diff --git a/Marlin/Conditionals.h b/Marlin/Conditionals.h index 8399c4bf6..f98c05d4f 100644 --- a/Marlin/Conditionals.h +++ b/Marlin/Conditionals.h @@ -4,6 +4,10 @@ */ #ifndef CONDITIONALS_H +#ifndef M_PI + #define M_PI 3.1415926536 +#endif + #ifndef CONFIGURATION_LCD // Get the LCD defines which are needed first #define CONFIGURATION_LCD @@ -252,7 +256,7 @@ * Advance calculated values */ #ifdef ADVANCE - #define EXTRUSION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159) + #define EXTRUSION_AREA (0.25 * D_FILAMENT * D_FILAMENT * M_PI) #define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS] / EXTRUSION_AREA) #endif diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h index 45a94e82e..e0441714b 100644 --- a/Marlin/Marlin.h +++ b/Marlin/Marlin.h @@ -29,6 +29,8 @@ #define BIT(b) (1<<(b)) #define TEST(n,b) (((n)&BIT(b))!=0) +#define RADIANS(d) ((d)*M_PI/180.0) +#define DEGREES(r) ((d)*180.0/M_PI) // Arduino < 1.0.0 does not define this, so we need to do it ourselves #ifndef analogInputToDigitalPin diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index 7e9ac15a0..ee5f694c6 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -1034,6 +1034,12 @@ inline void line_to_destination() { inline void sync_plan_position() { plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } +#ifdef DELTA + inline void sync_plan_position_delta() { + calculate_delta(current_position); + plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); + } +#endif #ifdef ENABLE_AUTO_BED_LEVELING @@ -1109,8 +1115,7 @@ inline void sync_plan_position() { long stop_steps = st_get_position(Z_AXIS); float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS]; current_position[Z_AXIS] = mm; - calculate_delta(current_position); - plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); + sync_plan_position_delta(); #else // !DELTA @@ -1262,7 +1267,7 @@ inline void sync_plan_position() { if (servo_endstops[Z_AXIS] >= 0) { #if Z_RAISE_AFTER_PROBING > 0 - do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING); + do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); st_synchronize(); #endif @@ -1345,7 +1350,7 @@ inline void sync_plan_position() { #if Z_RAISE_BETWEEN_PROBINGS > 0 if (retract_action == ProbeStay) { - do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BETWEEN_PROBINGS); + do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); st_synchronize(); } #endif @@ -1550,62 +1555,57 @@ void refresh_cmd_timeout(void) } #ifdef FWRETRACT + void retract(bool retracting, bool swapretract = false) { - if(retracting && !retracted[active_extruder]) { - destination[X_AXIS]=current_position[X_AXIS]; - destination[Y_AXIS]=current_position[Y_AXIS]; - destination[Z_AXIS]=current_position[Z_AXIS]; - destination[E_AXIS]=current_position[E_AXIS]; - if (swapretract) { - current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder]; - } else { - current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder]; - } - plan_set_e_position(current_position[E_AXIS]); - float oldFeedrate = feedrate; + + if (retracting == retracted[active_extruder]) return; + + float oldFeedrate = feedrate; + + for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i]; + + if (retracting) { + feedrate = retract_feedrate * 60; - retracted[active_extruder]=true; + current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder]; + plan_set_e_position(current_position[E_AXIS]); prepare_move(); - if(retract_zlift > 0.01) { - current_position[Z_AXIS]-=retract_zlift; -#ifdef DELTA - calculate_delta(current_position); // change cartesian kinematic to delta kinematic; - plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); -#else - sync_plan_position(); -#endif - prepare_move(); - } - feedrate = oldFeedrate; - } else if(!retracting && retracted[active_extruder]) { - destination[X_AXIS]=current_position[X_AXIS]; - destination[Y_AXIS]=current_position[Y_AXIS]; - destination[Z_AXIS]=current_position[Z_AXIS]; - destination[E_AXIS]=current_position[E_AXIS]; - if(retract_zlift > 0.01) { - current_position[Z_AXIS]+=retract_zlift; -#ifdef DELTA - calculate_delta(current_position); // change cartesian kinematic to delta kinematic; - plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); -#else - sync_plan_position(); -#endif - //prepare_move(); + + if (retract_zlift > 0.01) { + current_position[Z_AXIS] -= retract_zlift; + #ifdef DELTA + sync_plan_position_delta(); + #else + sync_plan_position(); + #endif + prepare_move(); } - if (swapretract) { - current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder]; - } else { - current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder]; + } + else { + + if (retract_zlift > 0.01) { + current_position[Z_AXIS] + =retract_zlift; + #ifdef DELTA + sync_plan_position_delta(); + #else + sync_plan_position(); + #endif + //prepare_move(); } - plan_set_e_position(current_position[E_AXIS]); - float oldFeedrate = feedrate; + feedrate = retract_recover_feedrate * 60; - retracted[active_extruder] = false; + float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length; + current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder]; + plan_set_e_position(current_position[E_AXIS]); prepare_move(); - feedrate = oldFeedrate; } - } //retract -#endif //FWRETRACT + + feedrate = oldFeedrate; + retracted[active_extruder] = retract; + + } // retract() + +#endif // FWRETRACT #ifdef Z_PROBE_SLED @@ -1613,40 +1613,32 @@ void refresh_cmd_timeout(void) #define SLED_DOCKING_OFFSET 0 #endif -// -// Method to dock/undock a sled designed by Charles Bell. -// -// dock[in] If true, move to MAX_X and engage the electromagnet -// offset[in] The additional distance to move to adjust docking location -// -static void dock_sled(bool dock, int offset=0) { - int z_loc; - - if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) { - LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN); - SERIAL_ECHO_START; - SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN); - return; - } - - if (dock) { - do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, - current_position[Y_AXIS], - current_position[Z_AXIS]); - // turn off magnet - digitalWrite(SERVO0_PIN, LOW); - } else { - if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5)) - z_loc = Z_RAISE_BEFORE_PROBING; - else - z_loc = current_position[Z_AXIS]; - do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, - Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc); - // turn on magnet - digitalWrite(SERVO0_PIN, HIGH); - } -} -#endif + // + // Method to dock/undock a sled designed by Charles Bell. + // + // dock[in] If true, move to MAX_X and engage the electromagnet + // offset[in] The additional distance to move to adjust docking location + // + static void dock_sled(bool dock, int offset=0) { + if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) { + LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN); + SERIAL_ECHO_START; + SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN); + return; + } + + if (dock) { + do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]); + digitalWrite(SERVO0_PIN, LOW); // turn off magnet + } else { + float z_loc = current_position[Z_AXIS]; + if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING; + do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc); + digitalWrite(SERVO0_PIN, HIGH); // turn on magnet + } + } + +#endif // Z_PROBE_SLED /** * @@ -1798,8 +1790,7 @@ inline void gcode_G28() { HOMEAXIS(Y); HOMEAXIS(Z); - calculate_delta(current_position); - plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); + sync_plan_position_delta(); #else // NOT DELTA @@ -1826,7 +1817,9 @@ inline void gcode_G28() { #endif #ifdef QUICK_HOME - if (home_all_axis || (homeX && homeY)) { //first diagonal move + + if (home_all_axis || (homeX && homeY)) { // First diagonal move + current_position[X_AXIS] = current_position[Y_AXIS] = 0; #ifdef DUAL_X_CARRIAGE @@ -1837,21 +1830,20 @@ inline void gcode_G28() { #endif sync_plan_position(); - destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir; - destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS); - feedrate = homing_feedrate[X_AXIS]; - if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS]; - if (max_length(X_AXIS) > max_length(Y_AXIS)) { - feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1); - } else { - feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1); - } + + float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS), + mlratio = mlx>mly ? mly/mlx : mlx/mly; + + destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir; + destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS); + feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1); line_to_destination(); st_synchronize(); axis_is_at_home(X_AXIS); axis_is_at_home(Y_AXIS); sync_plan_position(); + destination[X_AXIS] = current_position[X_AXIS]; destination[Y_AXIS] = current_position[Y_AXIS]; line_to_destination(); @@ -1865,7 +1857,7 @@ inline void gcode_G28() { current_position[Z_AXIS] = destination[Z_AXIS]; #endif } - #endif //QUICK_HOME + #endif // QUICK_HOME // Home X if (home_all_axis || homeX) { @@ -1947,7 +1939,7 @@ inline void gcode_G28() { && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) { current_position[Z_AXIS] = 0; - plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]); + plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed feedrate = max_feedrate[Z_AXIS]; line_to_destination(); @@ -1986,8 +1978,7 @@ inline void gcode_G28() { #endif // else DELTA #ifdef SCARA - calculate_delta(current_position); - plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); + sync_plan_position_delta(); #endif #ifdef ENDSTOPS_ONLY_FOR_HOMING @@ -2826,9 +2817,7 @@ inline void gcode_M42() { inline void gcode_M48() { double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50]; - int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0; - double X_current, Y_current, Z_current; - double X_probe_location, Y_probe_location, Z_start_location, ext_position; + int verbose_level = 1, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0; if (code_seen('V') || code_seen('v')) { verbose_level = code_value(); @@ -2849,11 +2838,12 @@ inline void gcode_M42() { } } - X_current = X_probe_location = st_get_position_mm(X_AXIS); - Y_current = Y_probe_location = st_get_position_mm(Y_AXIS); - Z_current = st_get_position_mm(Z_AXIS); - Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING; - ext_position = st_get_position_mm(E_AXIS); + double X_probe_location, Y_probe_location, + X_current = X_probe_location = st_get_position_mm(X_AXIS), + Y_current = Y_probe_location = st_get_position_mm(Y_AXIS), + Z_current = st_get_position_mm(Z_AXIS), + Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING, + ext_position = st_get_position_mm(E_AXIS); if (code_seen('E') || code_seen('e')) engage_probe_for_each_reading++; @@ -2936,33 +2926,29 @@ inline void gcode_M42() { if (engage_probe_for_each_reading) retract_z_probe(); - for (n=0; n < n_samples; n++) { + for (uint16_t n=0; n < n_samples; n++) { - do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location + do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location if (n_legs) { - double radius=0.0, theta=0.0; - int l; - int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise - radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go - theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians + unsigned long ms = millis(); + double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go + theta = RADIANS(ms % 360L); + float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise //SERIAL_ECHOPAIR("starting radius: ",radius); //SERIAL_ECHOPAIR(" theta: ",theta); - //SERIAL_ECHOPAIR(" direction: ",rotational_direction); + //SERIAL_ECHOPAIR(" direction: ",dir); //SERIAL_EOL; - float dir = rotational_direction ? 1 : -1; - for (l = 0; l < n_legs - 1; l++) { - theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians - - radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L); + for (int l = 0; l < n_legs - 1; l++) { + ms = millis(); + theta += RADIANS(dir * (ms % 20L)); + radius += (ms % 10L) - 5L; if (radius < 0.0) radius = -radius; X_current = X_probe_location + cos(theta) * radius; Y_current = Y_probe_location + sin(theta) * radius; - - // Make sure our X & Y are sane X_current = constrain(X_current, X_MIN_POS, X_MAX_POS); Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS); @@ -2972,10 +2958,13 @@ inline void gcode_M42() { SERIAL_EOL; } - do_blocking_move_to( X_current, Y_current, Z_current ); - } - do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location - } + do_blocking_move_to(X_current, Y_current, Z_current); + + } // n_legs loop + + do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location + + } // n_legs if (engage_probe_for_each_reading) { engage_z_probe(); @@ -2991,46 +2980,49 @@ inline void gcode_M42() { // Get the current mean for the data points we have so far // sum = 0.0; - for (j=0; j<=n; j++) sum += sample_set[j]; - mean = sum / (double (n+1)); + for (int j = 0; j <= n; j++) sum += sample_set[j]; + mean = sum / (n + 1); // // Now, use that mean to calculate the standard deviation for the // data points we have so far // sum = 0.0; - for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean); - sigma = sqrt( sum / (double (n+1)) ); + for (int j = 0; j <= n; j++) { + float ss = sample_set[j] - mean; + sum += ss * ss; + } + sigma = sqrt(sum / (n + 1)); if (verbose_level > 1) { SERIAL_PROTOCOL(n+1); - SERIAL_PROTOCOL(" of "); + SERIAL_PROTOCOLPGM(" of "); SERIAL_PROTOCOL(n_samples); SERIAL_PROTOCOLPGM(" z: "); SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6); - } - - if (verbose_level > 2) { - SERIAL_PROTOCOL(" mean: "); - SERIAL_PROTOCOL_F(mean,6); - SERIAL_PROTOCOL(" sigma: "); - SERIAL_PROTOCOL_F(sigma,6); + if (verbose_level > 2) { + SERIAL_PROTOCOLPGM(" mean: "); + SERIAL_PROTOCOL_F(mean,6); + SERIAL_PROTOCOLPGM(" sigma: "); + SERIAL_PROTOCOL_F(sigma,6); + } } if (verbose_level > 0) SERIAL_EOL; - plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, - current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder); + plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder); st_synchronize(); if (engage_probe_for_each_reading) { - retract_z_probe(); + retract_z_probe(); delay(1000); } } - retract_z_probe(); - delay(1000); + if (!engage_probe_for_each_reading) { + retract_z_probe(); + delay(1000); + } clean_up_after_endstop_move(); @@ -4674,9 +4666,7 @@ inline void gcode_T() { active_extruder = tmp_extruder; #endif // !DUAL_X_CARRIAGE #ifdef DELTA - calculate_delta(current_position); // change cartesian kinematic to delta kinematic; - //sent position to plan_set_position(); - plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]); + sync_plan_position_delta(); #else sync_plan_position(); #endif