diff --git a/ArduinoAddons/arduino-1.8.3/libraries/Adafruit_NeoPixel/Adafruit_NeoPixel.cpp b/ArduinoAddons/arduino-1.8.3/libraries/Adafruit_NeoPixel/Adafruit_NeoPixel.cpp new file mode 100644 index 000000000..375371b04 --- /dev/null +++ b/ArduinoAddons/arduino-1.8.3/libraries/Adafruit_NeoPixel/Adafruit_NeoPixel.cpp @@ -0,0 +1,2098 @@ +/*------------------------------------------------------------------------- + Arduino library to control a wide variety of WS2811- and WS2812-based RGB + LED devices such as Adafruit FLORA RGB Smart Pixels and NeoPixel strips. + Currently handles 400 and 800 KHz bitstreams on 8, 12 and 16 MHz ATmega + MCUs, with LEDs wired for various color orders. Handles most output pins + (possible exception with upper PORT registers on the Arduino Mega). + + Written by Phil Burgess / Paint Your Dragon for Adafruit Industries, + contributions by PJRC, Michael Miller and other members of the open + source community. + + Adafruit invests time and resources providing this open source code, + please support Adafruit and open-source hardware by purchasing products + from Adafruit! + + ------------------------------------------------------------------------- + This file is part of the Adafruit NeoPixel library. + + NeoPixel is free software: you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License as + published by the Free Software Foundation, either version 3 of + the License, or (at your option) any later version. + + NeoPixel is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with NeoPixel. If not, see + . + -------------------------------------------------------------------------*/ + +#include "Adafruit_NeoPixel.h" + +#if defined(NRF52) +#include "nrf.h" + +// Interrupt is only disabled if there is no PWM device available +// Note: Adafruit Bluefruit nrf52 does not use this option +//#define NRF52_DISABLE_INT +#endif + +// Constructor when length, pin and type are known at compile-time: +Adafruit_NeoPixel::Adafruit_NeoPixel(uint16_t n, uint8_t p, neoPixelType t) : + begun(false), brightness(0), pixels(NULL), endTime(0) +{ + updateType(t); + updateLength(n); + setPin(p); +} + +// via Michael Vogt/neophob: empty constructor is used when strand length +// isn't known at compile-time; situations where program config might be +// read from internal flash memory or an SD card, or arrive via serial +// command. If using this constructor, MUST follow up with updateType(), +// updateLength(), etc. to establish the strand type, length and pin number! +Adafruit_NeoPixel::Adafruit_NeoPixel() : +#ifdef NEO_KHZ400 + is800KHz(true), +#endif + begun(false), numLEDs(0), numBytes(0), pin(-1), brightness(0), pixels(NULL), + rOffset(1), gOffset(0), bOffset(2), wOffset(1), endTime(0) +{ +} + +Adafruit_NeoPixel::~Adafruit_NeoPixel() { + if(pixels) free(pixels); + if(pin >= 0) pinMode(pin, INPUT); +} + +void Adafruit_NeoPixel::begin(void) { + if(pin >= 0) { + pinMode(pin, OUTPUT); + digitalWrite(pin, LOW); + } + begun = true; + +} + +void Adafruit_NeoPixel::updateLength(uint16_t n) { + if(pixels) free(pixels); // Free existing data (if any) + + // Allocate new data -- note: ALL PIXELS ARE CLEARED + numBytes = n * ((wOffset == rOffset) ? 3 : 4); + if((pixels = (uint8_t *)malloc(numBytes))) { + memset(pixels, 0, numBytes); + numLEDs = n; + } else { + numLEDs = numBytes = 0; + } +} + +void Adafruit_NeoPixel::updateType(neoPixelType t) { + boolean oldThreeBytesPerPixel = (wOffset == rOffset); // false if RGBW + + wOffset = (t >> 6) & 0b11; // See notes in header file + rOffset = (t >> 4) & 0b11; // regarding R/G/B/W offsets + gOffset = (t >> 2) & 0b11; + bOffset = t & 0b11; +#ifdef NEO_KHZ400 + is800KHz = (t < 256); // 400 KHz flag is 1<<8 +#endif + + // If bytes-per-pixel has changed (and pixel data was previously + // allocated), re-allocate to new size. Will clear any data. + if(pixels) { + boolean newThreeBytesPerPixel = (wOffset == rOffset); + if(newThreeBytesPerPixel != oldThreeBytesPerPixel) updateLength(numLEDs); + } +} + +#if defined(ESP8266) +// ESP8266 show() is external to enforce ICACHE_RAM_ATTR execution +extern "C" void ICACHE_RAM_ATTR espShow( + uint8_t pin, uint8_t *pixels, uint32_t numBytes, uint8_t type); +#elif defined(ESP32) +extern "C" void espShow( + uint8_t pin, uint8_t *pixels, uint32_t numBytes, uint8_t type); +#endif // ESP8266 + +void Adafruit_NeoPixel::show(void) { + + if(!pixels) return; + + // Data latch = 300+ microsecond pause in the output stream. Rather than + // put a delay at the end of the function, the ending time is noted and + // the function will simply hold off (if needed) on issuing the + // subsequent round of data until the latch time has elapsed. This + // allows the mainline code to start generating the next frame of data + // rather than stalling for the latch. + while(!canShow()); + // endTime is a private member (rather than global var) so that mutliple + // instances on different pins can be quickly issued in succession (each + // instance doesn't delay the next). + + // In order to make this code runtime-configurable to work with any pin, + // SBI/CBI instructions are eschewed in favor of full PORT writes via the + // OUT or ST instructions. It relies on two facts: that peripheral + // functions (such as PWM) take precedence on output pins, so our PORT- + // wide writes won't interfere, and that interrupts are globally disabled + // while data is being issued to the LEDs, so no other code will be + // accessing the PORT. The code takes an initial 'snapshot' of the PORT + // state, computes 'pin high' and 'pin low' values, and writes these back + // to the PORT register as needed. + + // NRF52 may use PWM + DMA (if available), may not need to disable interrupt +#ifndef NRF52 + noInterrupts(); // Need 100% focus on instruction timing +#endif + +#ifdef __AVR__ +// AVR MCUs -- ATmega & ATtiny (no XMEGA) --------------------------------- + + volatile uint16_t + i = numBytes; // Loop counter + volatile uint8_t + *ptr = pixels, // Pointer to next byte + b = *ptr++, // Current byte value + hi, // PORT w/output bit set high + lo; // PORT w/output bit set low + + // Hand-tuned assembly code issues data to the LED drivers at a specific + // rate. There's separate code for different CPU speeds (8, 12, 16 MHz) + // for both the WS2811 (400 KHz) and WS2812 (800 KHz) drivers. The + // datastream timing for the LED drivers allows a little wiggle room each + // way (listed in the datasheets), so the conditions for compiling each + // case are set up for a range of frequencies rather than just the exact + // 8, 12 or 16 MHz values, permitting use with some close-but-not-spot-on + // devices (e.g. 16.5 MHz DigiSpark). The ranges were arrived at based + // on the datasheet figures and have not been extensively tested outside + // the canonical 8/12/16 MHz speeds; there's no guarantee these will work + // close to the extremes (or possibly they could be pushed further). + // Keep in mind only one CPU speed case actually gets compiled; the + // resulting program isn't as massive as it might look from source here. + +// 8 MHz(ish) AVR --------------------------------------------------------- +#if (F_CPU >= 7400000UL) && (F_CPU <= 9500000UL) + +#ifdef NEO_KHZ400 // 800 KHz check needed only if 400 KHz support enabled + if(is800KHz) { +#endif + + volatile uint8_t n1, n2 = 0; // First, next bits out + + // Squeezing an 800 KHz stream out of an 8 MHz chip requires code + // specific to each PORT register. + + // 10 instruction clocks per bit: HHxxxxxLLL + // OUT instructions: ^ ^ ^ (T=0,2,7) + + // PORTD OUTPUT ---------------------------------------------------- + +#if defined(PORTD) + #if defined(PORTB) || defined(PORTC) || defined(PORTF) + if(port == &PORTD) { + #endif // defined(PORTB/C/F) + + hi = PORTD | pinMask; + lo = PORTD & ~pinMask; + n1 = lo; + if(b & 0x80) n1 = hi; + + // Dirty trick: RJMPs proceeding to the next instruction are used + // to delay two clock cycles in one instruction word (rather than + // using two NOPs). This was necessary in order to squeeze the + // loop down to exactly 64 words -- the maximum possible for a + // relative branch. + + asm volatile( + "headD:" "\n\t" // Clk Pseudocode + // Bit 7: + "out %[port] , %[hi]" "\n\t" // 1 PORT = hi + "mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo + "out %[port] , %[n1]" "\n\t" // 1 PORT = n1 + "rjmp .+0" "\n\t" // 2 nop nop + "sbrc %[byte] , 6" "\n\t" // 1-2 if(b & 0x40) + "mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi + "out %[port] , %[lo]" "\n\t" // 1 PORT = lo + "rjmp .+0" "\n\t" // 2 nop nop + // Bit 6: + "out %[port] , %[hi]" "\n\t" // 1 PORT = hi + "mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo + "out %[port] , %[n2]" "\n\t" // 1 PORT = n2 + "rjmp .+0" "\n\t" // 2 nop nop + "sbrc %[byte] , 5" "\n\t" // 1-2 if(b & 0x20) + "mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi + "out %[port] , %[lo]" "\n\t" // 1 PORT = lo + "rjmp .+0" "\n\t" // 2 nop nop + // Bit 5: + "out %[port] , %[hi]" "\n\t" // 1 PORT = hi + "mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo + "out %[port] , %[n1]" "\n\t" // 1 PORT = n1 + "rjmp .+0" "\n\t" // 2 nop nop + "sbrc %[byte] , 4" "\n\t" // 1-2 if(b & 0x10) + "mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi + "out %[port] , %[lo]" "\n\t" // 1 PORT = lo + "rjmp .+0" "\n\t" // 2 nop nop + // Bit 4: + "out %[port] , %[hi]" "\n\t" // 1 PORT = hi + "mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo + "out %[port] , %[n2]" "\n\t" // 1 PORT = n2 + "rjmp .+0" "\n\t" // 2 nop nop + "sbrc %[byte] , 3" "\n\t" // 1-2 if(b & 0x08) + "mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi + "out %[port] , %[lo]" "\n\t" // 1 PORT = lo + "rjmp .+0" "\n\t" // 2 nop nop + // Bit 3: + "out %[port] , %[hi]" "\n\t" // 1 PORT = hi + "mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo + "out %[port] , %[n1]" "\n\t" // 1 PORT = n1 + "rjmp .+0" "\n\t" // 2 nop nop + "sbrc %[byte] , 2" "\n\t" // 1-2 if(b & 0x04) + "mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi + "out %[port] , %[lo]" "\n\t" // 1 PORT = lo + "rjmp .+0" "\n\t" // 2 nop nop + // Bit 2: + "out %[port] , %[hi]" "\n\t" // 1 PORT = hi + "mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo + "out %[port] , %[n2]" "\n\t" // 1 PORT = n2 + "rjmp .+0" "\n\t" // 2 nop nop + "sbrc %[byte] , 1" "\n\t" // 1-2 if(b & 0x02) + "mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi + "out %[port] , %[lo]" "\n\t" // 1 PORT = lo + "rjmp .+0" "\n\t" // 2 nop nop + // Bit 1: + "out %[port] , %[hi]" "\n\t" // 1 PORT = hi + "mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo + "out %[port] , %[n1]" "\n\t" // 1 PORT = n1 + "rjmp .+0" "\n\t" // 2 nop nop + "sbrc %[byte] , 0" "\n\t" // 1-2 if(b & 0x01) + "mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi + "out %[port] , %[lo]" "\n\t" // 1 PORT = lo + "sbiw %[count], 1" "\n\t" // 2 i-- (don't act on Z flag yet) + // Bit 0: + "out %[port] , %[hi]" "\n\t" // 1 PORT = hi + "mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo + "out %[port] , %[n2]" "\n\t" // 1 PORT = n2 + "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ + "sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 0x80) + "mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi + "out %[port] , %[lo]" "\n\t" // 1 PORT = lo + "brne headD" "\n" // 2 while(i) (Z flag set above) + : [byte] "+r" (b), + [n1] "+r" (n1), + [n2] "+r" (n2), + [count] "+w" (i) + : [port] "I" (_SFR_IO_ADDR(PORTD)), + [ptr] "e" (ptr), + [hi] "r" (hi), + [lo] "r" (lo)); + + #if defined(PORTB) || defined(PORTC) || defined(PORTF) + } else // other PORT(s) + #endif // defined(PORTB/C/F) +#endif // defined(PORTD) + + // PORTB OUTPUT ---------------------------------------------------- + +#if defined(PORTB) + #if defined(PORTD) || defined(PORTC) || defined(PORTF) + if(port == &PORTB) { + #endif // defined(PORTD/C/F) + + // Same as above, just switched to PORTB and stripped of comments. + hi = PORTB | pinMask; + lo = PORTB & ~pinMask; + n1 = lo; + if(b & 0x80) n1 = hi; + + asm volatile( + "headB:" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n2] , %[lo]" "\n\t" + "out %[port] , %[n1]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 6" "\n\t" + "mov %[n2] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n1] , %[lo]" "\n\t" + "out %[port] , %[n2]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 5" "\n\t" + "mov %[n1] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n2] , %[lo]" "\n\t" + "out %[port] , %[n1]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 4" "\n\t" + "mov %[n2] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n1] , %[lo]" "\n\t" + "out %[port] , %[n2]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 3" "\n\t" + "mov %[n1] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n2] , %[lo]" "\n\t" + "out %[port] , %[n1]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 2" "\n\t" + "mov %[n2] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n1] , %[lo]" "\n\t" + "out %[port] , %[n2]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 1" "\n\t" + "mov %[n1] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n2] , %[lo]" "\n\t" + "out %[port] , %[n1]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 0" "\n\t" + "mov %[n2] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "sbiw %[count], 1" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n1] , %[lo]" "\n\t" + "out %[port] , %[n2]" "\n\t" + "ld %[byte] , %a[ptr]+" "\n\t" + "sbrc %[byte] , 7" "\n\t" + "mov %[n1] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "brne headB" "\n" + : [byte] "+r" (b), [n1] "+r" (n1), [n2] "+r" (n2), [count] "+w" (i) + : [port] "I" (_SFR_IO_ADDR(PORTB)), [ptr] "e" (ptr), [hi] "r" (hi), + [lo] "r" (lo)); + + #if defined(PORTD) || defined(PORTC) || defined(PORTF) + } + #endif + #if defined(PORTC) || defined(PORTF) + else + #endif // defined(PORTC/F) +#endif // defined(PORTB) + + // PORTC OUTPUT ---------------------------------------------------- + +#if defined(PORTC) + #if defined(PORTD) || defined(PORTB) || defined(PORTF) + if(port == &PORTC) { + #endif // defined(PORTD/B/F) + + // Same as above, just switched to PORTC and stripped of comments. + hi = PORTC | pinMask; + lo = PORTC & ~pinMask; + n1 = lo; + if(b & 0x80) n1 = hi; + + asm volatile( + "headC:" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n2] , %[lo]" "\n\t" + "out %[port] , %[n1]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 6" "\n\t" + "mov %[n2] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n1] , %[lo]" "\n\t" + "out %[port] , %[n2]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 5" "\n\t" + "mov %[n1] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n2] , %[lo]" "\n\t" + "out %[port] , %[n1]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 4" "\n\t" + "mov %[n2] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n1] , %[lo]" "\n\t" + "out %[port] , %[n2]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 3" "\n\t" + "mov %[n1] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n2] , %[lo]" "\n\t" + "out %[port] , %[n1]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 2" "\n\t" + "mov %[n2] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n1] , %[lo]" "\n\t" + "out %[port] , %[n2]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 1" "\n\t" + "mov %[n1] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n2] , %[lo]" "\n\t" + "out %[port] , %[n1]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 0" "\n\t" + "mov %[n2] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "sbiw %[count], 1" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n1] , %[lo]" "\n\t" + "out %[port] , %[n2]" "\n\t" + "ld %[byte] , %a[ptr]+" "\n\t" + "sbrc %[byte] , 7" "\n\t" + "mov %[n1] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "brne headC" "\n" + : [byte] "+r" (b), [n1] "+r" (n1), [n2] "+r" (n2), [count] "+w" (i) + : [port] "I" (_SFR_IO_ADDR(PORTC)), [ptr] "e" (ptr), [hi] "r" (hi), + [lo] "r" (lo)); + + #if defined(PORTD) || defined(PORTB) || defined(PORTF) + } + #endif // defined(PORTD/B/F) + #if defined(PORTF) + else + #endif +#endif // defined(PORTC) + + // PORTF OUTPUT ---------------------------------------------------- + +#if defined(PORTF) + #if defined(PORTD) || defined(PORTB) || defined(PORTC) + if(port == &PORTF) { + #endif // defined(PORTD/B/C) + + hi = PORTF | pinMask; + lo = PORTF & ~pinMask; + n1 = lo; + if(b & 0x80) n1 = hi; + + asm volatile( + "headF:" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n2] , %[lo]" "\n\t" + "out %[port] , %[n1]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 6" "\n\t" + "mov %[n2] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n1] , %[lo]" "\n\t" + "out %[port] , %[n2]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 5" "\n\t" + "mov %[n1] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n2] , %[lo]" "\n\t" + "out %[port] , %[n1]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 4" "\n\t" + "mov %[n2] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n1] , %[lo]" "\n\t" + "out %[port] , %[n2]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 3" "\n\t" + "mov %[n1] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n2] , %[lo]" "\n\t" + "out %[port] , %[n1]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 2" "\n\t" + "mov %[n2] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n1] , %[lo]" "\n\t" + "out %[port] , %[n2]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 1" "\n\t" + "mov %[n1] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "rjmp .+0" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n2] , %[lo]" "\n\t" + "out %[port] , %[n1]" "\n\t" + "rjmp .+0" "\n\t" + "sbrc %[byte] , 0" "\n\t" + "mov %[n2] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "sbiw %[count], 1" "\n\t" + "out %[port] , %[hi]" "\n\t" + "mov %[n1] , %[lo]" "\n\t" + "out %[port] , %[n2]" "\n\t" + "ld %[byte] , %a[ptr]+" "\n\t" + "sbrc %[byte] , 7" "\n\t" + "mov %[n1] , %[hi]" "\n\t" + "out %[port] , %[lo]" "\n\t" + "brne headF" "\n" + : [byte] "+r" (b), [n1] "+r" (n1), [n2] "+r" (n2), [count] "+w" (i) + : [port] "I" (_SFR_IO_ADDR(PORTF)), [ptr] "e" (ptr), [hi] "r" (hi), + [lo] "r" (lo)); + + #if defined(PORTD) || defined(PORTB) || defined(PORTC) + } + #endif // defined(PORTD/B/C) +#endif // defined(PORTF) + +#ifdef NEO_KHZ400 + } else { // end 800 KHz, do 400 KHz + + // Timing is more relaxed; unrolling the inner loop for each bit is + // not necessary. Still using the peculiar RJMPs as 2X NOPs, not out + // of need but just to trim the code size down a little. + // This 400-KHz-datastream-on-8-MHz-CPU code is not quite identical + // to the 800-on-16 code later -- the hi/lo timing between WS2811 and + // WS2812 is not simply a 2:1 scale! + + // 20 inst. clocks per bit: HHHHxxxxxxLLLLLLLLLL + // ST instructions: ^ ^ ^ (T=0,4,10) + + volatile uint8_t next, bit; + + hi = *port | pinMask; + lo = *port & ~pinMask; + next = lo; + bit = 8; + + asm volatile( + "head20:" "\n\t" // Clk Pseudocode (T = 0) + "st %a[port], %[hi]" "\n\t" // 2 PORT = hi (T = 2) + "sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 128) + "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 4) + "st %a[port], %[next]" "\n\t" // 2 PORT = next (T = 6) + "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 7) + "dec %[bit]" "\n\t" // 1 bit-- (T = 8) + "breq nextbyte20" "\n\t" // 1-2 if(bit == 0) + "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 10) + "st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 12) + "rjmp .+0" "\n\t" // 2 nop nop (T = 14) + "rjmp .+0" "\n\t" // 2 nop nop (T = 16) + "rjmp .+0" "\n\t" // 2 nop nop (T = 18) + "rjmp head20" "\n\t" // 2 -> head20 (next bit out) + "nextbyte20:" "\n\t" // (T = 10) + "st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 12) + "nop" "\n\t" // 1 nop (T = 13) + "ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 14) + "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 16) + "sbiw %[count], 1" "\n\t" // 2 i-- (T = 18) + "brne head20" "\n" // 2 if(i != 0) -> (next byte) + : [port] "+e" (port), + [byte] "+r" (b), + [bit] "+r" (bit), + [next] "+r" (next), + [count] "+w" (i) + : [hi] "r" (hi), + [lo] "r" (lo), + [ptr] "e" (ptr)); + } +#endif // NEO_KHZ400 + +// 12 MHz(ish) AVR -------------------------------------------------------- +#elif (F_CPU >= 11100000UL) && (F_CPU <= 14300000UL) + +#ifdef NEO_KHZ400 // 800 KHz check needed only if 400 KHz support enabled + if(is800KHz) { +#endif + + // In the 12 MHz case, an optimized 800 KHz datastream (no dead time + // between bytes) requires a PORT-specific loop similar to the 8 MHz + // code (but a little more relaxed in this case). + + // 15 instruction clocks per bit: HHHHxxxxxxLLLLL + // OUT instructions: ^ ^ ^ (T=0,4,10) + + volatile uint8_t next; + + // PORTD OUTPUT ---------------------------------------------------- + +#if defined(PORTD) + #if defined(PORTB) || defined(PORTC) || defined(PORTF) + if(port == &PORTD) { + #endif // defined(PORTB/C/F) + + hi = PORTD | pinMask; + lo = PORTD & ~pinMask; + next = lo; + if(b & 0x80) next = hi; + + // Don't "optimize" the OUT calls into the bitTime subroutine; + // we're exploiting the RCALL and RET as 3- and 4-cycle NOPs! + asm volatile( + "headD:" "\n\t" // (T = 0) + "out %[port], %[hi]" "\n\t" // (T = 1) + "rcall bitTimeD" "\n\t" // Bit 7 (T = 15) + "out %[port], %[hi]" "\n\t" + "rcall bitTimeD" "\n\t" // Bit 6 + "out %[port], %[hi]" "\n\t" + "rcall bitTimeD" "\n\t" // Bit 5 + "out %[port], %[hi]" "\n\t" + "rcall bitTimeD" "\n\t" // Bit 4 + "out %[port], %[hi]" "\n\t" + "rcall bitTimeD" "\n\t" // Bit 3 + "out %[port], %[hi]" "\n\t" + "rcall bitTimeD" "\n\t" // Bit 2 + "out %[port], %[hi]" "\n\t" + "rcall bitTimeD" "\n\t" // Bit 1 + // Bit 0: + "out %[port] , %[hi]" "\n\t" // 1 PORT = hi (T = 1) + "rjmp .+0" "\n\t" // 2 nop nop (T = 3) + "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 5) + "out %[port] , %[next]" "\n\t" // 1 PORT = next (T = 6) + "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 7) + "sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 0x80) (T = 8) + "mov %[next] , %[hi]" "\n\t" // 0-1 next = hi (T = 9) + "nop" "\n\t" // 1 (T = 10) + "out %[port] , %[lo]" "\n\t" // 1 PORT = lo (T = 11) + "sbiw %[count], 1" "\n\t" // 2 i-- (T = 13) + "brne headD" "\n\t" // 2 if(i != 0) -> (next byte) + "rjmp doneD" "\n\t" + "bitTimeD:" "\n\t" // nop nop nop (T = 4) + "out %[port], %[next]" "\n\t" // 1 PORT = next (T = 5) + "mov %[next], %[lo]" "\n\t" // 1 next = lo (T = 6) + "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 7) + "sbrc %[byte], 7" "\n\t" // 1-2 if(b & 0x80) (T = 8) + "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 9) + "nop" "\n\t" // 1 (T = 10) + "out %[port], %[lo]" "\n\t" // 1 PORT = lo (T = 11) + "ret" "\n\t" // 4 nop nop nop nop (T = 15) + "doneD:" "\n" + : [byte] "+r" (b), + [next] "+r" (next), + [count] "+w" (i) + : [port] "I" (_SFR_IO_ADDR(PORTD)), + [ptr] "e" (ptr), + [hi] "r" (hi), + [lo] "r" (lo)); + + #if defined(PORTB) || defined(PORTC) || defined(PORTF) + } else // other PORT(s) + #endif // defined(PORTB/C/F) +#endif // defined(PORTD) + + // PORTB OUTPUT ---------------------------------------------------- + +#if defined(PORTB) + #if defined(PORTD) || defined(PORTC) || defined(PORTF) + if(port == &PORTB) { + #endif // defined(PORTD/C/F) + + hi = PORTB | pinMask; + lo = PORTB & ~pinMask; + next = lo; + if(b & 0x80) next = hi; + + // Same as above, just set for PORTB & stripped of comments + asm volatile( + "headB:" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeB" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeB" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeB" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeB" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeB" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeB" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeB" "\n\t" + "out %[port] , %[hi]" "\n\t" + "rjmp .+0" "\n\t" + "ld %[byte] , %a[ptr]+" "\n\t" + "out %[port] , %[next]" "\n\t" + "mov %[next] , %[lo]" "\n\t" + "sbrc %[byte] , 7" "\n\t" + "mov %[next] , %[hi]" "\n\t" + "nop" "\n\t" + "out %[port] , %[lo]" "\n\t" + "sbiw %[count], 1" "\n\t" + "brne headB" "\n\t" + "rjmp doneB" "\n\t" + "bitTimeB:" "\n\t" + "out %[port], %[next]" "\n\t" + "mov %[next], %[lo]" "\n\t" + "rol %[byte]" "\n\t" + "sbrc %[byte], 7" "\n\t" + "mov %[next], %[hi]" "\n\t" + "nop" "\n\t" + "out %[port], %[lo]" "\n\t" + "ret" "\n\t" + "doneB:" "\n" + : [byte] "+r" (b), [next] "+r" (next), [count] "+w" (i) + : [port] "I" (_SFR_IO_ADDR(PORTB)), [ptr] "e" (ptr), [hi] "r" (hi), + [lo] "r" (lo)); + + #if defined(PORTD) || defined(PORTC) || defined(PORTF) + } + #endif + #if defined(PORTC) || defined(PORTF) + else + #endif // defined(PORTC/F) +#endif // defined(PORTB) + + // PORTC OUTPUT ---------------------------------------------------- + +#if defined(PORTC) + #if defined(PORTD) || defined(PORTB) || defined(PORTF) + if(port == &PORTC) { + #endif // defined(PORTD/B/F) + + hi = PORTC | pinMask; + lo = PORTC & ~pinMask; + next = lo; + if(b & 0x80) next = hi; + + // Same as above, just set for PORTC & stripped of comments + asm volatile( + "headC:" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeC" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeC" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeC" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeC" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeC" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeC" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeC" "\n\t" + "out %[port] , %[hi]" "\n\t" + "rjmp .+0" "\n\t" + "ld %[byte] , %a[ptr]+" "\n\t" + "out %[port] , %[next]" "\n\t" + "mov %[next] , %[lo]" "\n\t" + "sbrc %[byte] , 7" "\n\t" + "mov %[next] , %[hi]" "\n\t" + "nop" "\n\t" + "out %[port] , %[lo]" "\n\t" + "sbiw %[count], 1" "\n\t" + "brne headC" "\n\t" + "rjmp doneC" "\n\t" + "bitTimeC:" "\n\t" + "out %[port], %[next]" "\n\t" + "mov %[next], %[lo]" "\n\t" + "rol %[byte]" "\n\t" + "sbrc %[byte], 7" "\n\t" + "mov %[next], %[hi]" "\n\t" + "nop" "\n\t" + "out %[port], %[lo]" "\n\t" + "ret" "\n\t" + "doneC:" "\n" + : [byte] "+r" (b), [next] "+r" (next), [count] "+w" (i) + : [port] "I" (_SFR_IO_ADDR(PORTC)), [ptr] "e" (ptr), [hi] "r" (hi), + [lo] "r" (lo)); + + #if defined(PORTD) || defined(PORTB) || defined(PORTF) + } + #endif // defined(PORTD/B/F) + #if defined(PORTF) + else + #endif +#endif // defined(PORTC) + + // PORTF OUTPUT ---------------------------------------------------- + +#if defined(PORTF) + #if defined(PORTD) || defined(PORTB) || defined(PORTC) + if(port == &PORTF) { + #endif // defined(PORTD/B/C) + + hi = PORTF | pinMask; + lo = PORTF & ~pinMask; + next = lo; + if(b & 0x80) next = hi; + + // Same as above, just set for PORTF & stripped of comments + asm volatile( + "headF:" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeC" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeC" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeC" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeC" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeC" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeC" "\n\t" + "out %[port], %[hi]" "\n\t" + "rcall bitTimeC" "\n\t" + "out %[port] , %[hi]" "\n\t" + "rjmp .+0" "\n\t" + "ld %[byte] , %a[ptr]+" "\n\t" + "out %[port] , %[next]" "\n\t" + "mov %[next] , %[lo]" "\n\t" + "sbrc %[byte] , 7" "\n\t" + "mov %[next] , %[hi]" "\n\t" + "nop" "\n\t" + "out %[port] , %[lo]" "\n\t" + "sbiw %[count], 1" "\n\t" + "brne headF" "\n\t" + "rjmp doneC" "\n\t" + "bitTimeC:" "\n\t" + "out %[port], %[next]" "\n\t" + "mov %[next], %[lo]" "\n\t" + "rol %[byte]" "\n\t" + "sbrc %[byte], 7" "\n\t" + "mov %[next], %[hi]" "\n\t" + "nop" "\n\t" + "out %[port], %[lo]" "\n\t" + "ret" "\n\t" + "doneC:" "\n" + : [byte] "+r" (b), [next] "+r" (next), [count] "+w" (i) + : [port] "I" (_SFR_IO_ADDR(PORTF)), [ptr] "e" (ptr), [hi] "r" (hi), + [lo] "r" (lo)); + + #if defined(PORTD) || defined(PORTB) || defined(PORTC) + } + #endif // defined(PORTD/B/C) +#endif // defined(PORTF) + +#ifdef NEO_KHZ400 + } else { // 400 KHz + + // 30 instruction clocks per bit: HHHHHHxxxxxxxxxLLLLLLLLLLLLLLL + // ST instructions: ^ ^ ^ (T=0,6,15) + + volatile uint8_t next, bit; + + hi = *port | pinMask; + lo = *port & ~pinMask; + next = lo; + bit = 8; + + asm volatile( + "head30:" "\n\t" // Clk Pseudocode (T = 0) + "st %a[port], %[hi]" "\n\t" // 2 PORT = hi (T = 2) + "sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 128) + "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 4) + "rjmp .+0" "\n\t" // 2 nop nop (T = 6) + "st %a[port], %[next]" "\n\t" // 2 PORT = next (T = 8) + "rjmp .+0" "\n\t" // 2 nop nop (T = 10) + "rjmp .+0" "\n\t" // 2 nop nop (T = 12) + "rjmp .+0" "\n\t" // 2 nop nop (T = 14) + "nop" "\n\t" // 1 nop (T = 15) + "st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 17) + "rjmp .+0" "\n\t" // 2 nop nop (T = 19) + "dec %[bit]" "\n\t" // 1 bit-- (T = 20) + "breq nextbyte30" "\n\t" // 1-2 if(bit == 0) + "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 22) + "rjmp .+0" "\n\t" // 2 nop nop (T = 24) + "rjmp .+0" "\n\t" // 2 nop nop (T = 26) + "rjmp .+0" "\n\t" // 2 nop nop (T = 28) + "rjmp head30" "\n\t" // 2 -> head30 (next bit out) + "nextbyte30:" "\n\t" // (T = 22) + "nop" "\n\t" // 1 nop (T = 23) + "ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 24) + "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 26) + "sbiw %[count], 1" "\n\t" // 2 i-- (T = 28) + "brne head30" "\n" // 1-2 if(i != 0) -> (next byte) + : [port] "+e" (port), + [byte] "+r" (b), + [bit] "+r" (bit), + [next] "+r" (next), + [count] "+w" (i) + : [hi] "r" (hi), + [lo] "r" (lo), + [ptr] "e" (ptr)); + } +#endif // NEO_KHZ400 + +// 16 MHz(ish) AVR -------------------------------------------------------- +#elif (F_CPU >= 15400000UL) && (F_CPU <= 19000000L) + +#ifdef NEO_KHZ400 // 800 KHz check needed only if 400 KHz support enabled + if(is800KHz) { +#endif + + // WS2811 and WS2812 have different hi/lo duty cycles; this is + // similar but NOT an exact copy of the prior 400-on-8 code. + + // 20 inst. clocks per bit: HHHHHxxxxxxxxLLLLLLL + // ST instructions: ^ ^ ^ (T=0,5,13) + + volatile uint8_t next, bit; + + hi = *port | pinMask; + lo = *port & ~pinMask; + next = lo; + bit = 8; + + asm volatile( + "head20:" "\n\t" // Clk Pseudocode (T = 0) + "st %a[port], %[hi]" "\n\t" // 2 PORT = hi (T = 2) + "sbrc %[byte], 7" "\n\t" // 1-2 if(b & 128) + "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 4) + "dec %[bit]" "\n\t" // 1 bit-- (T = 5) + "st %a[port], %[next]" "\n\t" // 2 PORT = next (T = 7) + "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 8) + "breq nextbyte20" "\n\t" // 1-2 if(bit == 0) (from dec above) + "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 10) + "rjmp .+0" "\n\t" // 2 nop nop (T = 12) + "nop" "\n\t" // 1 nop (T = 13) + "st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 15) + "nop" "\n\t" // 1 nop (T = 16) + "rjmp .+0" "\n\t" // 2 nop nop (T = 18) + "rjmp head20" "\n\t" // 2 -> head20 (next bit out) + "nextbyte20:" "\n\t" // (T = 10) + "ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 11) + "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 13) + "st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 15) + "nop" "\n\t" // 1 nop (T = 16) + "sbiw %[count], 1" "\n\t" // 2 i-- (T = 18) + "brne head20" "\n" // 2 if(i != 0) -> (next byte) + : [port] "+e" (port), + [byte] "+r" (b), + [bit] "+r" (bit), + [next] "+r" (next), + [count] "+w" (i) + : [ptr] "e" (ptr), + [hi] "r" (hi), + [lo] "r" (lo)); + +#ifdef NEO_KHZ400 + } else { // 400 KHz + + // The 400 KHz clock on 16 MHz MCU is the most 'relaxed' version. + + // 40 inst. clocks per bit: HHHHHHHHxxxxxxxxxxxxLLLLLLLLLLLLLLLLLLLL + // ST instructions: ^ ^ ^ (T=0,8,20) + + volatile uint8_t next, bit; + + hi = *port | pinMask; + lo = *port & ~pinMask; + next = lo; + bit = 8; + + asm volatile( + "head40:" "\n\t" // Clk Pseudocode (T = 0) + "st %a[port], %[hi]" "\n\t" // 2 PORT = hi (T = 2) + "sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 128) + "mov %[next] , %[hi]" "\n\t" // 0-1 next = hi (T = 4) + "rjmp .+0" "\n\t" // 2 nop nop (T = 6) + "rjmp .+0" "\n\t" // 2 nop nop (T = 8) + "st %a[port], %[next]" "\n\t" // 2 PORT = next (T = 10) + "rjmp .+0" "\n\t" // 2 nop nop (T = 12) + "rjmp .+0" "\n\t" // 2 nop nop (T = 14) + "rjmp .+0" "\n\t" // 2 nop nop (T = 16) + "rjmp .+0" "\n\t" // 2 nop nop (T = 18) + "rjmp .+0" "\n\t" // 2 nop nop (T = 20) + "st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 22) + "nop" "\n\t" // 1 nop (T = 23) + "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 24) + "dec %[bit]" "\n\t" // 1 bit-- (T = 25) + "breq nextbyte40" "\n\t" // 1-2 if(bit == 0) + "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 27) + "nop" "\n\t" // 1 nop (T = 28) + "rjmp .+0" "\n\t" // 2 nop nop (T = 30) + "rjmp .+0" "\n\t" // 2 nop nop (T = 32) + "rjmp .+0" "\n\t" // 2 nop nop (T = 34) + "rjmp .+0" "\n\t" // 2 nop nop (T = 36) + "rjmp .+0" "\n\t" // 2 nop nop (T = 38) + "rjmp head40" "\n\t" // 2 -> head40 (next bit out) + "nextbyte40:" "\n\t" // (T = 27) + "ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 28) + "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 30) + "rjmp .+0" "\n\t" // 2 nop nop (T = 32) + "st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 34) + "rjmp .+0" "\n\t" // 2 nop nop (T = 36) + "sbiw %[count], 1" "\n\t" // 2 i-- (T = 38) + "brne head40" "\n" // 1-2 if(i != 0) -> (next byte) + : [port] "+e" (port), + [byte] "+r" (b), + [bit] "+r" (bit), + [next] "+r" (next), + [count] "+w" (i) + : [ptr] "e" (ptr), + [hi] "r" (hi), + [lo] "r" (lo)); + } +#endif // NEO_KHZ400 + +#else + #error "CPU SPEED NOT SUPPORTED" +#endif // end F_CPU ifdefs on __AVR__ + +// END AVR ---------------------------------------------------------------- + + +#elif defined(__arm__) + +// ARM MCUs -- Teensy 3.0, 3.1, LC, Arduino Due --------------------------- + +#if defined(TEENSYDUINO) && defined(KINETISK) // Teensy 3.0, 3.1, 3.2, 3.5, 3.6 +#define CYCLES_800_T0H (F_CPU / 4000000) +#define CYCLES_800_T1H (F_CPU / 1250000) +#define CYCLES_800 (F_CPU / 800000) +#define CYCLES_400_T0H (F_CPU / 2000000) +#define CYCLES_400_T1H (F_CPU / 833333) +#define CYCLES_400 (F_CPU / 400000) + + uint8_t *p = pixels, + *end = p + numBytes, pix, mask; + volatile uint8_t *set = portSetRegister(pin), + *clr = portClearRegister(pin); + uint32_t cyc; + + ARM_DEMCR |= ARM_DEMCR_TRCENA; + ARM_DWT_CTRL |= ARM_DWT_CTRL_CYCCNTENA; + +#ifdef NEO_KHZ400 // 800 KHz check needed only if 400 KHz support enabled + if(is800KHz) { +#endif + cyc = ARM_DWT_CYCCNT + CYCLES_800; + while(p < end) { + pix = *p++; + for(mask = 0x80; mask; mask >>= 1) { + while(ARM_DWT_CYCCNT - cyc < CYCLES_800); + cyc = ARM_DWT_CYCCNT; + *set = 1; + if(pix & mask) { + while(ARM_DWT_CYCCNT - cyc < CYCLES_800_T1H); + } else { + while(ARM_DWT_CYCCNT - cyc < CYCLES_800_T0H); + } + *clr = 1; + } + } + while(ARM_DWT_CYCCNT - cyc < CYCLES_800); +#ifdef NEO_KHZ400 + } else { // 400 kHz bitstream + cyc = ARM_DWT_CYCCNT + CYCLES_400; + while(p < end) { + pix = *p++; + for(mask = 0x80; mask; mask >>= 1) { + while(ARM_DWT_CYCCNT - cyc < CYCLES_400); + cyc = ARM_DWT_CYCCNT; + *set = 1; + if(pix & mask) { + while(ARM_DWT_CYCCNT - cyc < CYCLES_400_T1H); + } else { + while(ARM_DWT_CYCCNT - cyc < CYCLES_400_T0H); + } + *clr = 1; + } + } + while(ARM_DWT_CYCCNT - cyc < CYCLES_400); + } +#endif // NEO_KHZ400 + +#elif defined(TEENSYDUINO) && defined(__MKL26Z64__) // Teensy-LC + +#if F_CPU == 48000000 + uint8_t *p = pixels, + pix, count, dly, + bitmask = digitalPinToBitMask(pin); + volatile uint8_t *reg = portSetRegister(pin); + uint32_t num = numBytes; + asm volatile( + "L%=_begin:" "\n\t" + "ldrb %[pix], [%[p], #0]" "\n\t" + "lsl %[pix], #24" "\n\t" + "movs %[count], #7" "\n\t" + "L%=_loop:" "\n\t" + "lsl %[pix], #1" "\n\t" + "bcs L%=_loop_one" "\n\t" + "L%=_loop_zero:" + "strb %[bitmask], [%[reg], #0]" "\n\t" + "movs %[dly], #4" "\n\t" + "L%=_loop_delay_T0H:" "\n\t" + "sub %[dly], #1" "\n\t" + "bne L%=_loop_delay_T0H" "\n\t" + "strb %[bitmask], [%[reg], #4]" "\n\t" + "movs %[dly], #13" "\n\t" + "L%=_loop_delay_T0L:" "\n\t" + "sub %[dly], #1" "\n\t" + "bne L%=_loop_delay_T0L" "\n\t" + "b L%=_next" "\n\t" + "L%=_loop_one:" + "strb %[bitmask], [%[reg], #0]" "\n\t" + "movs %[dly], #13" "\n\t" + "L%=_loop_delay_T1H:" "\n\t" + "sub %[dly], #1" "\n\t" + "bne L%=_loop_delay_T1H" "\n\t" + "strb %[bitmask], [%[reg], #4]" "\n\t" + "movs %[dly], #4" "\n\t" + "L%=_loop_delay_T1L:" "\n\t" + "sub %[dly], #1" "\n\t" + "bne L%=_loop_delay_T1L" "\n\t" + "nop" "\n\t" + "L%=_next:" "\n\t" + "sub %[count], #1" "\n\t" + "bne L%=_loop" "\n\t" + "lsl %[pix], #1" "\n\t" + "bcs L%=_last_one" "\n\t" + "L%=_last_zero:" + "strb %[bitmask], [%[reg], #0]" "\n\t" + "movs %[dly], #4" "\n\t" + "L%=_last_delay_T0H:" "\n\t" + "sub %[dly], #1" "\n\t" + "bne L%=_last_delay_T0H" "\n\t" + "strb %[bitmask], [%[reg], #4]" "\n\t" + "movs %[dly], #10" "\n\t" + "L%=_last_delay_T0L:" "\n\t" + "sub %[dly], #1" "\n\t" + "bne L%=_last_delay_T0L" "\n\t" + "b L%=_repeat" "\n\t" + "L%=_last_one:" + "strb %[bitmask], [%[reg], #0]" "\n\t" + "movs %[dly], #13" "\n\t" + "L%=_last_delay_T1H:" "\n\t" + "sub %[dly], #1" "\n\t" + "bne L%=_last_delay_T1H" "\n\t" + "strb %[bitmask], [%[reg], #4]" "\n\t" + "movs %[dly], #1" "\n\t" + "L%=_last_delay_T1L:" "\n\t" + "sub %[dly], #1" "\n\t" + "bne L%=_last_delay_T1L" "\n\t" + "nop" "\n\t" + "L%=_repeat:" "\n\t" + "add %[p], #1" "\n\t" + "sub %[num], #1" "\n\t" + "bne L%=_begin" "\n\t" + "L%=_done:" "\n\t" + : [p] "+r" (p), + [pix] "=&r" (pix), + [count] "=&r" (count), + [dly] "=&r" (dly), + [num] "+r" (num) + : [bitmask] "r" (bitmask), + [reg] "r" (reg) + ); +#else +#error "Sorry, only 48 MHz is supported, please set Tools > CPU Speed to 48 MHz" +#endif // F_CPU == 48000000 + +// Begin of support for NRF52832 based boards ------------------------- + +#elif defined(NRF52) +// [[[Begin of the Neopixel NRF52 EasyDMA implementation +// by the Hackerspace San Salvador]]] +// This technique uses the PWM peripheral on the NRF52. The PWM uses the +// EasyDMA feature included on the chip. This technique loads the duty +// cycle configuration for each cycle when the PWM is enabled. For this +// to work we need to store a 16 bit configuration for each bit of the +// RGB(W) values in the pixel buffer. +// Comparator values for the PWM were hand picked and are guaranteed to +// be 100% organic to preserve freshness and high accuracy. Current +// parameters are: +// * PWM Clock: 16Mhz +// * Minimum step time: 62.5ns +// * Time for zero in high (T0H): 0.31ms +// * Time for one in high (T1H): 0.75ms +// * Cycle time: 1.25us +// * Frequency: 800Khz +// For 400Khz we just double the calculated times. +// ---------- BEGIN Constants for the EasyDMA implementation ----------- +// The PWM starts the duty cycle in LOW. To start with HIGH we +// need to set the 15th bit on each register. + +// WS2812 (rev A) timing is 0.35 and 0.7us +//#define MAGIC_T0H 5UL | (0x8000) // 0.3125us +//#define MAGIC_T1H 12UL | (0x8000) // 0.75us + +// WS2812B (rev B) timing is 0.4 and 0.8 us +#define MAGIC_T0H 6UL | (0x8000) // 0.375us +#define MAGIC_T1H 13UL | (0x8000) // 0.8125us + +// WS2811 (400 khz) timing is 0.5 and 1.2 +#define MAGIC_T0H_400KHz 8UL | (0x8000) // 0.5us +#define MAGIC_T1H_400KHz 19UL | (0x8000) // 1.1875us + +// For 400Khz, we double value of CTOPVAL +#define CTOPVAL 20UL // 1.25us +#define CTOPVAL_400KHz 40UL // 2.5us + +// ---------- END Constants for the EasyDMA implementation ------------- +// +// If there is no device available an alternative cycle-counter +// implementation is tried. +// The nRF52832 runs with a fixed clock of 64Mhz. The alternative +// implementation is the same as the one used for the Teensy 3.0/1/2 but +// with the Nordic SDK HAL & registers syntax. +// The number of cycles was hand picked and is guaranteed to be 100% +// organic to preserve freshness and high accuracy. +// ---------- BEGIN Constants for cycle counter implementation --------- +#define CYCLES_800_T0H 18 // ~0.36 uS +#define CYCLES_800_T1H 41 // ~0.76 uS +#define CYCLES_800 71 // ~1.25 uS + +#define CYCLES_400_T0H 26 // ~0.50 uS +#define CYCLES_400_T1H 70 // ~1.26 uS +#define CYCLES_400 156 // ~2.50 uS +// ---------- END of Constants for cycle counter implementation -------- + + // To support both the SoftDevice + Neopixels we use the EasyDMA + // feature from the NRF25. However this technique implies to + // generate a pattern and store it on the memory. The actual + // memory used in bytes corresponds to the following formula: + // totalMem = numBytes*8*2+(2*2) + // The two additional bytes at the end are needed to reset the + // sequence. + // + // If there is not enough memory, we will fall back to cycle counter + // using DWT + uint32_t pattern_size = numBytes*8*sizeof(uint16_t)+2*sizeof(uint16_t); + uint16_t* pixels_pattern = NULL; + + NRF_PWM_Type* pwm = NULL; + + // Try to find a free PWM device, which is not enabled + // and has no connected pins + NRF_PWM_Type* PWM[3] = {NRF_PWM0, NRF_PWM1, NRF_PWM2}; + for(int device = 0; device<3; device++) { + if( (PWM[device]->ENABLE == 0) && + (PWM[device]->PSEL.OUT[0] & PWM_PSEL_OUT_CONNECT_Msk) && + (PWM[device]->PSEL.OUT[1] & PWM_PSEL_OUT_CONNECT_Msk) && + (PWM[device]->PSEL.OUT[2] & PWM_PSEL_OUT_CONNECT_Msk) && + (PWM[device]->PSEL.OUT[3] & PWM_PSEL_OUT_CONNECT_Msk) + ) { + pwm = PWM[device]; + break; + } + } + + // only malloc if there is PWM device available + if ( pwm != NULL ) { + #ifdef ARDUINO_FEATHER52 // use thread-safe malloc + pixels_pattern = (uint16_t *) rtos_malloc(pattern_size); + #else + pixels_pattern = (uint16_t *) malloc(pattern_size); + #endif + } + + // Use the identified device to choose the implementation + // If a PWM device is available use DMA + if( (pixels_pattern != NULL) && (pwm != NULL) ) { + uint16_t pos = 0; // bit position + + for(uint16_t n=0; n0; mask >>= 1, i++) { + #ifdef NEO_KHZ400 + if( !is800KHz ) { + pixels_pattern[pos] = (pix & mask) ? MAGIC_T1H_400KHz : MAGIC_T0H_400KHz; + }else + #endif + { + pixels_pattern[pos] = (pix & mask) ? MAGIC_T1H : MAGIC_T0H; + } + + pos++; + } + } + + // Zero padding to indicate the end of que sequence + pixels_pattern[++pos] = 0 | (0x8000); // Seq end + pixels_pattern[++pos] = 0 | (0x8000); // Seq end + + // Set the wave mode to count UP + pwm->MODE = (PWM_MODE_UPDOWN_Up << PWM_MODE_UPDOWN_Pos); + + // Set the PWM to use the 16MHz clock + pwm->PRESCALER = (PWM_PRESCALER_PRESCALER_DIV_1 << PWM_PRESCALER_PRESCALER_Pos); + + // Setting of the maximum count + // but keeping it on 16Mhz allows for more granularity just + // in case someone wants to do more fine-tuning of the timing. +#ifdef NEO_KHZ400 + if( !is800KHz ) { + pwm->COUNTERTOP = (CTOPVAL_400KHz << PWM_COUNTERTOP_COUNTERTOP_Pos); + }else +#endif + { + pwm->COUNTERTOP = (CTOPVAL << PWM_COUNTERTOP_COUNTERTOP_Pos); + } + + // Disable loops, we want the sequence to repeat only once + pwm->LOOP = (PWM_LOOP_CNT_Disabled << PWM_LOOP_CNT_Pos); + + // On the "Common" setting the PWM uses the same pattern for the + // for supported sequences. The pattern is stored on half-word + // of 16bits + pwm->DECODER = (PWM_DECODER_LOAD_Common << PWM_DECODER_LOAD_Pos) | + (PWM_DECODER_MODE_RefreshCount << PWM_DECODER_MODE_Pos); + + // Pointer to the memory storing the patter + pwm->SEQ[0].PTR = (uint32_t)(pixels_pattern) << PWM_SEQ_PTR_PTR_Pos; + + // Calculation of the number of steps loaded from memory. + pwm->SEQ[0].CNT = (pattern_size/sizeof(uint16_t)) << PWM_SEQ_CNT_CNT_Pos; + + // The following settings are ignored with the current config. + pwm->SEQ[0].REFRESH = 0; + pwm->SEQ[0].ENDDELAY = 0; + + // The Neopixel implementation is a blocking algorithm. DMA + // allows for non-blocking operation. To "simulate" a blocking + // operation we enable the interruption for the end of sequence + // and block the execution thread until the event flag is set by + // the peripheral. +// pwm->INTEN |= (PWM_INTEN_SEQEND0_Enabled<PSEL.OUT[0] = g_ADigitalPinMap[pin]; + + // Enable the PWM + pwm->ENABLE = 1; + + // After all of this and many hours of reading the documentation + // we are ready to start the sequence... + pwm->EVENTS_SEQEND[0] = 0; + pwm->TASKS_SEQSTART[0] = 1; + + // But we have to wait for the flag to be set. + while(!pwm->EVENTS_SEQEND[0]) + { + #ifdef ARDUINO_FEATHER52 + yield(); + #endif + } + + // Before leave we clear the flag for the event. + pwm->EVENTS_SEQEND[0] = 0; + + // We need to disable the device and disconnect + // all the outputs before leave or the device will not + // be selected on the next call. + // TODO: Check if disabling the device causes performance issues. + pwm->ENABLE = 0; + + pwm->PSEL.OUT[0] = 0xFFFFFFFFUL; + + #ifdef ARDUINO_FEATHER52 // use thread-safe free + rtos_free(pixels_pattern); + #else + free(pixels_pattern); + #endif + }// End of DMA implementation + // --------------------------------------------------------------------- + else{ + // Fall back to DWT + #ifdef ARDUINO_FEATHER52 + // Bluefruit Feather 52 uses freeRTOS + // Critical Section is used since it does not block SoftDevice execution + taskENTER_CRITICAL(); + #elif defined(NRF52_DISABLE_INT) + // If you are using the Bluetooth SoftDevice we advise you to not disable + // the interrupts. Disabling the interrupts even for short periods of time + // causes the SoftDevice to stop working. + // Disable the interrupts only in cases where you need high performance for + // the LEDs and if you are not using the EasyDMA feature. + __disable_irq(); + #endif + + uint32_t pinMask = 1UL << g_ADigitalPinMap[pin]; + + uint32_t CYCLES_X00 = CYCLES_800; + uint32_t CYCLES_X00_T1H = CYCLES_800_T1H; + uint32_t CYCLES_X00_T0H = CYCLES_800_T0H; + +#ifdef NEO_KHZ400 + if( !is800KHz ) + { + CYCLES_X00 = CYCLES_400; + CYCLES_X00_T1H = CYCLES_400_T1H; + CYCLES_X00_T0H = CYCLES_400_T0H; + } +#endif + + // Enable DWT in debug core + CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk; + DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk; + + // Tries to re-send the frame if is interrupted by the SoftDevice. + while(1) { + uint8_t *p = pixels; + + uint32_t cycStart = DWT->CYCCNT; + uint32_t cyc = 0; + + for(uint16_t n=0; n>= 1) { + while(DWT->CYCCNT - cyc < CYCLES_X00); + cyc = DWT->CYCCNT; + + NRF_GPIO->OUTSET |= pinMask; + + if(pix & mask) { + while(DWT->CYCCNT - cyc < CYCLES_X00_T1H); + } else { + while(DWT->CYCCNT - cyc < CYCLES_X00_T0H); + } + + NRF_GPIO->OUTCLR |= pinMask; + } + } + while(DWT->CYCCNT - cyc < CYCLES_X00); + + + // If total time longer than 25%, resend the whole data. + // Since we are likely to be interrupted by SoftDevice + if ( (DWT->CYCCNT - cycStart) < ( 8*numBytes*((CYCLES_X00*5)/4) ) ) { + break; + } + + // re-send need 300us delay + delayMicroseconds(300); + } + + // Enable interrupts again + #ifdef ARDUINO_FEATHER52 + taskEXIT_CRITICAL(); + #elif defined(NRF52_DISABLE_INT) + __enable_irq(); + #endif + } +// END of NRF52 implementation + +#elif defined (__SAMD21E17A__) || defined(__SAMD21G18A__) || defined(__SAMD21E18A__) || defined(__SAMD21J18A__) // Arduino Zero, Gemma/Trinket M0, SODAQ Autonomo and others + // Tried this with a timer/counter, couldn't quite get adequate + // resolution. So yay, you get a load of goofball NOPs... + + uint8_t *ptr, *end, p, bitMask, portNum; + uint32_t pinMask; + + portNum = g_APinDescription[pin].ulPort; + pinMask = 1ul << g_APinDescription[pin].ulPin; + ptr = pixels; + end = ptr + numBytes; + p = *ptr++; + bitMask = 0x80; + + volatile uint32_t *set = &(PORT->Group[portNum].OUTSET.reg), + *clr = &(PORT->Group[portNum].OUTCLR.reg); + +#ifdef NEO_KHZ400 // 800 KHz check needed only if 400 KHz support enabled + if(is800KHz) { +#endif + for(;;) { + *set = pinMask; + asm("nop; nop; nop; nop; nop; nop; nop; nop;"); + if(p & bitMask) { + asm("nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop;"); + *clr = pinMask; + } else { + *clr = pinMask; + asm("nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop;"); + } + if(bitMask >>= 1) { + asm("nop; nop; nop; nop; nop; nop; nop; nop; nop;"); + } else { + if(ptr >= end) break; + p = *ptr++; + bitMask = 0x80; + } + } +#ifdef NEO_KHZ400 + } else { // 400 KHz bitstream + for(;;) { + *set = pinMask; + asm("nop; nop; nop; nop; nop; nop; nop; nop; nop; nop; nop;"); + if(p & bitMask) { + asm("nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop;"); + *clr = pinMask; + } else { + *clr = pinMask; + asm("nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop;"); + } + asm("nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;"); + if(bitMask >>= 1) { + asm("nop; nop; nop; nop; nop; nop; nop;"); + } else { + if(ptr >= end) break; + p = *ptr++; + bitMask = 0x80; + } + } + } +#endif + +#elif defined (__SAMD51__) // M4 @ 120mhz + // Tried this with a timer/counter, couldn't quite get adequate + // resolution. So yay, you get a load of goofball NOPs... + + uint8_t *ptr, *end, p, bitMask, portNum; + uint32_t pinMask; + + portNum = g_APinDescription[pin].ulPort; + pinMask = 1ul << g_APinDescription[pin].ulPin; + ptr = pixels; + end = ptr + numBytes; + p = *ptr++; + bitMask = 0x80; + + volatile uint32_t *set = &(PORT->Group[portNum].OUTSET.reg), + *clr = &(PORT->Group[portNum].OUTCLR.reg); + +#ifdef NEO_KHZ400 // 800 KHz check needed only if 400 KHz support enabled + if(is800KHz) { +#endif + for(;;) { + if(p & bitMask) { // ONE + // High 800ns + *set = pinMask; + asm("nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;"); + // Low 450ns + *clr = pinMask; + asm("nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop;"); + } else { // ZERO + // High 400ns + *set = pinMask; + asm("nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop;"); + // Low 850ns + *clr = pinMask; + asm("nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;"); + } + if(bitMask >>= 1) { + // Move on to the next pixel + asm("nop;"); + } else { + if(ptr >= end) break; + p = *ptr++; + bitMask = 0x80; + } + } +#ifdef NEO_KHZ400 + } else { // 400 KHz bitstream + // ToDo! + } +#endif + +#elif defined (ARDUINO_STM32_FEATHER) // FEATHER WICED (120MHz) + + // Tried this with a timer/counter, couldn't quite get adequate + // resolution. So yay, you get a load of goofball NOPs... + + uint8_t *ptr, *end, p, bitMask; + uint32_t pinMask; + + pinMask = BIT(PIN_MAP[pin].gpio_bit); + ptr = pixels; + end = ptr + numBytes; + p = *ptr++; + bitMask = 0x80; + + volatile uint16_t *set = &(PIN_MAP[pin].gpio_device->regs->BSRRL); + volatile uint16_t *clr = &(PIN_MAP[pin].gpio_device->regs->BSRRH); + +#ifdef NEO_KHZ400 // 800 KHz check needed only if 400 KHz support enabled + if(is800KHz) { +#endif + for(;;) { + if(p & bitMask) { // ONE + // High 800ns + *set = pinMask; + asm("nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop;"); + // Low 450ns + *clr = pinMask; + asm("nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop;"); + } else { // ZERO + // High 400ns + *set = pinMask; + asm("nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop;"); + // Low 850ns + *clr = pinMask; + asm("nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop; nop; nop; nop; nop;" + "nop; nop; nop; nop;"); + } + if(bitMask >>= 1) { + // Move on to the next pixel + asm("nop;"); + } else { + if(ptr >= end) break; + p = *ptr++; + bitMask = 0x80; + } + } +#ifdef NEO_KHZ400 + } else { // 400 KHz bitstream + // ToDo! + } +#endif + +#else // Other ARM architecture -- Presumed Arduino Due + + #define SCALE VARIANT_MCK / 2UL / 1000000UL + #define INST (2UL * F_CPU / VARIANT_MCK) + #define TIME_800_0 ((int)(0.40 * SCALE + 0.5) - (5 * INST)) + #define TIME_800_1 ((int)(0.80 * SCALE + 0.5) - (5 * INST)) + #define PERIOD_800 ((int)(1.25 * SCALE + 0.5) - (5 * INST)) + #define TIME_400_0 ((int)(0.50 * SCALE + 0.5) - (5 * INST)) + #define TIME_400_1 ((int)(1.20 * SCALE + 0.5) - (5 * INST)) + #define PERIOD_400 ((int)(2.50 * SCALE + 0.5) - (5 * INST)) + + int pinMask, time0, time1, period, t; + Pio *port; + volatile WoReg *portSet, *portClear, *timeValue, *timeReset; + uint8_t *p, *end, pix, mask; + + pmc_set_writeprotect(false); + pmc_enable_periph_clk((uint32_t)TC3_IRQn); + TC_Configure(TC1, 0, + TC_CMR_WAVE | TC_CMR_WAVSEL_UP | TC_CMR_TCCLKS_TIMER_CLOCK1); + TC_Start(TC1, 0); + + pinMask = g_APinDescription[pin].ulPin; // Don't 'optimize' these into + port = g_APinDescription[pin].pPort; // declarations above. Want to + portSet = &(port->PIO_SODR); // burn a few cycles after + portClear = &(port->PIO_CODR); // starting timer to minimize + timeValue = &(TC1->TC_CHANNEL[0].TC_CV); // the initial 'while'. + timeReset = &(TC1->TC_CHANNEL[0].TC_CCR); + p = pixels; + end = p + numBytes; + pix = *p++; + mask = 0x80; + +#ifdef NEO_KHZ400 // 800 KHz check needed only if 400 KHz support enabled + if(is800KHz) { +#endif + time0 = TIME_800_0; + time1 = TIME_800_1; + period = PERIOD_800; +#ifdef NEO_KHZ400 + } else { // 400 KHz bitstream + time0 = TIME_400_0; + time1 = TIME_400_1; + period = PERIOD_400; + } +#endif + + for(t = time0;; t = time0) { + if(pix & mask) t = time1; + while(*timeValue < period); + *portSet = pinMask; + *timeReset = TC_CCR_CLKEN | TC_CCR_SWTRG; + while(*timeValue < t); + *portClear = pinMask; + if(!(mask >>= 1)) { // This 'inside-out' loop logic utilizes + if(p >= end) break; // idle time to minimize inter-byte delays. + pix = *p++; + mask = 0x80; + } + } + while(*timeValue < period); // Wait for last bit + TC_Stop(TC1, 0); + +#endif // end Due + +// END ARM ---------------------------------------------------------------- + + +#elif defined(ESP8266) || defined(ESP32) + +// ESP8266 ---------------------------------------------------------------- + + // ESP8266 show() is external to enforce ICACHE_RAM_ATTR execution + espShow(pin, pixels, numBytes, is800KHz); + +#elif defined(__ARDUINO_ARC__) + +// Arduino 101 ----------------------------------------------------------- + +#define NOPx7 { __builtin_arc_nop(); \ + __builtin_arc_nop(); __builtin_arc_nop(); \ + __builtin_arc_nop(); __builtin_arc_nop(); \ + __builtin_arc_nop(); __builtin_arc_nop(); } + + PinDescription *pindesc = &g_APinDescription[pin]; + register uint32_t loop = 8 * numBytes; // one loop to handle all bytes and all bits + register uint8_t *p = pixels; + register uint32_t currByte = (uint32_t) (*p); + register uint32_t currBit = 0x80 & currByte; + register uint32_t bitCounter = 0; + register uint32_t first = 1; + + // The loop is unusual. Very first iteration puts all the way LOW to the wire - + // constant LOW does not affect NEOPIXEL, so there is no visible effect displayed. + // During that very first iteration CPU caches instructions in the loop. + // Because of the caching process, "CPU slows down". NEOPIXEL pulse is very time sensitive + // that's why we let the CPU cache first and we start regular pulse from 2nd iteration + if (pindesc->ulGPIOType == SS_GPIO) { + register uint32_t reg = pindesc->ulGPIOBase + SS_GPIO_SWPORTA_DR; + uint32_t reg_val = __builtin_arc_lr((volatile uint32_t)reg); + register uint32_t reg_bit_high = reg_val | (1 << pindesc->ulGPIOId); + register uint32_t reg_bit_low = reg_val & ~(1 << pindesc->ulGPIOId); + + loop += 1; // include first, special iteration + while(loop--) { + if(!first) { + currByte <<= 1; + bitCounter++; + } + + // 1 is >550ns high and >450ns low; 0 is 200..500ns high and >450ns low + __builtin_arc_sr(first ? reg_bit_low : reg_bit_high, (volatile uint32_t)reg); + if(currBit) { // ~400ns HIGH (740ns overall) + NOPx7 + NOPx7 + } + // ~340ns HIGH + NOPx7 + __builtin_arc_nop(); + + // 820ns LOW; per spec, max allowed low here is 5000ns */ + __builtin_arc_sr(reg_bit_low, (volatile uint32_t)reg); + NOPx7 + NOPx7 + + if(bitCounter >= 8) { + bitCounter = 0; + currByte = (uint32_t) (*++p); + } + + currBit = 0x80 & currByte; + first = 0; + } + } else if(pindesc->ulGPIOType == SOC_GPIO) { + register uint32_t reg = pindesc->ulGPIOBase + SOC_GPIO_SWPORTA_DR; + uint32_t reg_val = MMIO_REG_VAL(reg); + register uint32_t reg_bit_high = reg_val | (1 << pindesc->ulGPIOId); + register uint32_t reg_bit_low = reg_val & ~(1 << pindesc->ulGPIOId); + + loop += 1; // include first, special iteration + while(loop--) { + if(!first) { + currByte <<= 1; + bitCounter++; + } + MMIO_REG_VAL(reg) = first ? reg_bit_low : reg_bit_high; + if(currBit) { // ~430ns HIGH (740ns overall) + NOPx7 + NOPx7 + __builtin_arc_nop(); + } + // ~310ns HIGH + NOPx7 + + // 850ns LOW; per spec, max allowed low here is 5000ns */ + MMIO_REG_VAL(reg) = reg_bit_low; + NOPx7 + NOPx7 + + if(bitCounter >= 8) { + bitCounter = 0; + currByte = (uint32_t) (*++p); + } + + currBit = 0x80 & currByte; + first = 0; + } + } + +#else +#error Architecture not supported +#endif + + +// END ARCHITECTURE SELECT ------------------------------------------------ + +#ifndef NRF52 + interrupts(); +#endif + + endTime = micros(); // Save EOD time for latch on next call +} + +// Set the output pin number +void Adafruit_NeoPixel::setPin(uint8_t p) { + if(begun && (pin >= 0)) pinMode(pin, INPUT); + pin = p; + if(begun) { + pinMode(p, OUTPUT); + digitalWrite(p, LOW); + } +#ifdef __AVR__ + port = portOutputRegister(digitalPinToPort(p)); + pinMask = digitalPinToBitMask(p); +#endif +} + +// Set pixel color from separate R,G,B components: +void Adafruit_NeoPixel::setPixelColor( + uint16_t n, uint8_t r, uint8_t g, uint8_t b) { + + if(n < numLEDs) { + if(brightness) { // See notes in setBrightness() + r = (r * brightness) >> 8; + g = (g * brightness) >> 8; + b = (b * brightness) >> 8; + } + uint8_t *p; + if(wOffset == rOffset) { // Is an RGB-type strip + p = &pixels[n * 3]; // 3 bytes per pixel + } else { // Is a WRGB-type strip + p = &pixels[n * 4]; // 4 bytes per pixel + p[wOffset] = 0; // But only R,G,B passed -- set W to 0 + } + p[rOffset] = r; // R,G,B always stored + p[gOffset] = g; + p[bOffset] = b; + } +} + +void Adafruit_NeoPixel::setPixelColor( + uint16_t n, uint8_t r, uint8_t g, uint8_t b, uint8_t w) { + + if(n < numLEDs) { + if(brightness) { // See notes in setBrightness() + r = (r * brightness) >> 8; + g = (g * brightness) >> 8; + b = (b * brightness) >> 8; + w = (w * brightness) >> 8; + } + uint8_t *p; + if(wOffset == rOffset) { // Is an RGB-type strip + p = &pixels[n * 3]; // 3 bytes per pixel (ignore W) + } else { // Is a WRGB-type strip + p = &pixels[n * 4]; // 4 bytes per pixel + p[wOffset] = w; // Store W + } + p[rOffset] = r; // Store R,G,B + p[gOffset] = g; + p[bOffset] = b; + } +} + +// Set pixel color from 'packed' 32-bit RGB color: +void Adafruit_NeoPixel::setPixelColor(uint16_t n, uint32_t c) { + if(n < numLEDs) { + uint8_t *p, + r = (uint8_t)(c >> 16), + g = (uint8_t)(c >> 8), + b = (uint8_t)c; + if(brightness) { // See notes in setBrightness() + r = (r * brightness) >> 8; + g = (g * brightness) >> 8; + b = (b * brightness) >> 8; + } + if(wOffset == rOffset) { + p = &pixels[n * 3]; + } else { + p = &pixels[n * 4]; + uint8_t w = (uint8_t)(c >> 24); + p[wOffset] = brightness ? ((w * brightness) >> 8) : w; + } + p[rOffset] = r; + p[gOffset] = g; + p[bOffset] = b; + } +} + +// Convert separate R,G,B into packed 32-bit RGB color. +// Packed format is always RGB, regardless of LED strand color order. +uint32_t Adafruit_NeoPixel::Color(uint8_t r, uint8_t g, uint8_t b) { + return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b; +} + +// Convert separate R,G,B,W into packed 32-bit WRGB color. +// Packed format is always WRGB, regardless of LED strand color order. +uint32_t Adafruit_NeoPixel::Color(uint8_t r, uint8_t g, uint8_t b, uint8_t w) { + return ((uint32_t)w << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b; +} + +// Query color from previously-set pixel (returns packed 32-bit RGB value) +uint32_t Adafruit_NeoPixel::getPixelColor(uint16_t n) const { + if(n >= numLEDs) return 0; // Out of bounds, return no color. + + uint8_t *p; + + if(wOffset == rOffset) { // Is RGB-type device + p = &pixels[n * 3]; + if(brightness) { + // Stored color was decimated by setBrightness(). Returned value + // attempts to scale back to an approximation of the original 24-bit + // value used when setting the pixel color, but there will always be + // some error -- those bits are simply gone. Issue is most + // pronounced at low brightness levels. + return (((uint32_t)(p[rOffset] << 8) / brightness) << 16) | + (((uint32_t)(p[gOffset] << 8) / brightness) << 8) | + ( (uint32_t)(p[bOffset] << 8) / brightness ); + } else { + // No brightness adjustment has been made -- return 'raw' color + return ((uint32_t)p[rOffset] << 16) | + ((uint32_t)p[gOffset] << 8) | + (uint32_t)p[bOffset]; + } + } else { // Is RGBW-type device + p = &pixels[n * 4]; + if(brightness) { // Return scaled color + return (((uint32_t)(p[wOffset] << 8) / brightness) << 24) | + (((uint32_t)(p[rOffset] << 8) / brightness) << 16) | + (((uint32_t)(p[gOffset] << 8) / brightness) << 8) | + ( (uint32_t)(p[bOffset] << 8) / brightness ); + } else { // Return raw color + return ((uint32_t)p[wOffset] << 24) | + ((uint32_t)p[rOffset] << 16) | + ((uint32_t)p[gOffset] << 8) | + (uint32_t)p[bOffset]; + } + } +} + +// Returns pointer to pixels[] array. Pixel data is stored in device- +// native format and is not translated here. Application will need to be +// aware of specific pixel data format and handle colors appropriately. +uint8_t *Adafruit_NeoPixel::getPixels(void) const { + return pixels; +} + +uint16_t Adafruit_NeoPixel::numPixels(void) const { + return numLEDs; +} + +// Adjust output brightness; 0=darkest (off), 255=brightest. This does +// NOT immediately affect what's currently displayed on the LEDs. The +// next call to show() will refresh the LEDs at this level. However, +// this process is potentially "lossy," especially when increasing +// brightness. The tight timing in the WS2811/WS2812 code means there +// aren't enough free cycles to perform this scaling on the fly as data +// is issued. So we make a pass through the existing color data in RAM +// and scale it (subsequent graphics commands also work at this +// brightness level). If there's a significant step up in brightness, +// the limited number of steps (quantization) in the old data will be +// quite visible in the re-scaled version. For a non-destructive +// change, you'll need to re-render the full strip data. C'est la vie. +void Adafruit_NeoPixel::setBrightness(uint8_t b) { + // Stored brightness value is different than what's passed. + // This simplifies the actual scaling math later, allowing a fast + // 8x8-bit multiply and taking the MSB. 'brightness' is a uint8_t, + // adding 1 here may (intentionally) roll over...so 0 = max brightness + // (color values are interpreted literally; no scaling), 1 = min + // brightness (off), 255 = just below max brightness. + uint8_t newBrightness = b + 1; + if(newBrightness != brightness) { // Compare against prior value + // Brightness has changed -- re-scale existing data in RAM + uint8_t c, + *ptr = pixels, + oldBrightness = brightness - 1; // De-wrap old brightness value + uint16_t scale; + if(oldBrightness == 0) scale = 0; // Avoid /0 + else if(b == 255) scale = 65535 / oldBrightness; + else scale = (((uint16_t)newBrightness << 8) - 1) / oldBrightness; + for(uint16_t i=0; i> 8; + } + brightness = newBrightness; + } +} + +//Return the brightness value +uint8_t Adafruit_NeoPixel::getBrightness(void) const { + return brightness - 1; +} + +void Adafruit_NeoPixel::clear() { + memset(pixels, 0, numBytes); +} diff --git a/ArduinoAddons/arduino-1.8.3/libraries/Adafruit_NeoPixel/Adafruit_NeoPixel.h b/ArduinoAddons/arduino-1.8.3/libraries/Adafruit_NeoPixel/Adafruit_NeoPixel.h new file mode 100644 index 000000000..fac912140 --- /dev/null +++ b/ArduinoAddons/arduino-1.8.3/libraries/Adafruit_NeoPixel/Adafruit_NeoPixel.h @@ -0,0 +1,180 @@ +/*-------------------------------------------------------------------- + This file is part of the Adafruit NeoPixel library. + + NeoPixel is free software: you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License as + published by the Free Software Foundation, either version 3 of + the License, or (at your option) any later version. + + NeoPixel is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with NeoPixel. If not, see + . + --------------------------------------------------------------------*/ + +#ifndef ADAFRUIT_NEOPIXEL_H +#define ADAFRUIT_NEOPIXEL_H + +#if (ARDUINO >= 100) + #include +#else + #include + #include +#endif + +// The order of primary colors in the NeoPixel data stream can vary +// among device types, manufacturers and even different revisions of +// the same item. The third parameter to the Adafruit_NeoPixel +// constructor encodes the per-pixel byte offsets of the red, green +// and blue primaries (plus white, if present) in the data stream -- +// the following #defines provide an easier-to-use named version for +// each permutation. e.g. NEO_GRB indicates a NeoPixel-compatible +// device expecting three bytes per pixel, with the first byte +// containing the green value, second containing red and third +// containing blue. The in-memory representation of a chain of +// NeoPixels is the same as the data-stream order; no re-ordering of +// bytes is required when issuing data to the chain. + +// Bits 5,4 of this value are the offset (0-3) from the first byte of +// a pixel to the location of the red color byte. Bits 3,2 are the +// green offset and 1,0 are the blue offset. If it is an RGBW-type +// device (supporting a white primary in addition to R,G,B), bits 7,6 +// are the offset to the white byte...otherwise, bits 7,6 are set to +// the same value as 5,4 (red) to indicate an RGB (not RGBW) device. +// i.e. binary representation: +// 0bWWRRGGBB for RGBW devices +// 0bRRRRGGBB for RGB + +// RGB NeoPixel permutations; white and red offsets are always same +// Offset: W R G B +#define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2)) +#define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1)) +#define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2)) +#define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1)) +#define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0)) +#define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0)) + +// RGBW NeoPixel permutations; all 4 offsets are distinct +// Offset: W R G B +#define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3)) +#define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2)) +#define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3)) +#define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2)) +#define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1)) +#define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1)) + +#define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3)) +#define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2)) +#define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3)) +#define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2)) +#define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1)) +#define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1)) + +#define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3)) +#define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2)) +#define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3)) +#define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2)) +#define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1)) +#define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1)) + +#define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0)) +#define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0)) +#define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0)) +#define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0)) +#define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0)) +#define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0)) + +// Add NEO_KHZ400 to the color order value to indicate a 400 KHz +// device. All but the earliest v1 NeoPixels expect an 800 KHz data +// stream, this is the default if unspecified. Because flash space +// is very limited on ATtiny devices (e.g. Trinket, Gemma), v1 +// NeoPixels aren't handled by default on those chips, though it can +// be enabled by removing the ifndef/endif below -- but code will be +// bigger. Conversely, can disable the NEO_KHZ400 line on other MCUs +// to remove v1 support and save a little space. + +#define NEO_KHZ800 0x0000 // 800 KHz datastream +#ifndef __AVR_ATtiny85__ +#define NEO_KHZ400 0x0100 // 400 KHz datastream +#endif + +// If 400 KHz support is enabled, the third parameter to the constructor +// requires a 16-bit value (in order to select 400 vs 800 KHz speed). +// If only 800 KHz is enabled (as is default on ATtiny), an 8-bit value +// is sufficient to encode pixel color order, saving some space. + +#ifdef NEO_KHZ400 +typedef uint16_t neoPixelType; +#else +typedef uint8_t neoPixelType; +#endif + +class Adafruit_NeoPixel { + + public: + + // Constructor: number of LEDs, pin number, LED type + Adafruit_NeoPixel(uint16_t n, uint8_t p=6, neoPixelType t=NEO_GRB + NEO_KHZ800); + Adafruit_NeoPixel(void); + ~Adafruit_NeoPixel(); + + void + begin(void), + show(void), + setPin(uint8_t p), + setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b), + setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b, uint8_t w), + setPixelColor(uint16_t n, uint32_t c), + setBrightness(uint8_t), + clear(), + updateLength(uint16_t n), + updateType(neoPixelType t); + uint8_t + *getPixels(void) const, + getBrightness(void) const; + int8_t + getPin(void) { return pin; }; + uint16_t + numPixels(void) const; + static uint32_t + Color(uint8_t r, uint8_t g, uint8_t b), + Color(uint8_t r, uint8_t g, uint8_t b, uint8_t w); + uint32_t + getPixelColor(uint16_t n) const; + inline bool + canShow(void) { return (micros() - endTime) >= 300L; } + + protected: + + boolean +#ifdef NEO_KHZ400 // If 400 KHz NeoPixel support enabled... + is800KHz, // ...true if 800 KHz pixels +#endif + begun; // true if begin() previously called + uint16_t + numLEDs, // Number of RGB LEDs in strip + numBytes; // Size of 'pixels' buffer below (3 or 4 bytes/pixel) + int8_t + pin; // Output pin number (-1 if not yet set) + uint8_t + brightness, + *pixels, // Holds LED color values (3 or 4 bytes each) + rOffset, // Index of red byte within each 3- or 4-byte pixel + gOffset, // Index of green byte + bOffset, // Index of blue byte + wOffset; // Index of white byte (same as rOffset if no white) + uint32_t + endTime; // Latch timing reference +#ifdef __AVR__ + volatile uint8_t + *port; // Output PORT register + uint8_t + pinMask; // Output PORT bitmask +#endif +}; + +#endif // ADAFRUIT_NEOPIXEL_H diff --git a/Marlin/Conditionals_LulzBot.h b/Marlin/Conditionals_LulzBot.h index 0fc9a8585..10f14689e 100644 --- a/Marlin/Conditionals_LulzBot.h +++ b/Marlin/Conditionals_LulzBot.h @@ -13,7 +13,7 @@ * got disabled. */ -#define LULZBOT_FW_VERSION ".36" // Change this with each update +#define LULZBOT_FW_VERSION ".37" // Change this with each update #if ( \ !defined(LULZBOT_Gladiola_Mini) && \ @@ -25,6 +25,7 @@ !defined(LULZBOT_Hibiscus_EinsyMini2) && \ !defined(LULZBOT_Hibiscus_EinsyMini2LCD) && \ !defined(LULZBOT_Hibiscus_SpeedyMini2) && \ + !defined(LULZBOT_Hibiscus_SpeedyEinsyMini2) && \ !defined(LULZBOT_Quiver_TAZ7) \ ) || ( \ !defined(TOOLHEAD_Gladiola_SingleExtruder) && \ @@ -136,6 +137,23 @@ #define LULZBOT_UUID "1b8d32d3-0596-4335-8cd4-f3741a095087" #endif +#if defined(LULZBOT_Hibiscus_SpeedyEinsyMini2) + #define LULZBOT_CUSTOM_MACHINE_NAME "LulzBot Mini 2" + #define LULZBOT_LCD_MACHINE_NAME "Mini Einsy 2" + #define LULZBOT_IS_MINI + #define LULZBOT_MINI_BED + #define LULZBOT_USE_EINSYRAMBO + #define LULZBOT_USE_EARLY_EINSY + #define LULZBOT_TWO_PIECE_BED + #define LULZBOT_USE_AUTOLEVELING + #define LULZBOT_SENSORLESS_HOMING + #define LULZBOT_USE_Z_BELT + #define LULZBOT_USE_SERIES_Z_MOTORS + #define LULZBOT_BAUDRATE 250000 + #define LULZBOT_PRINTCOUNTER + #define LULZBOT_UUID "1b8d32d3-0596-4335-8cd4-f3741a095087" +#endif + #if defined(LULZBOT_Hibiscus_EinsyMini2) #define LULZBOT_CUSTOM_MACHINE_NAME "LulzBot Mini 2" #define LULZBOT_LCD_MACHINE_NAME "Mini Einsy 2" @@ -166,6 +184,7 @@ #define LULZBOT_SENSORLESS_HOMING #define LULZBOT_USE_Z_BELT #define LULZBOT_USE_Z_GEARBOX + #define LULZBOT_USE_STATUS_LED #define LULZBOT_BAUDRATE 250000 #define LULZBOT_PRINTCOUNTER #define LULZBOT_UUID "e5502411-d46d-421d-ba3a-a20126d7930f" @@ -1113,6 +1132,15 @@ #define LULZBOT_Z_MIN_ENDSTOP_INVERTING LULZBOT_NORMALLY_OPEN_ENDSTOP #define LULZBOT_Z_MIN_PROBE_ENDSTOP_INVERTING LULZBOT_NORMALLY_OPEN_ENDSTOP +/********************************* STATUS LIGHTS ********************************/ + +#if defined(LULZBOT_USE_STATUS_LED) + #define LULZBOT_NEOPIXEL_RGBW_LED + #define LULZBOT_NEOPIXEL_PIN BOARD_X_MAX_PIN + #define LULZBOT_NEOPIXEL_PIXELS 8 + #undef LULZBOT_USE_XMAX_PLUG +#endif + /******************************* SENSORLESS HOMING ******************************/ #if defined(LULZBOT_SENSORLESS_HOMING) @@ -1322,11 +1350,35 @@ st.coolstep_min_speed(0); \ st.stealthChop(1); + #if defined(LULZBOT_USE_SERIES_Z_MOTORS) + #define LULZBOT_Z_TOFF 1 + #define LULZBOT_Z_HSTRT 0 + #define LULZBOT_Z_HEND 0 + #define LULZBOT_Z_TBL 1 + #else + /* Marlin Defaults - Matches Quick Configuration Guide values*/ + #define LULZBOT_Z_TOFF 5 + #define LULZBOT_Z_HSTRT 0 + #define LULZBOT_Z_HEND 0 + #define LULZBOT_Z_TBL 2 + #endif + + #define LULZBOT_MOTOR_INIT_XY \ + /* Set TOFF to reduce audible chopping noise */ \ + stepperX.toff(3); \ + stepperY.toff(3); + + #define LULZBOT_MOTOR_INIT_Z \ + /* Set TOFF to reduce audible chopping noise */ \ + stepperZ.toff(LULZBOT_Z_TOFF); /* TOFF = [1..15] */ \ + stepperZ.hstrt(LULZBOT_Z_HSTRT); /* HSTART = [0..7] */ \ + stepperZ.hend(LULZBOT_Z_HEND); /* HEND = [0..15] */ \ + stepperZ.tbl(LULZBOT_Z_TBL); /* TBL = [0..3] */ \ + #define LULZBOT_TMC2130_ADV { \ LULZBOT_SENSORLESS_HOMING_Z_INIT \ - /* Set TOFF to reduce audible chopping noise */ \ - stepperX.toff(3); \ - stepperY.toff(3); \ + LULZBOT_MOTOR_INIT_XY \ + LULZBOT_MOTOR_INIT_Z \ } /* When STEALTHCHOP is disabled, sometimes the X axis refuses to @@ -1471,15 +1523,11 @@ // Values for XYZ vary by printer model, values for E vary by toolhead. #if defined(LULZBOT_USE_EINSYRAMBO) - #define LULZBOT_MOTOR_CURRENT_XY 800 // mA + // This value will be ignored due to the automatic + // current regulation provided by COOLCONF + #define LULZBOT_MOTOR_CURRENT_XY 960 // mA #define LULZBOT_MOTOR_CURRENT_Z 960 // mA - #if LULZBOT_MOTOR_CURRENT_E > 960 - #warning This toolhead may not work properly with the EinsyRambo - #undef LULZBOT_MOTOR_CURRENT_E - #define LULZBOT_MOTOR_CURRENT_E 960 // mA - #endif - #elif defined(LULZBOT_IS_MINI) && defined(LULZBOT_USE_Z_SCREW) #define LULZBOT_MOTOR_CURRENT_XY 1300 // mA #define LULZBOT_MOTOR_CURRENT_Z 1630 // mA @@ -1540,9 +1588,11 @@ #if defined(LULZBOT_IS_MINI) && defined(LULZBOT_USE_Z_SCREW) #define LULZBOT_Z_STEPS 1600 + #define LULZBOT_Z_MICROSTEPS 16 #elif defined(LULZBOT_IS_MINI) && defined(LULZBOT_USE_Z_BELT) && !defined(LULZBOT_USE_Z_GEARBOX) - #define LULZBOT_Z_STEPS 100.5 + #define LULZBOT_Z_STEPS 201 + #define LULZBOT_Z_MICROSTEPS 32 #define LULZBOT_DEFAULT_MAX_FEEDRATE {300, 300, 300, 40} // (mm/sec) #define LULZBOT_DEFAULT_MAX_ACCELERATION {9000,9000,9000,1000} @@ -1553,6 +1603,7 @@ #define Z_PULLEY_TEETH 24 #define Z_MOTOR_GEAR_REDUCTION 26.8512396694 #define LULZBOT_Z_STEPS (Z_FULL_STEPS_PER_ROTATION * Z_MICROSTEPS * Z_MOTOR_GEAR_REDUCTION / double(Z_BELT_PITCH) / double(Z_PULLEY_TEETH)) + #define LULZBOT_Z_MICROSTEPS 16 #undef LULZBOT_DEFAULT_MAX_FEEDRATE #define LULZBOT_DEFAULT_MAX_FEEDRATE {300, 300, 8, 25} // (mm/sec) @@ -1561,26 +1612,20 @@ #define LULZBOT_DEFAULT_MAX_FEEDRATE {300, 300, 3, 25} // (mm/sec) #define LULZBOT_DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} #define LULZBOT_Z_STEPS 1600 + #define LULZBOT_Z_MICROSTEPS 16 #elif defined(LULZBOT_IS_TAZ) && defined(LULZBOT_USE_Z_BELT) // Prototype Z-belt driven TAZ 7 #define LULZBOT_DEFAULT_MAX_FEEDRATE {300, 300, 10, 25} // (mm/sec) #define LULZBOT_DEFAULT_MAX_ACCELERATION {9000,9000,10,10000} #define LULZBOT_Z_STEPS 1790.08264463 + #define LULZBOT_Z_MICROSTEPS 16 #endif #if defined(LULZBOT_USE_EINSYRAMBO) // Neither define LULZBOT_PWM_MOTOR_CURRENT nor LULZBOT_DIGIPOT_MOTOR_CURRENT, // as the current is set in Configuration_adv.h under the HAVE_TMC2130 block - // Make sure the current is in range, as setting it above this causes the - // value in irun to wrap around to zero, which fails silently! - #if LULZBOT_MOTOR_CURRENT_XY > 960 || \ - LULZBOT_MOTOR_CURRENT_Z > 960 || \ - LULZBOT_MOTOR_CURRENT_E > 960 - #error Motor currents exceed the maximum values that can be set on the EinsyRambo - #endif - #define LULZBOT_X_CURRENT LULZBOT_MOTOR_CURRENT_XY #define LULZBOT_Y_CURRENT LULZBOT_MOTOR_CURRENT_XY #define LULZBOT_Z_CURRENT LULZBOT_MOTOR_CURRENT_Z diff --git a/Marlin/Configuration.h b/Marlin/Configuration.h index f747b1fb9..69d375b6e 100644 --- a/Marlin/Configuration.h +++ b/Marlin/Configuration.h @@ -1615,10 +1615,10 @@ #endif // Support for Adafruit Neopixel LED driver -//#define NEOPIXEL_RGBW_LED +#define NEOPIXEL_RGBW_LED LULZBOT_NEOPIXEL_RGBW_LED #if ENABLED(NEOPIXEL_RGBW_LED) - #define NEOPIXEL_PIN 4 // D4 (EXP2-5 on Printrboard) - #define NEOPIXEL_PIXELS 3 + #define NEOPIXEL_PIN LULZBOT_NEOPIXEL_PIN // D4 (EXP2-5 on Printrboard) + #define NEOPIXEL_PIXELS LULZBOT_NEOPIXEL_PIXELS //#define NEOPIXEL_STARTUP_TEST // Cycle through colors at startup #endif diff --git a/Marlin/Configuration_adv.h b/Marlin/Configuration_adv.h index 1f91913ed..c0cda9f8e 100644 --- a/Marlin/Configuration_adv.h +++ b/Marlin/Configuration_adv.h @@ -967,7 +967,7 @@ #define Y_MICROSTEPS 16 #define Z_CURRENT LULZBOT_Z_CURRENT - #define Z_MICROSTEPS 16 + #define Z_MICROSTEPS LULZBOT_Z_MICROSTEPS //#define X2_CURRENT 1000 //#define X2_MICROSTEPS 16 diff --git a/Marlin/Makefile b/Marlin/Makefile index 8f8ff40dd..3ee549c32 100644 --- a/Marlin/Makefile +++ b/Marlin/Makefile @@ -85,6 +85,9 @@ WIRE ?= 0 # this defines if U8GLIB is needed (may require RELOC_WORKAROUND) U8GLIB ?= 1 +# this defines if NEOPIXEL is needed +NEOPIXEL ?= 1 + # this defines whether to add a workaround for the avr-gcc relocation bug # https://www.stix.id.au/wiki/AVR_relocation_truncations_workaround RELOC_WORKAROUND ?= 1