UBL G29 -P3.1 smart fill (#6823)

* UBL G29 -P3.1 mesh fill with distance-weighted least squares fit.

* Back to original -O0 on G29 for now.
master
oldmcg 8 years ago committed by Roxy-3D
parent 850203fb3a
commit 48f7652143

@ -41,27 +41,12 @@
#include "least_squares_fit.h"
void incremental_LSF_reset(struct linear_fit_data *lsf) {
memset(lsf, 0, sizeof(linear_fit_data));
}
int finish_incremental_LSF(struct linear_fit_data *lsf) {
void incremental_LSF(struct linear_fit_data *lsf, float x, float y, float z) {
lsf->xbar += x;
lsf->ybar += y;
lsf->zbar += z;
lsf->x2bar += sq(x);
lsf->y2bar += sq(y);
lsf->z2bar += sq(z);
lsf->xybar += x * y;
lsf->xzbar += x * z;
lsf->yzbar += y * z;
lsf->max_absx = max(fabs(x), lsf->max_absx);
lsf->max_absy = max(fabs(y), lsf->max_absy);
lsf->n++;
}
const float N = lsf->N;
int finish_incremental_LSF(struct linear_fit_data *lsf) {
const float N = (float)lsf->n;
if (N == 0.0)
return 1;
lsf->xbar /= N;
lsf->ybar /= N;

@ -41,16 +41,49 @@
#include <math.h>
struct linear_fit_data {
int n;
float xbar, ybar, zbar,
x2bar, y2bar, z2bar,
xybar, xzbar, yzbar,
max_absx, max_absy,
A, B, D;
A, B, D, N;
};
void incremental_LSF_reset(struct linear_fit_data *);
void incremental_LSF(struct linear_fit_data *, float x, float y, float z);
void inline incremental_LSF_reset(struct linear_fit_data *lsf) {
memset(lsf, 0, sizeof(linear_fit_data));
}
void inline incremental_WLSF(struct linear_fit_data *lsf, float x, float y, float z, float w) {
// weight each accumulator by factor w, including the "number" of samples
// (analagous to calling inc_LSF twice with same values to weight it by 2X)
lsf->xbar += w * x;
lsf->ybar += w * y;
lsf->zbar += w * z;
lsf->x2bar += w * x * x; // don't use sq(x) -- let compiler re-use w*x four times
lsf->y2bar += w * y * y;
lsf->z2bar += w * z * z;
lsf->xybar += w * x * y;
lsf->xzbar += w * x * z;
lsf->yzbar += w * y * z;
lsf->N += w;
lsf->max_absx = max(fabs( w * x ), lsf->max_absx);
lsf->max_absy = max(fabs( w * y ), lsf->max_absy);
}
void inline incremental_LSF(struct linear_fit_data *lsf, float x, float y, float z) {
lsf->xbar += x;
lsf->ybar += y;
lsf->zbar += z;
lsf->x2bar += sq(x);
lsf->y2bar += sq(y);
lsf->z2bar += sq(z);
lsf->xybar += x * y;
lsf->xzbar += x * z;
lsf->yzbar += y * z;
lsf->max_absx = max(fabs(x), lsf->max_absx);
lsf->max_absy = max(fabs(y), lsf->max_absy);
lsf->N += 1.0;
}
int finish_incremental_LSF(struct linear_fit_data *);
#endif

@ -30,6 +30,12 @@
#define FORCE_INLINE __attribute__((always_inline)) inline
#define _O0 __attribute__((optimize("O0")))
#define _Os __attribute__((optimize("Os")))
#define _O1 __attribute__((optimize("O1")))
#define _O2 __attribute__((optimize("O2")))
#define _O3 __attribute__((optimize("O3")))
// Bracket code that shouldn't be interrupted
#ifndef CRITICAL_SECTION_START
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli();

@ -23,8 +23,6 @@
#include "MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
//#include "vector_3.h"
//#include "qr_solve.h"
#include "ubl.h"
#include "Marlin.h"
@ -36,6 +34,8 @@
#include <math.h>
#include "least_squares_fit.h"
#define UBL_G29_P31
extern float destination[XYZE];
extern float current_position[XYZE];
@ -55,6 +55,7 @@
extern float probe_pt(float x, float y, bool, int);
extern bool set_probe_deployed(bool);
void smart_fill_mesh();
void smart_fill_wlsf(float);
float measure_business_card_thickness(float &in_height);
void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
@ -312,7 +313,7 @@
extern void lcd_setstatus(const char* message, const bool persist);
extern void lcd_setstatuspgm(const char* message, const uint8_t level);
void __attribute__((optimize("O0"))) gcode_G29() {
void _O0 gcode_G29() {
if (!settings.calc_num_meshes()) {
SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
@ -529,7 +530,28 @@
}
}
} else {
smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
const float cvf = code_value_float();
switch( (int)truncf( cvf * 10.0 ) - 30 ) { // 3.1 -> 1
#if ENABLED(UBL_G29_P31)
case 1: {
// P3.1 use least squares fit to fill missing mesh values
// P3.10 zero weighting for distance, all grid points equal, best fit tilted plane
// P3.11 10X weighting for nearest grid points versus farthest grid points
// P3.12 100X distance weighting
// P3.13 1000X distance weighting, approaches simple average of nearest points
const float weight_power = (cvf - 3.10) * 100.0; // 3.12345 -> 2.345
const float weight_factor = weight_power ? pow( 10.0, weight_power ) : 0;
smart_fill_wlsf( weight_factor );
}
break;
#endif
case 0: // P3 or P3.0
default: // and anything P3.x that's not P3.1
smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
break;
}
}
break;
}
@ -1694,4 +1716,66 @@
#endif
}
#if ENABLED(UBL_G29_P31)
// Note: using optimize("O2") for this routine results in smaller
// codegen than default optimize("Os") on A2560.
void _O2 smart_fill_wlsf( float weight_factor ) {
// For each undefined mesh point, compute a distance-weighted least squares fit
// from all the originally populated mesh points, weighted toward the point
// being extrapolated so that nearby points will have greater influence on
// the point being extrapolated. Then extrapolate the mesh point from WLSF.
static_assert( GRID_MAX_POINTS_Y <= 16, "GRID_MAX_POINTS_Y too big" );
uint16_t bitmap[GRID_MAX_POINTS_X] = {0};
struct linear_fit_data lsf_results;
SERIAL_ECHOPGM("Extrapolating mesh...");
const float weight_scaled = weight_factor * max(MESH_X_DIST, MESH_Y_DIST);
for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) {
for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) {
if ( !isnan( ubl.z_values[jx][jy] )) {
bitmap[jx] |= (uint16_t)1 << jy;
}
}
}
for (uint8_t ix = 0; ix < GRID_MAX_POINTS_X; ix++) {
const float px = pgm_read_float(&(ubl.mesh_index_to_xpos[ix]));
for (uint8_t iy = 0; iy < GRID_MAX_POINTS_Y; iy++) {
const float py = pgm_read_float(&(ubl.mesh_index_to_ypos[iy]));
if ( isnan( ubl.z_values[ix][iy] )) {
// undefined mesh point at (px,py), compute weighted LSF from original valid mesh points.
incremental_LSF_reset(&lsf_results);
for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) {
const float rx = pgm_read_float(&(ubl.mesh_index_to_xpos[jx]));
for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) {
if ( bitmap[jx] & (uint16_t)1 << jy ) {
const float ry = pgm_read_float(&(ubl.mesh_index_to_ypos[jy]));
const float rz = ubl.z_values[jx][jy];
const float w = 1.0 + weight_scaled / HYPOT((rx - px),(ry - py));
incremental_WLSF(&lsf_results, rx, ry, rz, w);
}
}
}
if (finish_incremental_LSF(&lsf_results)) {
SERIAL_ECHOLNPGM("Insufficient data");
return;
}
const float ez = -lsf_results.D - lsf_results.A * px - lsf_results.B * py;
ubl.z_values[ix][iy] = ez;
idle(); // housekeeping
}
}
}
SERIAL_ECHOLNPGM("done");
}
#endif // UBL_G29_P31
#endif // AUTO_BED_LEVELING_UBL

Loading…
Cancel
Save