AXIS] - current_position[E_AXIS];
if (de == 0.0) return;
const float dx = current_position[X_AXIS] - destination[X_AXIS],
dy = current_position[Y_AXIS] - destination[Y_AXIS],
xy_dist = HYPOT(dx, dy);
if (xy_dist == 0.0) {
return;
//SERIAL_ECHOPGM(" FPMM=");
//const float fpmm = de / xy_dist;
//SERIAL_PROTOCOL_F(fpmm, 6);
}
else {
SERIAL_ECHOPGM(" fpmm=");
const float fpmm = de / xy_dist;
SERIAL_ECHO_F(fpmm, 6);
}
SERIAL_ECHOPGM(" current=( ");
SERIAL_ECHO_F(current_position[X_AXIS], 6);
SERIAL_ECHOPGM(", ");
SERIAL_ECHO_F(current_position[Y_AXIS], 6);
SERIAL_ECHOPGM(", ");
SERIAL_ECHO_F(current_position[Z_AXIS], 6);
SERIAL_ECHOPGM(", ");
SERIAL_ECHO_F(current_position[E_AXIS], 6);
SERIAL_ECHOPGM(" ) destination=( ");
debug_echo_axis(X_AXIS);
SERIAL_ECHOPGM(", ");
debug_echo_axis(Y_AXIS);
SERIAL_ECHOPGM(", ");
debug_echo_axis(Z_AXIS);
SERIAL_ECHOPGM(", ");
debug_echo_axis(E_AXIS);
SERIAL_ECHOPGM(" ) ");
SERIAL_ECHO(title);
SERIAL_EOL;
SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66. Right Switch is on pin 65
//if (been_to_2_6) {
//while ((digitalRead(66) & 0x01) != 0)
// idle();
//}
}
void ubl_line_to_destination(const float &feed_rate, uint8_t extruder) {
/**
* Much of the nozzle movement will be within the same cell. So we will do as little computation
* as possible to determine if this is the case. If this move is within the same cell, we will
* just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
*/
const float start[XYZE] = {
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS],
current_position[E_AXIS]
},
end[XYZE] = {
destination[X_AXIS],
destination[Y_AXIS],
destination[Z_AXIS],
destination[E_AXIS]
};
const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(start[X_AXIS])),
cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])),
cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(end[X_AXIS])),
cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS]));
if (ubl.g26_debug_flag) {
SERIAL_ECHOPAIR(" ubl_line_to_destination(xe=", end[X_AXIS]);
SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
SERIAL_CHAR(')');
SERIAL_EOL;
debug_current_and_destination((char*)"Start of ubl_line_to_destination()");
}
if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
/**
* we don't need to break up the move
*
* If we are moving off the print bed, we are going to allow the move at this level.
* But we detect it and isolate it. For now, we just pass along the request.
*/
if (!WITHIN(cell_dest_xi, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(cell_dest_yi, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
// Note: There is no Z Correction in this case. We are off the grid and don't know what
// a reasonable correction would be.
planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
set_current_to_destination();
if (ubl.g26_debug_flag)
debug_current_and_destination((char*)"out of bounds in ubl_line_to_destination()");
return;
}
FINAL_MOVE:
/**
* Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
* generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
* We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
* We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
* instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
*/
const float xratio = (RAW_X_POSITION(end[X_AXIS]) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)),
z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
(ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]),
z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
(ubl.z_values[cell_dest_xi + 1][cell_dest_yi + 1] - ubl.z_values[cell_dest_xi][cell_dest_yi + 1]);
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST));
float z0 = z1 + (z2 - z1) * yratio;
/**
* Debug code to use non-optimized get_z_correction() and to do a sanity check
* that the correct value is being passed to planner.buffer_line()
*/
/*
z_optimized = z0;
z0 = ubl.get_z_correction(end[X_AXIS], end[Y_AXIS]);
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
debug_current_and_destination((char*)"FINAL_MOVE: z_correction()");
if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
SERIAL_ECHOPAIR(" end[X_AXIS]=", end[X_AXIS]);
SERIAL_ECHOPAIR(" end[Y_AXIS]=", end[Y_AXIS]);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0));
SERIAL_EOL;
}
//*/
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
* in z_values[][] and propagate through the
* calculations. If our correction is NAN, we throw it out
* because part of the Mesh is undefined and we don't have the
* information we need to complete the height correction.
*/
if (isnan(z0)) z0 = 0.0;
planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
if (ubl.g26_debug_flag)
debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()");
set_current_to_destination();
return;
}
/**
* If we get here, we are processing a move that crosses at least one Mesh Line. We will check
* for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
* of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
* computation and in fact most lines are of this nature. We will check for that in the following
* blocks of code:
*/
const float dx = end[X_AXIS] - start[X_AXIS],
dy = end[Y_AXIS] - start[Y_AXIS];
const int left_flag = dx < 0.0 ? 1 : 0,
down_flag = dy < 0.0 ? 1 : 0;
const float adx = left_flag ? -dx : dx,
ady = down_flag ? -dy : dy;
const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
/**
* Compute the scaling factor for the extruder for each partial move.
* We need to watch out for zero length moves because it will cause us to
* have an infinate scaling factor. We are stuck doing a floating point
* divide to get our scaling factor, but after that, we just multiply by this
* number. We also pick our scaling factor based on whether the X or Y
* component is larger. We use the biggest of the two to preserve precision.
*/
const bool use_x_dist = adx > ady;
float on_axis_distance = use_x_dist ? dx : dy,
e_position = end[E_AXIS] - start[E_AXIS],
z_position = end[Z_AXIS] - start[Z_AXIS];
const float e_normalized_dist = e_position / on_axis_distance,
z_normalized_dist = z_position / on_axis_distance;
int current_xi = cell_start_xi, current_yi = cell_start_yi;
const float m = dy / dx,
c = start[Y_AXIS] - m * start[X_AXIS];
const bool inf_normalized_flag = NEAR_ZERO(on_axis_distance),
inf_m_flag = NEAR_ZERO(dx);
/**
* This block handles vertical lines. These are lines that stay within the same
* X Cell column. They do not need to be perfectly vertical. They just can
* not cross into another X Cell column.
*/
if (dxi == 0) { // Check for a vertical line
current_yi += down_flag; // Line is heading down, we just want to go to the bottom
while (current_yi != cell_dest_yi + down_flag) {
current_yi += dyi;
const float next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]);
/**
* inf_m_flag? the slope of the line is infinite, we won't do the calculations
* else, we know the next X is the same so we can recover and continue!
* Calculate X at the next Y mesh line
*/
const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi);
/**
* Debug code to use non-optimized get_z_correction() and to do a sanity check
* that the correct value is being passed to planner.buffer_line()
*/
/*
z_optimized = z0;
z0 = ubl.get_z_correction(x, next_mesh_line_y);
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
debug_current_and_destination((char*)"VERTICAL z_correction()");
if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
SERIAL_ECHOPAIR(" x=", x);
SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n");
}
//*/
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
* in z_values[][] and propagate through the
* calculations. If our correction is NAN, we throw it out
* because part of the Mesh is undefined and we don't have the
* information we need to complete the height correction.
*/
if (isnan(z0)) z0 = 0.0;
const float y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]);
/**
* Without this check, it is possible for the algorithm to generate a zero length move in the case
* where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
* happens, it might be best to remove the check and always 'schedule' the move because
* the planner.buffer_line() routine will filter it if that happens.
*/
if (y != start[Y_AXIS]) {
if (!inf_normalized_flag) {
on_axis_distance = y - start[Y_AXIS]; // we don't need to check if the extruder position
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
}
else {
e_position = start[E_AXIS];
z_position = start[Z_AXIS];
}
planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
} //else printf("FIRST MOVE PRUNED ");
}
if (ubl.g26_debug_flag)
debug_current_and_destination((char*)"vertical move done in ubl_line_to_destination()");
//
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
//
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
goto FINAL_MOVE;
set_current_to_destination();
return;
}
/**
*
* This block handles horizontal lines. These are lines that stay within the same
* Y Cell row. They do not need to be perfectly horizontal. They just can
* not cross into another Y Cell row.
*
*/
if (dyi == 0) { // Check for a horizontal line
current_xi += left_flag; // Line is heading left, we just want to go to the left
// edge of this cell for the first move.
while (current_xi != cell_dest_xi + left_flag) {
current_xi += dxi;
const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]),
y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
/**
* Debug code to use non-optimized get_z_correction() and to do a sanity check
* that the correct value is being passed to planner.buffer_line()
*/
/*
z_optimized = z0;
z0 = ubl.get_z_correction(next_mesh_line_x, y);
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
debug_current_and_destination((char*)"HORIZONTAL z_correction()");
if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
SERIAL_ECHOPAIR(" y=", y);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n");
}
//*/
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
* in z_values[][] and propagate through the
* calculations. If our correction is NAN, we throw it out
* because part of the Mesh is undefined and we don't have the
* information we need to complete the height correction.
*/
if (isnan(z0)) z0 = 0.0;
const float x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]);
/**
* Without this check, it is possible for the algorithm to generate a zero length move in the case
* where the line is heading left and it is starting right on a Mesh Line boundary. For how often
* that happens, it might be best to remove the check and always 'schedule' the move because
* the planner.buffer_line() routine will filter it if that happens.
*/
if (x != start[X_AXIS]) {
if (!inf_normalized_flag) {
on_axis_distance = x - start[X_AXIS]; // we don't need to check if the extruder position
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
}
else {
e_position = start[E_AXIS];
z_position = start[Z_AXIS];
}
planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
} //else printf("FIRST MOVE PRUNED ");
}
if (ubl.g26_debug_flag)
debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()");
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
goto FINAL_MOVE;
set_current_to_destination();
return;
}
/**
*
* This block handles the generic case of a line crossing both X and Y Mesh lines.
*
*/
int xi_cnt = cell_start_xi - cell_dest_xi,
yi_cnt = cell_start_yi - cell_dest_yi;
if (xi_cnt < 0) xi_cnt = -xi_cnt;
if (yi_cnt < 0) yi_cnt = -yi_cnt;
current_xi += left_flag;
current_yi += down_flag;
while (xi_cnt > 0 || yi_cnt > 0) {
const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi + dxi]),
next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi + dyi]),
y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
// (No need to worry about m being zero.
// If that was the case, it was already detected
// as a vertical line move above.)
if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
//
// Yes! Crossing a Y Mesh Line next
//
float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi);
/**
* Debug code to use non-optimized get_z_correction() and to do a sanity check
* that the correct value is being passed to planner.buffer_line()
*/
/*
z_optimized = z0;
z0 = ubl.get_z_correction(x, next_mesh_line_y);
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
debug_current_and_destination((char*)"General_1: z_correction()");
if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN "); {
SERIAL_ECHOPAIR(" x=", x);
}
SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n");
}
//*/
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
* in z_values[][] and propagate through the
* calculations. If our correction is NAN, we throw it out
* because part of the Mesh is undefined and we don't have the
* information we need to complete the height correction.
*/
if (isnan(z0)) z0 = 0.0;
if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
}
else {
e_position = start[E_AXIS];
z_position = start[Z_AXIS];
}
planner.buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
current_yi += dyi;
yi_cnt--;
}
else {
//
// Yes! Crossing a X Mesh Line next
//
float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag);
/**
* Debug code to use non-optimized get_z_correction() and to do a sanity check
* that the correct value is being passed to planner.buffer_line()
*/
/*
z_optimized = z0;
z0 = ubl.get_z_correction(next_mesh_line_x, y);
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
debug_current_and_destination((char*)"General_2: z_correction()");
if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
SERIAL_ECHOPAIR(" y=", y);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n");
}
//*/
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
* in z_values[][] and propagate through the
* calculations. If our correction is NAN, we throw it out
* because part of the Mesh is undefined and we don't have the
* information we need to complete the height correction.
*/
if (isnan(z0)) z0 = 0.0;
if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
}
else {
e_position = start[E_AXIS];
z_position = start[Z_AXIS];
}
planner.buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
current_xi += dxi;
xi_cnt--;
}
}
if (ubl.g26_debug_flag)
debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()");
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
goto FINAL_MOVE;
set_current_to_destination();
}
#endif