From 2ca983568d5cc658ba00ec0b92d5fd31455c0364 Mon Sep 17 00:00:00 2001 From: "hg42@gmx.net" Date: Thu, 1 Aug 2013 15:06:39 +0200 Subject: [PATCH] separate INVERTING for MIN and MAX endstops (6 #defines instead of 3) --- Marlin/Configuration.h | 29 ++- Marlin/Marlin_main.cpp | 76 +++--- .../delta/Configuration.h | 29 ++- Marlin/stepper.cpp | 238 +++++++++--------- 4 files changed, 189 insertions(+), 183 deletions(-) diff --git a/Marlin/Configuration.h b/Marlin/Configuration.h index db02b1d5f..bf2018674 100644 --- a/Marlin/Configuration.h +++ b/Marlin/Configuration.h @@ -141,7 +141,7 @@ #define TEMP_SENSOR_BED 0 // This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted. -//#define TEMP_SENSOR_1_AS_REDUNDANT +//#define TEMP_SENSOR_1_AS_REDUNDANT #define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10 // Actual temperature must be close to target for this long before M109 returns success @@ -278,9 +278,12 @@ #endif // The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins. -const bool X_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops. -const bool Y_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops. -const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops. +const bool X_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop. +const bool Y_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop. +const bool Z_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop. +const bool X_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop. +const bool Y_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop. +const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop. //#define DISABLE_MAX_ENDSTOPS //#define DISABLE_MIN_ENDSTOPS @@ -379,7 +382,7 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th //#define EEPROM_CHITCHAT // Preheat Constants -#define PLA_PREHEAT_HOTEND_TEMP 180 +#define PLA_PREHEAT_HOTEND_TEMP 180 #define PLA_PREHEAT_HPB_TEMP 70 #define PLA_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255 @@ -464,7 +467,7 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th #define LCD_I2C_TYPE_PCF8575 #define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander #define NEWPANEL - #define ULTIPANEL + #define ULTIPANEL #endif // PANELOLU2 LCD with status LEDs, separate encoder and click inputs @@ -473,13 +476,13 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th // This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 ) // Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory. // (v1.2.3 no longer requires you to define PANELOLU in the LiquidTWI2.h library header file) - // Note: The PANELOLU2 encoder click input can either be directly connected to a pin - // (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1). + // Note: The PANELOLU2 encoder click input can either be directly connected to a pin + // (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1). #define LCD_I2C_TYPE_MCP23017 #define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander #define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD #define NEWPANEL - #define ULTIPANEL + #define ULTIPANEL #endif // Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs @@ -489,11 +492,11 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th // Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory. // Note: The pause/stop/resume LCD button pin should be connected to the Arduino // BTN_ENC pin (or set BTN_ENC to -1 if not used) - #define LCD_I2C_TYPE_MCP23017 + #define LCD_I2C_TYPE_MCP23017 #define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander #define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD (requires LiquidTWI2 v1.2.3 or later) #define NEWPANEL - #define ULTIPANEL + #define ULTIPANEL #endif #ifdef ULTIPANEL @@ -565,10 +568,10 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th //#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command // Servo Endstops -// +// // This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes. // Use M206 command to correct for switch height offset to actual nozzle height. Store that setting with M500. -// +// //#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1 //#define SERVO_ENDSTOP_ANGLES {0,0, 0,0, 70,0} // X,Y,Z Axis Extend and Retract angles diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index 800cc8ae2..747668392 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -431,10 +431,10 @@ void setup() lcd_init(); _delay_ms(1000); // wait 1sec to display the splash screen - + #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1 SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan - #endif + #endif } @@ -691,15 +691,15 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); #endif #if X_HOME_DIR != -1 || X2_HOME_DIR != 1 #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions - #endif - + #endif + static float x_home_pos(int extruder) { if (extruder == 0) return base_home_pos(X_AXIS) + add_homeing[X_AXIS]; else // In dual carriage mode the extruder offset provides an override of the // second X-carriage offset when homed - otherwise X2_HOME_POS is used. - // This allow soft recalibration of the second extruder offset position without firmware reflash + // This allow soft recalibration of the second extruder offset position without firmware reflash // (through the M218 command). return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS; } @@ -709,7 +709,7 @@ static int x_home_dir(int extruder) { } static float inactive_x_carriage_pos = X2_MAX_POS; -#endif +#endif static void axis_is_at_home(int axis) { #ifdef DUAL_X_CARRIAGE @@ -719,7 +719,7 @@ static void axis_is_at_home(int axis) { max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS); return; } -#endif +#endif current_position[axis] = base_home_pos(axis) + add_homeing[axis]; min_pos[axis] = base_min_pos(axis) + add_homeing[axis]; max_pos[axis] = base_max_pos(axis) + add_homeing[axis]; @@ -745,7 +745,7 @@ static void homeaxis(int axis) { servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]); } #endif - + current_position[axis] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[axis] = 1.5 * max_length(axis) * axis_home_dir; @@ -879,7 +879,7 @@ void process_commands() current_position[X_AXIS] = 0; current_position[Y_AXIS] = 0; current_position[Z_AXIS] = 0; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[X_AXIS] = 3 * Z_MAX_LENGTH; destination[Y_AXIS] = 3 * Z_MAX_LENGTH; @@ -892,7 +892,7 @@ void process_commands() current_position[X_AXIS] = destination[X_AXIS]; current_position[Y_AXIS] = destination[Y_AXIS]; current_position[Z_AXIS] = destination[Z_AXIS]; - + // take care of back off and rehome now we are all at the top HOMEAXIS(X); HOMEAXIS(Y); @@ -921,7 +921,7 @@ void process_commands() #else int x_axis_home_dir = x_home_dir(active_extruder); #endif - + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS); feedrate = homing_feedrate[X_AXIS]; @@ -954,7 +954,7 @@ void process_commands() HOMEAXIS(X); inactive_x_carriage_pos = current_position[X_AXIS]; active_extruder = tmp_extruder; - #endif + #endif HOMEAXIS(X); } @@ -988,7 +988,7 @@ void process_commands() } plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); #endif // else DELTA - + #ifdef ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false); #endif @@ -1223,9 +1223,9 @@ void process_commands() SERIAL_PROTOCOLPGM(" T"); SERIAL_PROTOCOL(cur_extruder); SERIAL_PROTOCOLPGM(":"); - SERIAL_PROTOCOL_F(degHotend(cur_extruder),1); + SERIAL_PROTOCOL_F(degHotend(cur_extruder),1); SERIAL_PROTOCOLPGM(" /"); - SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1); + SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1); } #else SERIAL_ERROR_START; @@ -1250,7 +1250,7 @@ void process_commands() #ifdef AUTOTEMP autotemp_enabled=false; #endif - if (code_seen('S')) { + if (code_seen('S')) { setTargetHotend(code_value(), tmp_extruder); CooldownNoWait = true; } else if (code_seen('R')) { @@ -1327,7 +1327,7 @@ void process_commands() case 190: // M190 - Wait for bed heater to reach target. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 LCD_MESSAGEPGM(MSG_BED_HEATING); - if (code_seen('S')) { + if (code_seen('S')) { setTargetBed(code_value()); CooldownNoWait = true; } else if (code_seen('R')) { @@ -1335,9 +1335,9 @@ void process_commands() CooldownNoWait = false; } codenum = millis(); - + target_direction = isHeatingBed(); // true if heating, false if cooling - + while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) { if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up. @@ -1417,7 +1417,7 @@ void process_commands() #endif break; #endif - + case 81: // M81 - Turn off Power Supply disable_heater(); st_synchronize(); @@ -1542,27 +1542,27 @@ void process_commands() SERIAL_PROTOCOLLN(MSG_M119_REPORT); #if defined(X_MIN_PIN) && X_MIN_PIN > -1 SERIAL_PROTOCOLPGM(MSG_X_MIN); - SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); + SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); #endif #if defined(X_MAX_PIN) && X_MAX_PIN > -1 SERIAL_PROTOCOLPGM(MSG_X_MAX); - SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); + SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); #endif #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 SERIAL_PROTOCOLPGM(MSG_Y_MIN); - SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); + SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); #endif #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 SERIAL_PROTOCOLPGM(MSG_Y_MAX); - SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); + SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); #endif #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 SERIAL_PROTOCOLPGM(MSG_Z_MIN); - SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); + SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); #endif #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 SERIAL_PROTOCOLPGM(MSG_Z_MAX); - SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); + SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); #endif break; //TODO: update for all axis, use for loop @@ -1699,7 +1699,7 @@ void process_commands() } } break; - + #if NUM_SERVOS > 0 case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds { @@ -1987,7 +1987,7 @@ void process_commands() delay(3); WRITE(BEEPER,LOW); delay(3); - #else + #else lcd_buzz(1000/6,100); #endif } @@ -2103,8 +2103,8 @@ void process_commands() active_extruder = tmp_extruder; axis_is_at_home(X_AXIS); //this function updates X min/max values. current_position[X_AXIS] = inactive_x_carriage_pos; - inactive_x_carriage_pos = tmp_x_pos; - #else + inactive_x_carriage_pos = tmp_x_pos; + #else // Offset extruder (only by XY) int i; for(i = 0; i < 2; i++) { @@ -2340,10 +2340,10 @@ void prepare_arc_move(char isclockwise) { #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1 #if defined(FAN_PIN) - #if CONTROLLERFAN_PIN == FAN_PIN + #if CONTROLLERFAN_PIN == FAN_PIN #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN" #endif -#endif +#endif unsigned long lastMotor = 0; //Save the time for when a motor was turned on last unsigned long lastMotorCheck = 0; @@ -2368,17 +2368,17 @@ void controllerFan() { lastMotor = millis(); //... set time to NOW so the fan will turn on } - - if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC... + + if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC... { - digitalWrite(CONTROLLERFAN_PIN, 0); - analogWrite(CONTROLLERFAN_PIN, 0); + digitalWrite(CONTROLLERFAN_PIN, 0); + analogWrite(CONTROLLERFAN_PIN, 0); } else { // allows digital or PWM fan output to be used (see M42 handling) digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED); - analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED); + analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED); } } } @@ -2445,7 +2445,7 @@ void kill() #if defined(PS_ON_PIN) && PS_ON_PIN > -1 pinMode(PS_ON_PIN,INPUT); -#endif +#endif SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_KILLED); LCD_ALERTMESSAGEPGM(MSG_KILLED); diff --git a/Marlin/example_configurations/delta/Configuration.h b/Marlin/example_configurations/delta/Configuration.h index 7fbb4d85a..cb9236569 100644 --- a/Marlin/example_configurations/delta/Configuration.h +++ b/Marlin/example_configurations/delta/Configuration.h @@ -141,7 +141,7 @@ #define TEMP_SENSOR_BED 0 // This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted. -//#define TEMP_SENSOR_1_AS_REDUNDANT +//#define TEMP_SENSOR_1_AS_REDUNDANT #define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10 // Actual temperature must be close to target for this long before M109 returns success @@ -278,9 +278,12 @@ #endif // The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins. -const bool X_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops. -const bool Y_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops. -const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops. +const bool X_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop. +const bool Y_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop. +const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop. +const bool X_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop. +const bool Y_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop. +const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop. // deltas never have min endstops #define DISABLE_MIN_ENDSTOPS @@ -386,7 +389,7 @@ const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of t //#define EEPROM_CHITCHAT // Preheat Constants -#define PLA_PREHEAT_HOTEND_TEMP 180 +#define PLA_PREHEAT_HOTEND_TEMP 180 #define PLA_PREHEAT_HPB_TEMP 70 #define PLA_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255 @@ -471,7 +474,7 @@ const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of t #define LCD_I2C_TYPE_PCF8575 #define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander #define NEWPANEL - #define ULTIPANEL + #define ULTIPANEL #endif // PANELOLU2 LCD with status LEDs, separate encoder and click inputs @@ -480,13 +483,13 @@ const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of t // This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 ) // Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory. // (v1.2.3 no longer requires you to define PANELOLU in the LiquidTWI2.h library header file) - // Note: The PANELOLU2 encoder click input can either be directly connected to a pin - // (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1). + // Note: The PANELOLU2 encoder click input can either be directly connected to a pin + // (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1). #define LCD_I2C_TYPE_MCP23017 #define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander #define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD #define NEWPANEL - #define ULTIPANEL + #define ULTIPANEL #endif // Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs @@ -496,11 +499,11 @@ const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of t // Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory. // Note: The pause/stop/resume LCD button pin should be connected to the Arduino // BTN_ENC pin (or set BTN_ENC to -1 if not used) - #define LCD_I2C_TYPE_MCP23017 + #define LCD_I2C_TYPE_MCP23017 #define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander #define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD (requires LiquidTWI2 v1.2.3 or later) #define NEWPANEL - #define ULTIPANEL + #define ULTIPANEL #endif #ifdef ULTIPANEL @@ -572,10 +575,10 @@ const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of t //#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command // Servo Endstops -// +// // This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes. // Use M206 command to correct for switch height offset to actual nozzle height. Store that setting with M500. -// +// //#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1 //#define SERVO_ENDSTOP_ANGLES {0,0, 0,0, 70,0} // X,Y,Z Axis Extend and Retract angles diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp index 2f1d91260..0ba100139 100644 --- a/Marlin/stepper.cpp +++ b/Marlin/stepper.cpp @@ -48,8 +48,8 @@ block_t *current_block; // A pointer to the block currently being traced // Variables used by The Stepper Driver Interrupt static unsigned char out_bits; // The next stepping-bits to be output static long counter_x, // Counter variables for the bresenham line tracer - counter_y, - counter_z, + counter_y, + counter_z, counter_e; volatile static unsigned long step_events_completed; // The number of step events executed in the current block #ifdef ADVANCE @@ -224,27 +224,27 @@ void enable_endstops(bool check) // | BLOCK 1 | BLOCK 2 | d // // time -----> -// -// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates -// first block->accelerate_until step_events_completed, then keeps going at constant speed until +// +// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates +// first block->accelerate_until step_events_completed, then keeps going at constant speed until // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. // The slope of acceleration is calculated with the leib ramp alghorithm. void st_wake_up() { // TCNT1 = 0; - ENABLE_STEPPER_DRIVER_INTERRUPT(); + ENABLE_STEPPER_DRIVER_INTERRUPT(); } void step_wait(){ for(int8_t i=0; i < 6; i++){ } } - + FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { unsigned short timer; if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY; - + if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times step_rate = (step_rate >> 2)&0x3fff; step_loops = 4; @@ -255,11 +255,11 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { } else { step_loops = 1; - } - + } + if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000); step_rate -= (F_CPU/500000); // Correct for minimal speed - if(step_rate >= (8*256)){ // higher step rate + if(step_rate >= (8*256)){ // higher step rate unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0]; unsigned char tmp_step_rate = (step_rate & 0x00ff); unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2); @@ -276,7 +276,7 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { return timer; } -// Initializes the trapezoid generator from the current block. Called whenever a new +// Initializes the trapezoid generator from the current block. Called whenever a new // block begins. FORCE_INLINE void trapezoid_generator_reset() { #ifdef ADVANCE @@ -284,7 +284,7 @@ FORCE_INLINE void trapezoid_generator_reset() { final_advance = current_block->final_advance; // Do E steps + advance steps e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); - old_advance = advance >>8; + old_advance = advance >>8; #endif deceleration_time = 0; // step_rate to timer interval @@ -294,7 +294,7 @@ FORCE_INLINE void trapezoid_generator_reset() { acc_step_rate = current_block->initial_rate; acceleration_time = calc_timer(acc_step_rate); OCR1A = acceleration_time; - + // SERIAL_ECHO_START; // SERIAL_ECHOPGM("advance :"); // SERIAL_ECHO(current_block->advance/256.0); @@ -304,13 +304,13 @@ FORCE_INLINE void trapezoid_generator_reset() { // SERIAL_ECHO(current_block->initial_advance/256.0); // SERIAL_ECHOPGM("final advance :"); // SERIAL_ECHOLN(current_block->final_advance/256.0); - + } -// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. -// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. +// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. +// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. ISR(TIMER1_COMPA_vect) -{ +{ // If there is no current block, attempt to pop one from the buffer if (current_block == NULL) { // Anything in the buffer? @@ -322,24 +322,24 @@ ISR(TIMER1_COMPA_vect) counter_y = counter_x; counter_z = counter_x; counter_e = counter_x; - step_events_completed = 0; - - #ifdef Z_LATE_ENABLE + step_events_completed = 0; + + #ifdef Z_LATE_ENABLE if(current_block->steps_z > 0) { enable_z(); OCR1A = 2000; //1ms wait return; } #endif - + // #ifdef ADVANCE // e_steps[current_block->active_extruder] = 0; // #endif - } + } else { OCR1A=2000; // 1kHz. - } - } + } + } if (current_block != NULL) { // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt @@ -352,7 +352,7 @@ ISR(TIMER1_COMPA_vect) if (active_extruder != 0) WRITE(X2_DIR_PIN,INVERT_X_DIR); else - #endif + #endif WRITE(X_DIR_PIN, INVERT_X_DIR); count_direction[X_AXIS]=-1; } @@ -361,7 +361,7 @@ ISR(TIMER1_COMPA_vect) if (active_extruder != 0) WRITE(X2_DIR_PIN,!INVERT_X_DIR); else - #endif + #endif WRITE(X_DIR_PIN, !INVERT_X_DIR); count_direction[X_AXIS]=1; } @@ -373,7 +373,7 @@ ISR(TIMER1_COMPA_vect) WRITE(Y_DIR_PIN, !INVERT_Y_DIR); count_direction[Y_AXIS]=1; } - + // Set direction en check limit switches #ifndef COREXY if ((out_bits & (1< -1 - bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING); + bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING); if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) { endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; endstop_x_hit=true; @@ -400,15 +400,15 @@ ISR(TIMER1_COMPA_vect) } } else { // +direction - CHECK_ENDSTOPS + CHECK_ENDSTOPS { #ifdef DUAL_X_CARRIAGE // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder if ((active_extruder == 0 && X_HOME_DIR == 1) || (active_extruder != 0 && X2_HOME_DIR == 1)) - #endif + #endif { #if defined(X_MAX_PIN) && X_MAX_PIN > -1 - bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING); + bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING); if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){ endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; endstop_x_hit=true; @@ -416,7 +416,7 @@ ISR(TIMER1_COMPA_vect) } old_x_max_endstop = x_max_endstop; #endif - } + } } } @@ -428,7 +428,7 @@ ISR(TIMER1_COMPA_vect) CHECK_ENDSTOPS { #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 - bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING); + bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING); if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) { endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstop_y_hit=true; @@ -442,7 +442,7 @@ ISR(TIMER1_COMPA_vect) CHECK_ENDSTOPS { #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 - bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING); + bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING); if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){ endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstop_y_hit=true; @@ -455,16 +455,16 @@ ISR(TIMER1_COMPA_vect) if ((out_bits & (1< -1 - bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING); + bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstop_z_hit=true; @@ -485,7 +485,7 @@ ISR(TIMER1_COMPA_vect) CHECK_ENDSTOPS { #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 - bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING); + bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING); if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstop_z_hit=true; @@ -506,10 +506,10 @@ ISR(TIMER1_COMPA_vect) count_direction[E_AXIS]=1; } #endif //!ADVANCE - - - for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves) + + + for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves) #ifndef AT90USB MSerial.checkRx(); // Check for serial chars. #endif @@ -524,7 +524,7 @@ ISR(TIMER1_COMPA_vect) else { e_steps[current_block->active_extruder]++; } - } + } #endif //ADVANCE counter_x += current_block->steps_x; @@ -533,38 +533,38 @@ ISR(TIMER1_COMPA_vect) if (active_extruder != 0) WRITE(X2_STEP_PIN,!INVERT_X_STEP_PIN); else - #endif + #endif WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); counter_x -= current_block->step_event_count; - count_position[X_AXIS]+=count_direction[X_AXIS]; + count_position[X_AXIS]+=count_direction[X_AXIS]; #ifdef DUAL_X_CARRIAGE if (active_extruder != 0) WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN); else - #endif + #endif WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); } - + counter_y += current_block->steps_y; if (counter_y > 0) { WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); - counter_y -= current_block->step_event_count; - count_position[Y_AXIS]+=count_direction[Y_AXIS]; + counter_y -= current_block->step_event_count; + count_position[Y_AXIS]+=count_direction[Y_AXIS]; WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); } - + counter_z += current_block->steps_z; if (counter_z > 0) { WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); - + #ifdef Z_DUAL_STEPPER_DRIVERS WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN); #endif - + counter_z -= current_block->step_event_count; count_position[Z_AXIS]+=count_direction[Z_AXIS]; WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); - + #ifdef Z_DUAL_STEPPER_DRIVERS WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN); #endif @@ -579,17 +579,17 @@ ISR(TIMER1_COMPA_vect) WRITE_E_STEP(INVERT_E_STEP_PIN); } #endif //!ADVANCE - step_events_completed += 1; + step_events_completed += 1; if(step_events_completed >= current_block->step_event_count) break; } // Calculare new timer value unsigned short timer; unsigned short step_rate; if (step_events_completed <= (unsigned long int)current_block->accelerate_until) { - + MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); acc_step_rate += current_block->initial_rate; - + // upper limit if(acc_step_rate > current_block->nominal_rate) acc_step_rate = current_block->nominal_rate; @@ -605,13 +605,13 @@ ISR(TIMER1_COMPA_vect) //if(advance > current_block->advance) advance = current_block->advance; // Do E steps + advance steps e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); - old_advance = advance >>8; - + old_advance = advance >>8; + #endif - } - else if (step_events_completed > (unsigned long int)current_block->decelerate_after) { + } + else if (step_events_completed > (unsigned long int)current_block->decelerate_after) { MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate); - + if(step_rate > acc_step_rate) { // Check step_rate stays positive step_rate = current_block->final_rate; } @@ -634,7 +634,7 @@ ISR(TIMER1_COMPA_vect) if(advance < final_advance) advance = final_advance; // Do E steps + advance steps e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); - old_advance = advance >>8; + old_advance = advance >>8; #endif //ADVANCE } else { @@ -643,12 +643,12 @@ ISR(TIMER1_COMPA_vect) step_loops = step_loops_nominal; } - // If current block is finished, reset pointer + // If current block is finished, reset pointer if (step_events_completed >= current_block->step_event_count) { current_block = NULL; plan_discard_current_block(); - } - } + } + } } #ifdef ADVANCE @@ -667,7 +667,7 @@ ISR(TIMER1_COMPA_vect) WRITE(E0_DIR_PIN, INVERT_E0_DIR); e_steps[0]++; WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); - } + } else if (e_steps[0] > 0) { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); e_steps[0]--; @@ -681,7 +681,7 @@ ISR(TIMER1_COMPA_vect) WRITE(E1_DIR_PIN, INVERT_E1_DIR); e_steps[1]++; WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN); - } + } else if (e_steps[1] > 0) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); e_steps[1]--; @@ -696,7 +696,7 @@ ISR(TIMER1_COMPA_vect) WRITE(E2_DIR_PIN, INVERT_E2_DIR); e_steps[2]++; WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN); - } + } else if (e_steps[2] > 0) { WRITE(E2_DIR_PIN, !INVERT_E2_DIR); e_steps[2]--; @@ -712,7 +712,7 @@ void st_init() { digipot_init(); //Initialize Digipot Motor Current microstep_init(); //Initialize Microstepping Pins - + //Initialize Dir Pins #if defined(X_DIR_PIN) && X_DIR_PIN > -1 SET_OUTPUT(X_DIR_PIN); @@ -720,17 +720,17 @@ void st_init() #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1 SET_OUTPUT(X2_DIR_PIN); #endif - #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1 + #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1 SET_OUTPUT(Y_DIR_PIN); #endif - #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1 + #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1 SET_OUTPUT(Z_DIR_PIN); #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1) SET_OUTPUT(Z2_DIR_PIN); #endif #endif - #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1 + #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1 SET_OUTPUT(E0_DIR_PIN); #endif #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1) @@ -757,7 +757,7 @@ void st_init() #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1 SET_OUTPUT(Z_ENABLE_PIN); if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH); - + #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1) SET_OUTPUT(Z2_ENABLE_PIN); if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH); @@ -777,67 +777,67 @@ void st_init() #endif //endstops and pullups - + #if defined(X_MIN_PIN) && X_MIN_PIN > -1 - SET_INPUT(X_MIN_PIN); + SET_INPUT(X_MIN_PIN); #ifdef ENDSTOPPULLUP_XMIN WRITE(X_MIN_PIN,HIGH); #endif #endif - + #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 - SET_INPUT(Y_MIN_PIN); + SET_INPUT(Y_MIN_PIN); #ifdef ENDSTOPPULLUP_YMIN WRITE(Y_MIN_PIN,HIGH); #endif #endif - + #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 - SET_INPUT(Z_MIN_PIN); + SET_INPUT(Z_MIN_PIN); #ifdef ENDSTOPPULLUP_ZMIN WRITE(Z_MIN_PIN,HIGH); #endif #endif - + #if defined(X_MAX_PIN) && X_MAX_PIN > -1 - SET_INPUT(X_MAX_PIN); + SET_INPUT(X_MAX_PIN); #ifdef ENDSTOPPULLUP_XMAX WRITE(X_MAX_PIN,HIGH); #endif #endif - + #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 - SET_INPUT(Y_MAX_PIN); + SET_INPUT(Y_MAX_PIN); #ifdef ENDSTOPPULLUP_YMAX WRITE(Y_MAX_PIN,HIGH); #endif #endif - + #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 - SET_INPUT(Z_MAX_PIN); + SET_INPUT(Z_MAX_PIN); #ifdef ENDSTOPPULLUP_ZMAX WRITE(Z_MAX_PIN,HIGH); #endif #endif - + //Initialize Step Pins - #if defined(X_STEP_PIN) && (X_STEP_PIN > -1) + #if defined(X_STEP_PIN) && (X_STEP_PIN > -1) SET_OUTPUT(X_STEP_PIN); WRITE(X_STEP_PIN,INVERT_X_STEP_PIN); disable_x(); - #endif - #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1) + #endif + #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1) SET_OUTPUT(X2_STEP_PIN); WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN); disable_x(); - #endif - #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1) + #endif + #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1) SET_OUTPUT(Y_STEP_PIN); WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN); disable_y(); - #endif - #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1) + #endif + #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1) SET_OUTPUT(Z_STEP_PIN); WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN); #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1) @@ -845,33 +845,33 @@ void st_init() WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN); #endif disable_z(); - #endif - #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1) + #endif + #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1) SET_OUTPUT(E0_STEP_PIN); WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN); disable_e0(); - #endif - #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1) + #endif + #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1) SET_OUTPUT(E1_STEP_PIN); WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN); disable_e1(); - #endif - #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1) + #endif + #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1) SET_OUTPUT(E2_STEP_PIN); WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN); disable_e2(); - #endif + #endif // waveform generation = 0100 = CTC TCCR1B &= ~(1< -1 const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT; - - SPI.begin(); - pinMode(DIGIPOTSS_PIN, OUTPUT); - for(int i=0;i<=4;i++) + + SPI.begin(); + pinMode(DIGIPOTSS_PIN, OUTPUT); + for(int i=0;i<=4;i++) //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]); digipot_current(i,digipot_motor_current[i]); #endif