`acceleration_st` => `acceleration_steps_per_s2`

master
Scott Lahteine 9 years ago
parent cb4704e07a
commit 3b08eb1eeb

@ -155,7 +155,7 @@ void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor,
NOLESS(initial_rate, 120);
NOLESS(final_rate, 120);
long accel = block->acceleration_st;
long accel = block->acceleration_steps_per_s2;
int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel));
int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel));
@ -936,27 +936,27 @@ void Planner::check_axes_activity() {
float steps_per_mm = block->step_event_count / block->millimeters;
long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
if (bsx == 0 && bsy == 0 && bsz == 0) {
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
block->acceleration_steps_per_s2 = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
}
else if (bse == 0) {
block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
block->acceleration_steps_per_s2 = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
}
else {
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
block->acceleration_steps_per_s2 = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
}
// Limit acceleration per axis
unsigned long acc_st = block->acceleration_st,
xsteps = max_acceleration_steps_per_s2[X_AXIS],
ysteps = max_acceleration_steps_per_s2[Y_AXIS],
zsteps = max_acceleration_steps_per_s2[Z_AXIS],
esteps = max_acceleration_steps_per_s2[E_AXIS],
unsigned long acc_st = block->acceleration_steps_per_s2,
allsteps = block->step_event_count;
if (xsteps < (acc_st * bsx) / allsteps) acc_st = (xsteps * allsteps) / bsx;
if (ysteps < (acc_st * bsy) / allsteps) acc_st = (ysteps * allsteps) / bsy;
if (zsteps < (acc_st * bsz) / allsteps) acc_st = (zsteps * allsteps) / bsz;
if (esteps < (acc_st * bse) / allsteps) acc_st = (esteps * allsteps) / bse;
block->acceleration_st = acc_st;
block->acceleration_steps_per_s2 = acc_st;
block->acceleration = acc_st / steps_per_mm;
block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
@ -1057,7 +1057,7 @@ void Planner::check_axes_activity() {
block->advance = 0;
}
else {
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2);
float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * (cse * cse * (EXTRUSION_AREA) * (EXTRUSION_AREA)) * 256;
block->advance = advance;
block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;

@ -84,7 +84,7 @@ typedef struct {
unsigned long nominal_rate; // The nominal step rate for this block in step_events/sec
unsigned long initial_rate; // The jerk-adjusted step rate at start of block
unsigned long final_rate; // The minimal rate at exit
unsigned long acceleration_st; // acceleration steps/sec^2
unsigned long acceleration_steps_per_s2; // acceleration steps/sec^2
#if FAN_COUNT > 0
unsigned long fan_speed[FAN_COUNT];

Loading…
Cancel
Save