New FW release .72 for Hibiscus.

master
Marcio Teixeira 6 years ago
parent 12f0b20f8f
commit 4d315a693d

@ -376,10 +376,10 @@
/*********************** AUTOLEVELING / BED PROBE *******************************/
#if defined(LULZBOT_USE_AUTOLEVELING) && defined(LULZBOT_MINI_BED) && defined(LULZBOT_USE_Z_BELT)
#define LULZBOT_LEFT_PROBE_BED_POSITION -3
#define LULZBOT_RIGHT_PROBE_BED_POSITION 162
#define LULZBOT_BACK_PROBE_BED_POSITION 164
#define LULZBOT_FRONT_PROBE_BED_POSITION -7
#define LULZBOT_LEFT_PROBE_BED_POSITION -6
#define LULZBOT_RIGHT_PROBE_BED_POSITION 159
#define LULZBOT_BACK_PROBE_BED_POSITION 162
#define LULZBOT_FRONT_PROBE_BED_POSITION -9
#elif defined(LULZBOT_USE_AUTOLEVELING) && defined(LULZBOT_MINI_BED)
// In order to work with the Gladiola printers, we need to
@ -996,7 +996,7 @@
* standard.
*/
#if defined(LULZBOT_IS_MINI)
#if defined(LULZBOT_IS_MINI) && defined(LULZBOT_USE_Z_SCREW)
#define LULZBOT_STANDARD_X_MAX_POS 162
#define LULZBOT_STANDARD_X_MIN_POS -3
#define LULZBOT_STANDARD_Y_MAX_POS 190
@ -1005,6 +1005,15 @@
#define LULZBOT_X_BED_SIZE 155
#define LULZBOT_Y_BED_SIZE 155
#elif defined(LULZBOT_IS_MINI) && defined(LULZBOT_USE_Z_BELT)
#define LULZBOT_STANDARD_X_MAX_POS 159
#define LULZBOT_STANDARD_X_MIN_POS -6
#define LULZBOT_STANDARD_Y_MAX_POS 188
#define LULZBOT_STANDARD_Y_MIN_POS -9
#define LULZBOT_X_BED_SIZE 157
#define LULZBOT_Y_BED_SIZE 157
#elif defined(LULZBOT_Juniper_TAZ5)
#define LULZBOT_STANDARD_X_MAX_POS 298
#define LULZBOT_STANDARD_X_MIN_POS 0
@ -1526,18 +1535,21 @@
/*********************************** WIPER PAD **********************************/
// Nozzle wiping points (varies by toolhead, as the nozzle position varies)
#if defined(LULZBOT_USE_AUTOLEVELING) && defined(LULZBOT_MINI_BED) && defined(LULZBOT_USE_Z_BELT)
// Mini has a horizontal wiping pad on the back of the bed
#define LULZBOT_STANDARD_WIPE_X1 42
#define LULZBOT_STANDARD_WIPE_X2 112
#define LULZBOT_STANDARD_WIPE_Y1 170
#define LULZBOT_STANDARD_WIPE_Y2 170
#define LULZBOT_STANDARD_WIPE_Z 1
#if defined(LULZBOT_USE_AUTOLEVELING) && defined(LULZBOT_MINI_BED)
#elif defined(LULZBOT_USE_AUTOLEVELING) && defined(LULZBOT_MINI_BED) && defined(LULZBOT_USE_Z_SCREW)
// Mini has a horizontal wiping pad on the back of the bed
#define LULZBOT_STANDARD_WIPE_X1 45
#define LULZBOT_STANDARD_WIPE_X2 115
#define LULZBOT_STANDARD_WIPE_Y1 172
#define LULZBOT_STANDARD_WIPE_Y2 172
#if defined(LULZBOT_USE_Z_BELT)
#define LULZBOT_STANDARD_WIPE_Z 1
#else
#define LULZBOT_STANDARD_WIPE_Z -0.5
#endif
#define LULZBOT_STANDARD_WIPE_Z -0.5
#elif defined(LULZBOT_USE_AUTOLEVELING) && defined(LULZBOT_TAZ_BED)
// TAZ has a vertical wiping pad on the left side of the bed

@ -0,0 +1,695 @@
/*
* Modern Interface for the RepRapDiscount Full
* Graphics Smart Controller (ST7920-based 128x64 LCD)
*
* (c) 2017 Aleph Objects, Inc.
*
* The code in this page is free software: you can
* redistribute it and/or modify it under the terms of the GNU
* General Public License (GNU GPL) as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version. The code is distributed WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
*
*/
#define BUFFER_WIDTH 256
#define BUFFER_HEIGHT 32
#define DDRAM_LINE_1 0x00
#define DDRAM_LINE_2 0x10
#define DDRAM_LINE_3 0x08
#define DDRAM_LINE_4 0x18
//set optimization so ARDUINO optimizes this file
#pragma GCC optimize (3)
typedef const __FlashStringHelper *progmem_str;
void lcd_data(uint8_t data) {
ST7920_WRITE_BYTE(data);
}
void lcd_cmd(uint8_t data) {
ST7920_SET_CMD();
ST7920_WRITE_BYTE(data);
}
void lcd_write_begin() {
ST7920_SET_DAT();
}
void lcd_write_byte(uint8_t w) {
lcd_data(w & 0xFF);
}
void lcd_write_word(uint16_t w) {
lcd_data((w >> 8) & 0xFF);
lcd_data((w >> 0) & 0xFF);
}
void lcd_write_str(const char *str) {
while(*str) {
lcd_write_byte(*str++);
}
}
void lcd_write_str(const char *str, uint8_t len) {
while(*str && len--) {
lcd_write_byte(*str++);
}
}
void lcd_write_str_P(const char *str) {
const char *p_str = (const char *)str;
char c = pgm_read_byte_near(p_str++);
while(c) {
lcd_write_byte(c);
c = pgm_read_byte_near(p_str++);
}
}
void lcd_write_str(progmem_str str) {
lcd_write_str_P((const char*)str);
}
void lcd_write_number(uint8_t value, uint8_t digits=3) {
char str[7];
const char *fmt;
switch(digits) {
case 6: fmt = PSTR("%6d"); break;
case 5: fmt = PSTR("%5d"); break;
case 4: fmt = PSTR("%4d"); break;
case 3: fmt = PSTR("%3d"); break;
case 2: fmt = PSTR("%2d"); break;
case 1: fmt = PSTR("%1d"); break;
}
sprintf_P(str,fmt,value);
lcd_write_str(str);
}
void lcd_clear() {
lcd_cmd(0x00000001);
u8g_Delay(15); //delay for CGRAM clear
}
void lcd_display_status(bool display_on, bool cursor_on, bool blink_on) {
lcd_cmd(0b00001000 |
(display_on ? 0b0100 : 0) |
(cursor_on ? 0b0010 : 0) |
(blink_on ? 0b0001 : 0)
);
}
void lcd_extended_function_set(bool extended, bool graphics) {
lcd_cmd( 0b00100000 |
(extended ? 0b00000100 : 0) |
(graphics ? 0b00000010 : 0)
);
}
void lcd_entry_mode_select(bool ac_increase, bool shift) {
lcd_cmd(0b00000100 |
(ac_increase ? 0b00000010 : 0) |
(shift ? 0b00000001 : 0)
);
}
void lcd_scroll_or_addr_select(bool sa) {
lcd_cmd(0b00100010 |
(sa ? 0b000001 : 0)
);
}
void lcd_set_ddram_address(uint8_t addr) {
lcd_cmd(0b10000000 | (addr & 0b00111111));
}
void lcd_set_cgram_address(uint8_t addr) {
lcd_cmd(0b01000000 | (addr & 0b00111111));
}
void lcd_set_gdram_address(uint8_t x, uint8_t y) {
lcd_cmd(0b10000000 | (y & 0b01111111));
lcd_cmd(0b10000000 | (x & 0b00001111));
}
void clear_ddram()
{
lcd_extended_function_set(false, true);
lcd_set_ddram_address(DDRAM_LINE_1);
lcd_write_begin();
for(int i=0; i < 64;i++) {
lcd_write_byte(' ');
}
lcd_extended_function_set(true, true);
}
/* This fills the entire graphics buffer with zeros
*/
void clear_gdram()
{
for(int y = 0; y < BUFFER_HEIGHT; y++) {
lcd_extended_function_set(true, true);
lcd_set_gdram_address(0,y);
lcd_extended_function_set(false, true);
lcd_write_begin();
for(int i = 0; i < (BUFFER_WIDTH / 16); i++) {
lcd_write_byte(0);
lcd_write_byte(0);
}
}
lcd_extended_function_set(false, true);
}
void load_cgram_icon(uint16_t addr, const void *data) {
const uint16_t *p_word = (const uint16_t *)data;
lcd_set_cgram_address(addr);
lcd_write_begin();
for(int i = 0; i < 16; i++) {
uint16_t word = pgm_read_word_near(p_word++);
lcd_write_byte((word & 0xFF00) >> 8);
lcd_write_byte((word & 0x00FF) >> 0);
}
}
/* Draws an icon in GDRAM. The position is specified in
as if they were DDRAM coordinates, i.e. the x position
is [1-8], while the y position is [1-4] */
void draw_gdram_icon(uint8_t x, uint8_t y, const void *data) {
const uint16_t *p_word = (const uint16_t *)data;
if(y > 2) {
// Handle display folding
y -= 2;
x += 8;
}
x -= 1;
y -= 1;
for(int i = 0; i < 16; i++) {
uint16_t word = pgm_read_word_near(p_word++);
lcd_extended_function_set(true, true);
lcd_set_gdram_address(x,i+y*16);
lcd_extended_function_set(false, true);
lcd_write_begin();
lcd_write_byte((word & 0xFF00) >> 8);
lcd_write_byte((word & 0x00FF) >> 0);
}
}
/************************** ICON DEFINITIONS *************************************/
#define CGRAM_ICON_1_ADDR 0x00
#define CGRAM_ICON_2_ADDR 0x10
#define CGRAM_ICON_3_ADDR 0x20
#define CGRAM_ICON_4_ADDR 0x30
#define CGRAM_ICON_1_WORD 0x00
#define CGRAM_ICON_2_WORD 0x02
#define CGRAM_ICON_3_WORD 0x04
#define CGRAM_ICON_4_WORD 0x06
#define N_ELEMENTS(a) sizeof(a)/sizeof(a[0])
PROGMEM const uint16_t nozzle_icon[] = {
0b0000000000000000,
0b0000000000000000,
0b0000111111110000,
0b0001111111111000,
0b0001111111111000,
0b0001111111111000,
0b0000111111110000,
0b0000111111110000,
0b0001111111111000,
0b0001111111111000,
0b0001111111111000,
0b0000011111100000,
0b0000001111000000,
0b0000000110000000,
0b0000000000000000,
0b0000000000000000
};
PROGMEM const uint16_t bed_icon[] = {
0b0000000000000000,
0b0000000000000000,
0b0000000000000000,
0b0000000000000000,
0b0000000000000000,
0b0000000000000000,
0b0000000000000000,
0b0000000000000000,
0b0000000000000000,
0b0000000000000000,
0b0000000000000000,
0b0000000000000000,
0b0111111111111110,
0b0111111111111110,
0b0000000000000000,
0b0000000000000000
};
PROGMEM const uint16_t heat1_icon[] = {
0b0000000000000000,
0b0000000000000000,
0b0010001000100000,
0b0001000100010000,
0b0000100010001000,
0b0000100010001000,
0b0001000100010000,
0b0010001000100000,
0b0010001000100000,
0b0001000100010000,
0b0000100010001000,
0b0000000000000000,
0b0000000000000000,
0b0000000000000000,
0b0000000000000000,
0b0000000000000000
};
PROGMEM const uint16_t heat2_icon[] = {
0b0000000000000000,
0b0000000000000000,
0b0000100010001000,
0b0000100010001000,
0b0001000100010000,
0b0010001000100000,
0b0010001000100000,
0b0001000100010000,
0b0000100010001000,
0b0000100010001000,
0b0001000100010000,
0b0000000000000000,
0b0000000000000000,
0b0000000000000000,
0b0000000000000000,
0b0000000000000000
};
PROGMEM const uint16_t fan1_icon[] = {
0b0000000000000000,
0b0111111111111110,
0b0111000000001110,
0b0110001111000110,
0b0100001111000010,
0b0100000110000010,
0b0101100000011010,
0b0101110110111010,
0b0101100000011010,
0b0100000110000010,
0b0100001111000010,
0b0110001111000110,
0b0111000000001110,
0b0111111111111110,
0b0000000000000000,
0b0000000000000000
};
PROGMEM const uint16_t fan2_icon[] = {
0b0000000000000000,
0b0111111111111110,
0b0111000000001110,
0b0110010000100110,
0b0100111001110010,
0b0101111001111010,
0b0100110000110010,
0b0100000110000010,
0b0100110000110010,
0b0101111001111010,
0b0100111001110010,
0b0110010000100110,
0b0111000000001110,
0b0111111111111110,
0b0000000000000000,
0b0000000000000000
};
PROGMEM const uint16_t feedrate_icon[] = {
0b0000000000000000,
0b0111111000000000,
0b0100000000000000,
0b0100000000000000,
0b0100000000000000,
0b0111111011111000,
0b0100000010000100,
0b0100000010000100,
0b0100000010000100,
0b0100000011111000,
0b0000000010001000,
0b0000000010000100,
0b0000000010000100,
0b0000000010000010,
0b0000000000000000,
0b0000000000000000
};
/************************** MAIN SCREEN *************************************/
/* Although this is undocumented, the ST7920 allows the character
* data buffer (DDRAM) to be used in conjunction with the graphics
* bitmap buffer (CGRAM). The contents of the graphics buffer is
* XORed with the data from the character generator. This allows
* us to make the progess bar out of graphical data (the bar) and
* text data (the percentage).
*/
void draw_progress_bar(uint8_t value) {
#if EXTRUDERS == 1
// If we have only one extruder, draw a long progress bar on the third line
const int top = 1; // Top in pixels
const int bottom = 13; // Bottom in pixels
const int left = 8; // Left edge, in 16-bit words
const int width = 5; // Width of progress bar, in 16-bit words
#else
const int top = 16 + 1; // Top in pixels
const int bottom = 16 + 13; // Bottom in pixels
const int left = 5; // Left edge, in 16-bit words
const int width = 3; // Width of progress bar, in 16-bit words
#endif
const int char_pcnt = 100/width; // How many percent does each 16-bit word represent?
// Draw the progress bar as a bitmap in CGRAM
lcd_extended_function_set(false, true);
for(int y = top; y <= bottom; y++) {
lcd_extended_function_set(true, true);
lcd_set_gdram_address(left,y);
lcd_extended_function_set(false, true);
lcd_write_begin();
for(int x = 0; x < width; x++) {
uint16_t gfx_word = 0x0000;
if((x+1)*char_pcnt <= value) {
// Draw completely filled bytes
gfx_word = 0xFFFF;
} else if((x*char_pcnt) < value) {
// Draw partially filled bytes
gfx_word = int(0x8000) >> (value % char_pcnt)*16/char_pcnt;
}
// Draw the frame around the progress bar
if(y == top || y == bottom) {
// Draw top/bottom border
gfx_word = 0xFFFF;
} else if (x == (width-1)) {
// Draw right border
gfx_word |= 0x0001;
} else if (x == 0) {
// Draw left border
gfx_word |= 0x8000;
}
lcd_write_word(gfx_word);
}
}
// Draw the percentage as text in DDRAM
#if EXTRUDERS == 1
lcd_set_ddram_address(DDRAM_LINE_3 + 1);
#else
lcd_set_ddram_address(DDRAM_LINE_2 + left);
#endif
lcd_write_begin();
if(value > 9) {
lcd_write_number(value,4);
lcd_write_str(F("% "));
} else {
lcd_write_number(value,3);
lcd_write_str(F("% "));
}
}
static void draw_fan_icon(bool whichIcon) {
lcd_set_ddram_address(DDRAM_LINE_1+5);
lcd_write_begin();
lcd_write_word(whichIcon ? CGRAM_ICON_3_WORD : CGRAM_ICON_4_WORD);
}
static void draw_heat_icon(bool whichIcon, bool heating) {
#if EXTRUDERS == 1
lcd_set_ddram_address(DDRAM_LINE_2);
#else
lcd_set_ddram_address(DDRAM_LINE_3);
#endif
lcd_write_begin();
if(heating) {
lcd_write_word(whichIcon ? CGRAM_ICON_1_WORD : CGRAM_ICON_2_WORD);
} else {
lcd_write_byte(' ');
lcd_write_byte(' ');
}
}
static void drawStaticElements() {
lcd_extended_function_set(true, true);
lcd_scroll_or_addr_select(0);
lcd_extended_function_set(false, true);
// Load the animated bed and fan icons
load_cgram_icon(CGRAM_ICON_1_ADDR, heat1_icon);
load_cgram_icon(CGRAM_ICON_2_ADDR, heat2_icon);
load_cgram_icon(CGRAM_ICON_3_ADDR, fan1_icon);
load_cgram_icon(CGRAM_ICON_4_ADDR, fan2_icon);
// Draw the static icons in GDRAM
draw_gdram_icon(1,1,nozzle_icon);
#if EXTRUDERS == 2
draw_gdram_icon(1,2,nozzle_icon);
#endif
draw_gdram_icon(6,2,feedrate_icon);
draw_gdram_icon(1,2,bed_icon);
// Draw the initial fan icon
draw_fan_icon(false);
}
#define FAR(a,b) (((a > b) ? (a-b) : (b-a)) > 1)
static void draw_extruder_1_temp(uint8_t temp, uint8_t target) {
lcd_set_ddram_address(DDRAM_LINE_1+1);
lcd_write_begin();
lcd_write_number(temp);
if(target && FAR(temp, target)) {
lcd_write_str(F("\x1A"));
lcd_write_number(target);
} else {
lcd_write_str(F(" "));
}
}
static void draw_extruder_2_temp(uint8_t temp, uint8_t target) {
lcd_set_ddram_address(DDRAM_LINE_2+1);
lcd_write_begin();
lcd_write_number(temp);
if(target && FAR(temp, target)) {
lcd_write_str(F("\x1A"));
lcd_write_number(target);
} else {
lcd_write_str(F(" "));
}
}
static void draw_bed_temp(uint8_t temp, uint8_t target) {
#if EXTRUDERS == 1
lcd_set_ddram_address(DDRAM_LINE_2+1);
#else
lcd_set_ddram_address(DDRAM_LINE_3+1);
#endif
lcd_write_begin();
lcd_write_number(temp);
if(target && FAR(temp, target)) {
lcd_write_str(F("\x1A"));
lcd_write_number(target);
} else {
lcd_write_str(F(" "));
}
}
static void draw_fan_speed(uint8_t value) {
lcd_set_ddram_address(DDRAM_LINE_1+6);
lcd_write_begin();
lcd_write_number(value,4);
}
static void draw_print_time(uint32_t elapsed) {
const uint8_t hrs = elapsed/360;
const uint8_t min = (elapsed/60)%60;
char str[7];
sprintf_P(str,hrs > 99 ? PSTR("%03d:%02d") : PSTR(" %02d:%02d"),hrs,min);
lcd_set_ddram_address(DDRAM_LINE_3+5);
lcd_write_begin();
lcd_write_str(str);
}
static void draw_feedrate_percentage(uint8_t percentage) {
// We only have enough room for the feedrate when
// we have one extruder
#if EXTRUDERS == 1
lcd_set_ddram_address(DDRAM_LINE_2+6);
lcd_write_begin();
lcd_write_number(percentage,4);
#endif
}
static void draw_status_message(const char *str) {
lcd_set_ddram_address(DDRAM_LINE_4);
lcd_write_begin();
lcd_write_str(str, 16);
}
static void draw_position(const float x, const float y, const float z) {
char str[7];
lcd_set_ddram_address(DDRAM_LINE_4);
lcd_write_begin();
dtostrf(x, -4, 0, str);
lcd_write_byte('X');
lcd_write_str(str, 4);
dtostrf(y, -4, 0, str);
lcd_write_byte('Y');
lcd_write_str(str, 4);
dtostrf(z, -5, 1, str);
lcd_write_byte('Z');
lcd_write_str(str, 5);
}
static void lcd_onEntry() {
ST7920_CS();
lcd_extended_function_set(false, true);
clear_gdram();
drawStaticElements();
lcd_extended_function_set(true, true);
ST7920_NCS();
}
static void lcd_onExit() {
ST7920_CS();
lcd_extended_function_set(false, true);
lcd_clear();
clear_gdram();
lcd_extended_function_set(true, true);
ST7920_NCS();
}
static void lcd_implementation_status_screen() {
// Retrieve values from Marlin
const uint8_t fan_speed = ((fanSpeeds[0] + 1) * 100) / 256;
const uint8_t percent_done = card.percentDone();
const duration_t elapsed = print_job_timer.duration();
const uint32_t seconds_elapsed = elapsed.value;
const float x_pos = current_position[X_AXIS];
const float y_pos = current_position[Y_AXIS];
const float z_pos = current_position[Z_AXIS];
const uint8_t feedrate_perc = feedrate_percentage;
const float bed_temp = thermalManager.degBed();
const float bed_target = thermalManager.degTargetBed();
const float extruder_1_temp = thermalManager.degHotend(0);
const float extruder_1_target = thermalManager.degTargetHotend(0);
#if EXTRUDERS == 2
const float extruder_2_temp = thermalManager.degHotend(1);
const float extruder_2_target = thermalManager.degTargetHotend(1);
#endif
const char * status_string = lcd_status_message;
const bool blink = lcd_blink();
const bool position_known = axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS];
static bool show_position = false;
static uint8_t last_crc = 0;
const uint8_t crc =
uint8_t(blink) ^
uint8_t(feedrate_perc) ^
uint8_t(fan_speed) ^
uint8_t(extruder_1_target) ^
#if EXTRUDERS == 2
uint8_t(extruder_2_target) ^
#endif
uint8_t(bed_target) ^
uint8_t((uint16_t(status_string) & 0x00FF) >> 0) ^
uint8_t((uint16_t(status_string) & 0xFF00) >> 8);
// Only update unless something important has changed.
if(last_crc != crc) {
last_crc = crc;
// Draw the status screen
ST7920_CS();
lcd_extended_function_set(false, true);
//drawStaticElements();
draw_extruder_1_temp(extruder_1_temp, extruder_1_target);
#if EXTRUDERS == 2
draw_extruder_2_temp(extruder_2_temp, extruder_2_target);
#endif
draw_bed_temp(bed_temp, bed_target);
draw_fan_speed(fan_speed);
draw_print_time(seconds_elapsed);
draw_feedrate_percentage(feedrate_perc);
static const char * status_string_last = 0;
static uint8_t status_string_countdown = 0;
static uint8_t status_string_pos_crc = 0;
// Dismiss the status message automatically after 10 blinks
// if movement is happening on the x axis.
const uint8_t pos_crc = uint8_t(x_pos) ^ uint8_t(y_pos);
if(status_string_last != status_string) {
status_string_countdown = 5;
status_string_last = status_string;
} else if(pos_crc != status_string_pos_crc && status_string_countdown > 0) {
status_string_countdown--;
}
status_string_pos_crc = pos_crc;
if(strlen(status_string) && status_string_countdown > 0) {
draw_status_message(status_string);
show_position = false;
} else if(position_known) {
show_position = true;
}
draw_progress_bar(percent_done);
// Update the fan and bed animations
if(fan_speed > 0) {
draw_fan_icon(blink);
}
if(bed_target > 0) {
draw_heat_icon(blink, true);
} else {
draw_heat_icon(false, false);
}
lcd_extended_function_set(true, true);
ST7920_NCS();
} else if(show_position) {
ST7920_CS();
lcd_extended_function_set(false, true);
draw_position(x_pos, y_pos, z_pos);
lcd_extended_function_set(true, true);
ST7920_NCS();
}
}
static void lcd_in_status(bool inStatus) {
static bool lastInStatus = false;
if(!lastInStatus && inStatus) {
lcd_onEntry();
lastInStatus = true;
}
if(lastInStatus && !inStatus) {
lcd_onExit();
lastInStatus = false;
}
}
void lcd_clear_text_buffer() {
ST7920_CS();
clear_ddram();
ST7920_NCS();
}
#pragma GCC reset_options
Loading…
Cancel
Save