first-commit

master
Erik van der Zalm 13 years ago
parent f850af5c1c
commit 26bf57e22c

@ -13,26 +13,6 @@
// 3 is mendel-parts thermistor
#define THERMISTORHEATER 3
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
//
// hooke's law says: force = k * distance
// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#ifdef ADVANCE
#define EXTRUDER_ADVANCE_K 0.02
#define D_FILAMENT 1.7
#define STEPS_MM_E 65
//#define D_FILAMENT 2.85
//#define STEPS_MM_E 367.35
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
#endif // ADVANCE
//// Calibration variables
// X, Y, Z, E steps per unit - Metric Prusa Mendel with V9 extruder:
@ -94,10 +74,10 @@ bool axis_relative_modes[] = {false, false, false, false};
//// Acceleration settings
// X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
float acceleration = 3000; // Normal acceleration mm/s^2
float acceleration = 2000; // Normal acceleration mm/s^2
float retract_acceleration = 7000; // Normal acceleration mm/s^2
float max_jerk = 20*60;
long max_acceleration_units_per_sq_second[] = {7000,7000,20,10000}; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts
long max_acceleration_units_per_sq_second[] = {7000,7000,100,10000}; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts
// Not used long max_travel_acceleration_units_per_sq_second[] = {500,500,50,500}; // X, Y, Z max acceleration in mm/s^2 for travel moves
@ -130,4 +110,23 @@ double Kd = 80/PID_dT;
#endif // PIDTEMP
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
//
// hooke's law says: force = k * distance
// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#ifdef ADVANCE
#define EXTRUDER_ADVANCE_K 0.02
#define D_FILAMENT 1.7
#define STEPS_MM_E 65
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
#endif // ADVANCE
#endif

@ -18,10 +18,12 @@
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
This firmware is optimized for gen6 electronics.
*/
@ -35,12 +37,12 @@ char version_string[] = "0.9.0";
#ifdef SDSUPPORT
#include "SdFat.h"
#endif
#endif //SDSUPPORT
#ifndef CRITICAL_SECTION_START
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli()
#define CRITICAL_SECTION_END SREG = _sreg
#endif
#endif //CRITICAL_SECTION_START
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
@ -138,18 +140,18 @@ unsigned char temp_meas_ready = false;
double pid_input;
double pid_output;
bool pid_reset;
#endif
#endif //PIDTEMP
#ifdef WATCHPERIOD
int watch_raw = -1000;
unsigned long watchmillis = 0;
#endif
#endif //WATCHPERIOD
#ifdef MINTEMP
int minttemp = temp2analogh(MINTEMP);
#endif
#endif //MINTEMP
#ifdef MAXTEMP
int maxttemp = temp2analogh(MAXTEMP);
#endif
#endif //MAXTEMP
//Inactivity shutdown variables
unsigned long previous_millis_cmd = 0;
@ -183,7 +185,7 @@ void initsd(){
Serial.println("openRoot failed");
else
sdactive = true;
#endif
#endif //SDSS
}
inline void write_command(char *buf){
@ -205,7 +207,7 @@ inline void write_command(char *buf){
Serial.println("error writing to file");
}
}
#endif
#endif //SDSUPPORT
void setup()
@ -278,7 +280,7 @@ void setup()
SET_INPUT(Z_MAX_PIN);
WRITE(Z_MAX_PIN,HIGH);
#endif
#else
#else //ENDSTOPPULLUPS
#if X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN);
#endif
@ -297,7 +299,7 @@ void setup()
#if Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN);
#endif
#endif
#endif //ENDSTOPPULLUPS
#if (HEATER_0_PIN > -1)
SET_OUTPUT(HEATER_0_PIN);
@ -333,10 +335,10 @@ void setup()
#if SDPOWER > -1
SET_OUTPUT(SDPOWER);
WRITE(SDPOWER,HIGH);
#endif
#endif //SDPOWER
initsd();
#endif
#endif //SDSUPPORT
plan_init(); // Initialize planner;
st_init(); // Initialize stepper;
tp_init(); // Initialize temperature loop
@ -367,7 +369,7 @@ void loop()
}
#else
process_commands();
#endif
#endif //SDSUPPORT
buflen = (buflen-1);
bufindr = (bufindr + 1)%BUFSIZE;
}
@ -446,7 +448,7 @@ inline void get_command()
#ifdef SDSUPPORT
if(savetosd)
break;
#endif
#endif //SDSUPPORT
Serial.println("ok");
break;
default:
@ -497,7 +499,7 @@ inline void get_command()
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
}
#endif
#endif //SDSUPPORT
}
@ -751,7 +753,7 @@ inline void process_commands()
//processed in write to file routine above
//savetosd = false;
break;
#endif
#endif //SDSUPPORT
case 104: // M104
#ifdef PID_OPENLOOP
if (code_seen('S')) PidTemp_Output = code_value() * (PID_MAX/100.0);
@ -790,7 +792,7 @@ inline void process_commands()
else{
watchmillis = 0;
}
#endif
#endif //WATCHERPERIOD
codenum = millis();
while(current_raw < target_raw) {
if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
@ -922,7 +924,7 @@ void ClearToSend()
#ifdef SDSUPPORT
if(fromsd[bufindr])
return;
#endif
#endif //SDSUPPORT
Serial.println("ok");
}
@ -958,7 +960,7 @@ CRITICAL_SECTION_START;
CRITICAL_SECTION_END;
#ifdef PIDTEMP
pid_input = analog2temp(current_raw);//ACT
pid_input = analog2temp(current_raw);
#ifndef PID_OPENLOOP
pid_error = pid_setpoint - pid_input;
@ -1000,7 +1002,7 @@ CRITICAL_SECTION_END;
Serial.println();
#endif //PID_DEBUG
OCR2B = pid_output;
#endif
#endif //PIDTEMP
}
@ -1051,7 +1053,7 @@ inline void kill()
target_raw=0;
#ifdef PIDTEMP
pid_setpoint = 0.0;
#endif PIDTEMP
#endif //PIDTEMP
OCR2B = 0;
WRITE(HEATER_0_PIN,LOW);
@ -1465,7 +1467,7 @@ void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
float speed_factor = 1;
float tmp_speed_factor;
if(abs(block->speed_x) > max_feedrate[X_AXIS]) {
speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_x);
speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x);
}
if(abs(block->speed_y) > max_feedrate[Y_AXIS]){
tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y);
@ -1473,11 +1475,11 @@ void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
}
if(abs(block->speed_z) > max_feedrate[Z_AXIS]){
tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z);
if(tmp_speed_factor < speed_factor) speed_factor = tmp_speed_factor;
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
}
if(abs(block->speed_e) > max_feedrate[E_AXIS]){
tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e);
if(tmp_speed_factor < speed_factor) speed_factor = tmp_speed_factor;
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
}
multiplier = multiplier * speed_factor;
block->speed_z = delta_z_mm * multiplier;
@ -1910,8 +1912,6 @@ ISR(TIMER0_COMPA_vect)
// Critical section needed because Timer 1 interrupt has higher priority.
// The pin set functions are placed on trategic position to comply with the stepper driver timing.
WRITE(E_STEP_PIN, LOW);
// e_steps is changed in timer 1 interrupt
CRITICAL_SECTION_START;
// Set E direction (Depends on E direction + advance)
if (e_steps < 0) {
WRITE(E_DIR_PIN,INVERT_E_DIR);
@ -1923,7 +1923,6 @@ ISR(TIMER0_COMPA_vect)
e_steps--;
WRITE(E_STEP_PIN, HIGH);
}
CRITICAL_SECTION_END;
old_OCR0A += 25; // 10kHz interrupt
OCR0A = old_OCR0A;
}
@ -1974,7 +1973,7 @@ void tp_init()
TCCR2A = 0x23; //OC2A disable; FastPWM noninverting; FastPWM mode 7
#else
TCCR2A = 0x03; //OC2A disable; FastPWM noninverting; FastPWM mode 7
#endif
#endif //PIDTEMP
OCR2A = 156; //Period is ~10ms
OCR2B = 0; //Duty Cycle for heater pin is 0 (startup)
TIMSK2 = 0x01; //Enable overflow interrupt
@ -2009,9 +2008,9 @@ ISR(TIMER2_OVF_vect)
OCR2B = 0;
#else
WRITE(HEATER_0_PIN,LOW);
#endif
#endif //PIDTEMP
}
#endif
#endif //MAXTEMP
#ifdef MINTEMP
if(current_raw <= minttemp) {
target_raw = 0;
@ -2019,9 +2018,9 @@ ISR(TIMER2_OVF_vect)
OCR2B = 0;
#else
WRITE(HEATER_0_PIN,LOW);
#endif
#endif //PIDTEMP
}
#endif
#endif //MAXTEMP
#ifndef PIDTEMP
if(current_raw >= target_raw)
{
@ -2031,7 +2030,7 @@ ISR(TIMER2_OVF_vect)
{
WRITE(HEATER_0_PIN,HIGH);
}
#endif
#endif //PIDTEMP
}
}

@ -0,0 +1,56 @@
This firmware is a mashup between Sprinter, grbl and many original parts.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
Features:
- Interrupt based movement with real linear acceleration
- High steprate
- Look ahead (Keep the speed high when possible. High cornering speed)
- Interrupt based temperature protection
- preliminary support for Matthew Roberts advance algorithm
For more info see: http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
This firmware is optimized for gen6 electronics.
The default baudrate is 250000.
This gives less communication errors then regular baudrates.
========================================================================================
Configuring and compilation
Install the arduino software version 0018
http://www.arduino.cc/en/Main/Software
Install the sanguino software, version 0018
http://sanguino.cc/useit
Install pronterface
https://github.com/kliment/Printrun
Copy the Marlin firmware
https:/github.com/ErikZalm/Marlin
(Use the download button)
Start the arduino IDE.
Select Tools -> Board -> Sanguino
Select the correct serial port in Tools ->Serial Port
Open Marlin.pde
Change the printer specific setting in Configuration.h to the correct values.
The following values are the most important:
- float axis_steps_per_unit[].... // Set the correct steps / mm in the corresponding field
- const bool ENDSTOPS_INVERTING = false; // Change if only positive moves are executed
- #define INVERT_x_DIR true // Change if the motor direction is wrong
Click the Upload button
If all goes well the firmware is uploading
Start pronterface
Select the correct Serial Port. Type 250000 in the baudrate field.
Press the Connect button.
Loading…
Cancel
Save