Merge pull request #6367 from thinkyhead/rc_cleanup_followup

Cleanup after some direct commits
master
Scott Lahteine 7 years ago committed by GitHub
commit 55f9e76610

@ -40,8 +40,8 @@
*
* Also, there are two support functions that can be called from a developer's C code.
*
* uint16_t check_for_free_memory_corruption(char * const ptr);
* void M100_dump_routine( char *title, char *start, char *end);
* uint16_t check_for_free_memory_corruption(const char * const ptr);
* void M100_dump_routine(const char * const title, const char *start, const char *end);
*
* Initial version by Roxy-3D
*/
@ -68,7 +68,7 @@ extern char __bss_end;
//
#define END_OF_HEAP() (__brkval ? __brkval : &__bss_end)
int check_for_free_memory_corruption(char *title);
int check_for_free_memory_corruption(const char * const title);
// Location of a variable on its stack frame. Returns a value above
// the stack (once the function returns to the caller).
@ -86,7 +86,6 @@ int16_t count_test_bytes(const uint8_t * const ptr) {
return -1;
}
//
// M100 sub-commands
//
@ -101,7 +100,7 @@ int16_t count_test_bytes(const uint8_t * const ptr) {
* the block. If so, it may indicate memory corruption due to a bad pointer.
* Unexpected bytes are flagged in the right column.
*/
void dump_free_memory(uint8_t *ptr, uint8_t *sp) {
void dump_free_memory(const uint8_t *ptr, const uint8_t *sp) {
//
// Start and end the dump on a nice 16 byte boundary
// (even though the values are not 16-byte aligned).
@ -121,17 +120,13 @@ int16_t count_test_bytes(const uint8_t * const ptr) {
safe_delay(25);
SERIAL_CHAR('|'); // Point out non test bytes
for (uint8_t i = 0; i < 16; i++) {
char ccc;
ccc = (char) ptr[i];
if ( &ptr[i]>=&command_queue[0][0] && &ptr[i]<&command_queue[BUFSIZE][MAX_CMD_SIZE]) { // Print out ASCII in the command
if ( ccc<' ' || ccc>0x7e) // buffer area
ccc = ' ';
}
else
if (ccc != TEST_BYTE) // If not display data in the command buffer
ccc = '?'; // area, we flag bytes that don't match the test byte
else
ccc = ' ';
char ccc = (char)ptr[i]; // cast to char before automatically casting to char on assignment, in case the compiler is broken
if (&ptr[i] >= command_queue && &ptr[i] < &command_queue[BUFSIZE][MAX_CMD_SIZE]) { // Print out ASCII in the command buffer area
if (!WITHIN(ccc, ' ', 0x7E)) ccc = ' ';
}
else { // If not in the command buffer area, flag bytes that don't match the test byte
ccc = (ccc == TEST_BYTE) ? ' ' : '?';
}
SERIAL_CHAR(ccc);
}
SERIAL_EOL;
@ -141,19 +136,16 @@ int16_t count_test_bytes(const uint8_t * const ptr) {
}
}
void M100_dump_routine( char *title, char *start, char *end) {
unsigned char c;
int i;
//
// Round the start and end locations to produce full lines of output
//
start = (char*) ((uint16_t) start & 0xfff0);
end = (char*) ((uint16_t) end | 0x000f);
SERIAL_ECHOLN(title);
dump_free_memory( start, end );
void M100_dump_routine(const char * const title, const char *start, const char *end) {
SERIAL_ECHOLN(title);
//
// Round the start and end locations to produce full lines of output
//
start = (char*)((uint16_t) start & 0xfff0);
end = (char*)((uint16_t) end | 0x000f);
dump_free_memory(start, end);
}
#endif // M100_FREE_MEMORY_DUMPER
/**
@ -172,7 +164,7 @@ void free_memory_pool_report(const char * const ptr, const uint16_t size) {
const uint16_t j = count_test_bytes(addr);
if (j > 8) {
SERIAL_ECHOPAIR("Found ", j);
SERIAL_ECHOLNPAIR(" bytes free at 0x", hex_word((uint16_t)addr));
SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(addr));
if (j > max_cnt) {
max_cnt = j;
max_addr = addr;
@ -185,7 +177,7 @@ void free_memory_pool_report(const char * const ptr, const uint16_t size) {
if (block_cnt > 1) {
SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
SERIAL_ECHOPAIR("\nLargest free block is ", max_cnt);
SERIAL_ECHOLNPAIR(" bytes at 0x", hex_word((uint16_t)max_addr));
SERIAL_ECHOLNPAIR(" bytes at ", hex_address(max_addr));
}
SERIAL_ECHOLNPAIR("check_for_free_memory_corruption() = ", check_for_free_memory_corruption("M100 F "));
}
@ -206,7 +198,7 @@ void free_memory_pool_report(const char * const ptr, const uint16_t size) {
for (uint16_t i = 1; i <= size; i++) {
char * const addr = ptr + i * j;
*addr = i;
SERIAL_ECHOPAIR("\nCorrupting address: 0x", hex_word((uint16_t)addr));
SERIAL_ECHOPAIR("\nCorrupting address: ", hex_address(addr));
}
SERIAL_EOL;
}
@ -234,9 +226,10 @@ void init_free_memory(uint8_t *ptr, int16_t size) {
SERIAL_ECHOLNPGM(" bytes of memory initialized.\n");
for (uint16_t i = 0; i < size; i++) {
if (((char) ptr[i]) != TEST_BYTE) {
SERIAL_ECHOPAIR("? address : 0x", hex_word((uint16_t)ptr + i));
if ((char)ptr[i] != TEST_BYTE) {
SERIAL_ECHOPAIR("? address : ", hex_address(ptr + i));
SERIAL_ECHOLNPAIR("=", hex_byte(ptr[i]));
SERIAL_EOL;
}
}
}
@ -245,13 +238,13 @@ void init_free_memory(uint8_t *ptr, int16_t size) {
* M100: Free Memory Check
*/
void gcode_M100() {
SERIAL_ECHOPAIR("\n__brkval : 0x", hex_word((uint16_t)__brkval));
SERIAL_ECHOPAIR("\n__bss_end: 0x", hex_word((uint16_t)&__bss_end));
SERIAL_ECHOPAIR("\n__brkval : ", hex_address(__brkval));
SERIAL_ECHOPAIR("\n__bss_end : ", hex_address(&__bss_end));
uint8_t *ptr = END_OF_HEAP(), *sp = top_of_stack();
SERIAL_ECHOPAIR("\nstart of free space : 0x", hex_word((uint16_t)ptr));
SERIAL_ECHOLNPAIR("\nStack Pointer : 0x", hex_word((uint16_t)sp));
SERIAL_ECHOPAIR("\nstart of free space : ", hex_address(ptr));
SERIAL_ECHOLNPAIR("\nStack Pointer : ", hex_address(sp));
// Always init on the first invocation of M100
static bool m100_not_initialized = true;
@ -276,68 +269,66 @@ void gcode_M100() {
#endif
}
int check_for_free_memory_corruption(char *title) {
char *sp, *ptr;
int block_cnt = 0, i, j, n;
SERIAL_ECHO(title);
ptr = __brkval ? __brkval : &__bss_end;
sp = top_of_stack();
n = sp - ptr;
SERIAL_ECHOPAIR("\nfmc() n=", n);
SERIAL_ECHOPAIR("\n&__brkval: 0x", hex_word((uint16_t)&__brkval));
SERIAL_ECHOPAIR("=0x", hex_word((uint16_t)__brkval));
SERIAL_ECHOPAIR("\n__bss_end: 0x", hex_word((uint16_t)&__bss_end));
SERIAL_ECHOPAIR(" sp=", hex_word(sp));
if (sp < ptr) {
SERIAL_ECHOPGM(" sp < Heap ");
// SET_INPUT_PULLUP(63); // if the developer has a switch wired up to their controller board
// safe_delay(5); // this code can be enabled to pause the display as soon as the
// while ( READ(63)) // malfunction is detected. It is currently defaulting to a switch
// idle(); // being on pin-63 which is unassigend and available on most controller
// safe_delay(20); // boards.
// while ( !READ(63))
// idle();
safe_delay(20);
#ifdef M100_FREE_MEMORY_DUMPER
M100_dump_routine( " Memory corruption detected with sp<Heap\n", (char *)0x1b80, 0x21ff );
#endif
}
int check_for_free_memory_corruption(const char * const title) {
SERIAL_ECHO(title);
char *ptr = END_OF_HEAP(), *sp = top_of_stack();
int n = sp - ptr;
SERIAL_ECHOPAIR("\nfmc() n=", n);
SERIAL_ECHOPAIR("\n&__brkval: ", hex_address(&__brkval));
SERIAL_ECHOPAIR("=", hex_address(__brkval));
SERIAL_ECHOPAIR("\n__bss_end: ", hex_address(&__bss_end));
SERIAL_ECHOPAIR(" sp=", hex_address(sp));
if (sp < ptr) {
SERIAL_ECHOPGM(" sp < Heap ");
// SET_INPUT_PULLUP(63); // if the developer has a switch wired up to their controller board
// safe_delay(5); // this code can be enabled to pause the display as soon as the
// while ( READ(63)) // malfunction is detected. It is currently defaulting to a switch
// idle(); // being on pin-63 which is unassigend and available on most controller
// safe_delay(20); // boards.
// while ( !READ(63))
// idle();
safe_delay(20);
#ifdef M100_FREE_MEMORY_DUMPER
M100_dump_routine(" Memory corruption detected with sp<Heap\n", (char*)0x1B80, 0x21FF);
#endif
}
// Scan through the range looking for the biggest block of 0xE5's we can find
for (i = 0; i < n; i++) {
if (*(ptr + i) == (char)0xe5) {
j = count_test_bytes(ptr + i);
if (j > 8) {
// SERIAL_ECHOPAIR("Found ", j);
// SERIAL_ECHOLNPAIR(" bytes free at 0x", hex_word((uint16_t)(ptr + i)));
i += j;
block_cnt++;
SERIAL_ECHOPAIR(" (", block_cnt);
SERIAL_ECHOPAIR(") found=", j);
SERIAL_ECHOPGM(" ");
}
// Scan through the range looking for the biggest block of 0xE5's we can find
int block_cnt = 0;
for (int i = 0; i < n; i++) {
if (ptr[i] == TEST_BYTE) {
int16_t j = count_test_bytes(ptr + i);
if (j > 8) {
// SERIAL_ECHOPAIR("Found ", j);
// SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(ptr + i));
i += j;
block_cnt++;
SERIAL_ECHOPAIR(" (", block_cnt);
SERIAL_ECHOPAIR(") found=", j);
SERIAL_ECHOPGM(" ");
}
}
SERIAL_ECHOPAIR(" block_found=", block_cnt);
}
SERIAL_ECHOPAIR(" block_found=", block_cnt);
if ((block_cnt!=1) || (__brkval != 0x0000))
SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
if (block_cnt != 1 || __brkval != 0x0000)
SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
if ((block_cnt==0)) // Make sure the special case of no free blocks shows up as an
block_cnt = -1; // error to the calling code!
if (block_cnt == 0) // Make sure the special case of no free blocks shows up as an
block_cnt = -1; // error to the calling code!
if (block_cnt==1) {
SERIAL_ECHOPGM(" return=0\n"); // if the block_cnt is 1, nothing has broken up the free memory
return 0; // area and it is appropriate to say 'no corruption'.
}
SERIAL_ECHOPGM(" return=true\n");
return block_cnt;
SERIAL_ECHOPGM(" return=");
if (block_cnt == 1) {
SERIAL_CHAR('0'); // if the block_cnt is 1, nothing has broken up the free memory
SERIAL_EOL; // area and it is appropriate to say 'no corruption'.
return 0;
}
SERIAL_ECHOLNPGM("true");
return block_cnt;
}
#endif // M100_FREE_MEMORY_WATCHER

@ -284,7 +284,7 @@
#if ENABLED(M100_FREE_MEMORY_WATCHER)
void gcode_M100();
void M100_dump_routine( char *title, char *start, char *end);
void M100_dump_routine(const char * const title, const char *start, const char *end);
#endif
#if ENABLED(SDSUPPORT)
@ -1091,7 +1091,7 @@ inline void get_serial_commands() {
if (IsStopped()) {
char* gpos = strchr(command, 'G');
if (gpos) {
int codenum = strtol(gpos + 1, NULL, 10);
const int codenum = strtol(gpos + 1, NULL, 10);
switch (codenum) {
case 0:
case 1:
@ -4167,17 +4167,25 @@ inline void gcode_G28() {
#define ABL_VAR
#endif
ABL_VAR int verbose_level, abl_probe_index;
ABL_VAR int verbose_level;
ABL_VAR float xProbe, yProbe, measured_z;
ABL_VAR bool dryrun, abl_should_enable;
#if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
ABL_VAR int abl_probe_index;
#endif
#if HAS_SOFTWARE_ENDSTOPS
ABL_VAR bool enable_soft_endstops = true;
#endif
#if ABL_GRID
ABL_VAR uint8_t PR_OUTER_VAR;
ABL_VAR int8_t PR_INNER_VAR;
#if ENABLED(PROBE_MANUALLY)
ABL_VAR uint8_t PR_OUTER_VAR;
ABL_VAR int8_t PR_INNER_VAR;
#endif
ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
ABL_VAR float xGridSpacing, yGridSpacing;
@ -4186,13 +4194,18 @@ inline void gcode_G28() {
#if ABL_PLANAR
ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
abl_grid_points_y = GRID_MAX_POINTS_Y;
ABL_VAR int abl2;
ABL_VAR bool do_topography_map;
#else // 3-point
uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
abl_grid_points_y = GRID_MAX_POINTS_Y;
#endif
int constexpr abl2 = ABL_GRID_MAX;
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
#if ABL_PLANAR
ABL_VAR int abl2;
#else // 3-point
int constexpr abl2 = ABL_GRID_MAX;
#endif
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
@ -4224,7 +4237,10 @@ inline void gcode_G28() {
*/
if (!g29_in_progress) {
abl_probe_index = 0;
#if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
abl_probe_index = 0;
#endif
abl_should_enable = planner.abl_enabled;
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
@ -4284,7 +4300,7 @@ inline void gcode_G28() {
return;
}
dryrun = code_seen('D') ? code_value_bool() : false;
dryrun = code_seen('D') && code_value_bool();
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
@ -4455,7 +4471,7 @@ inline void gcode_G28() {
g29_in_progress = true;
if (abl_probe_index == 0) {
// For the initial G29 S2 save software endstop state
// For the initial G29 save software endstop state
#if HAS_SOFTWARE_ENDSTOPS
enable_soft_endstops = soft_endstops_enabled;
#endif
@ -4586,7 +4602,6 @@ inline void gcode_G28() {
#else // !PROBE_MANUALLY
bool stow_probe_after_each = code_seen('E');
#if ABL_GRID
@ -4927,14 +4942,12 @@ inline void gcode_G28() {
* S = Stows the probe if 1 (default=1)
*/
inline void gcode_G30() {
float X_probe_location = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
Y_probe_location = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
ypos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
pos[XYZ] = { xpos, ypos, LOGICAL_Z_POSITION(0) };
float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
if (!position_is_reachable(pos, true)) return;
bool stow = code_seen('S') ? code_value_bool() : true;
// Disable leveling so the planner won't mess with us
#if PLANNER_LEVELING
set_bed_leveling_enabled(false);
@ -4942,14 +4955,11 @@ inline void gcode_G28() {
setup_for_endstop_or_probe_move();
float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
const float measured_z = probe_pt(xpos, ypos, !code_seen('S') || code_value_bool(), 1);
SERIAL_PROTOCOLPGM("Bed X: ");
SERIAL_PROTOCOL(FIXFLOAT(X_probe_location));
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL(FIXFLOAT(Y_probe_location));
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOLLN(FIXFLOAT(measured_z));
SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
clean_up_after_endstop_or_probe_move();
@ -5466,7 +5476,7 @@ inline void gcode_G92() {
* M1: Conditional stop - Wait for user button press on LCD
*/
inline void gcode_M0_M1() {
char* args = current_command_args;
const char * const args = current_command_args;
millis_t codenum = 0;
bool hasP = false, hasS = false;
@ -5524,7 +5534,7 @@ inline void gcode_G92() {
KEEPALIVE_STATE(IN_HANDLER);
}
#endif // EMERGENCY_PARSER || ULTIPANEL
#endif // HAS_RESUME_CONTINUE
/**
* M17: Enable power on all stepper motors
@ -5806,70 +5816,94 @@ inline void gcode_M42() {
#include "pinsDebug.h"
inline void toggle_pins() {
int pin, j;
bool I_flag = code_seen('I') ? code_value_bool() : false;
int repeat = code_seen('R') ? code_value_int() : 1,
start = code_seen('S') ? code_value_int() : 0,
end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
wait = code_seen('W') ? code_value_int() : 500;
const bool I_flag = code_seen('I') && code_value_bool();
const int repeat = code_seen('R') ? code_value_int() : 1,
start = code_seen('S') ? code_value_int() : 0,
end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
wait = code_seen('W') ? code_value_int() : 500;
for (pin = start; pin <= end; pin++) {
if (!I_flag && pin_is_protected(pin)) {
SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
SERIAL_ECHOPGM(" untouched.\n");
}
else {
SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
pinMode(pin, OUTPUT);
for(j = 0; j < repeat; j++) {
digitalWrite(pin, 0);
safe_delay(wait);
digitalWrite(pin, 1);
safe_delay(wait);
digitalWrite(pin, 0);
safe_delay(wait);
}
for (uint8_t pin = start; pin <= end; pin++) {
if (!I_flag && pin_is_protected(pin)) {
SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
SERIAL_ECHOLNPGM(" untouched.");
}
else {
SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
pinMode(pin, OUTPUT);
for (int16_t j = 0; j < repeat; j++) {
digitalWrite(pin, 0);
safe_delay(wait);
digitalWrite(pin, 1);
safe_delay(wait);
digitalWrite(pin, 0);
safe_delay(wait);
}
SERIAL_ECHOPGM("\n");
}
SERIAL_CHAR('\n');
}
SERIAL_ECHOPGM("Done\n");
SERIAL_ECHOLNPGM("Done.");
} // toggle_pins
inline void servo_probe_test(){
#if !(NUM_SERVOS >= 1 && HAS_SERVO_0)
inline void servo_probe_test() {
#if !(NUM_SERVOS > 0 && HAS_SERVO_0)
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("SERVO not setup");
#elif !HAS_Z_SERVO_ENDSTOP
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
#else
uint8_t probe_index = code_seen('P') ? code_value_byte() : Z_ENDSTOP_SERVO_NR;
#if !defined(z_servo_angle)
const int z_servo_angle[2] = Z_SERVO_ANGLES;
#endif
const uint8_t probe_index = code_seen('P') ? code_value_byte() : Z_ENDSTOP_SERVO_NR;
SERIAL_PROTOCOLLNPGM("Servo probe test");
SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
bool probe_inverting;
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
#define PROBE_TEST_PIN Z_MIN_PIN
SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
if (Z_MIN_ENDSTOP_INVERTING) SERIAL_PROTOCOLLNPGM("true");
else SERIAL_PROTOCOLLNPGM("false");
#if Z_MIN_ENDSTOP_INVERTING
SERIAL_PROTOCOLLNPGM("true");
#else
SERIAL_PROTOCOLLNPGM("false");
#endif
probe_inverting = Z_MIN_ENDSTOP_INVERTING;
#elif ENABLED(Z_MIN_PROBE_ENDSTOP)
#define PROBE_TEST_PIN Z_MIN_PROBE_PIN
SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
if (Z_MIN_PROBE_ENDSTOP_INVERTING) SERIAL_PROTOCOLLNPGM("true");
else SERIAL_PROTOCOLLNPGM("false");
#if Z_MIN_PROBE_ENDSTOP_INVERTING
SERIAL_PROTOCOLLNPGM("true");
#else
SERIAL_PROTOCOLLNPGM("false");
#endif
probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
#else
#error "ERROR - probe pin not defined - strange, SANITY_CHECK should have caught this"
#endif
SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
pinMode(PROBE_TEST_PIN, INPUT_PULLUP);
bool deploy_state;
@ -5883,7 +5917,9 @@ inline void gcode_M42() {
stow_state = digitalRead(PROBE_TEST_PIN);
}
if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
refresh_cmd_timeout();
if (deploy_state != stow_state) {
SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
if (deploy_state) {
@ -5900,32 +5936,43 @@ inline void gcode_M42() {
}
else { // measure active signal length
servo[probe_index].move(z_servo_angle[0]); //deploy
servo[probe_index].move(z_servo_angle[0]); // deploy
safe_delay(500);
SERIAL_PROTOCOLLNPGM("please trigger probe");
uint16_t probe_counter = 0;
for (uint16_t j = 0; j < 500*30 && probe_counter == 0 ; j++) { // allow 30 seconds max for operator to trigger probe
// Allow 30 seconds max for operator to trigger probe
for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
safe_delay(2);
if ( 0 == j%(500*1)) {refresh_cmd_timeout(); watchdog_reset();} // beat the dog every 45 seconds
if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
for (probe_counter = 1; probe_counter < 50 && (deploy_state != digitalRead(PROBE_TEST_PIN)); probe_counter ++) {
if (0 == j % (500 * 1)) // keep cmd_timeout happy
refresh_cmd_timeout();
if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
for (probe_counter = 1; probe_counter < 50 && deploy_state != digitalRead(PROBE_TEST_PIN); ++probe_counter)
safe_delay(2);
}
if (probe_counter == 50) {
SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
}
else if (probe_counter >= 2 ) {
SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2 ); // allow 4 - 100mS pulse
}
else {
SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
}
if (probe_counter == 50)
SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
else if (probe_counter >= 2)
SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
else
SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
servo[probe_index].move(z_servo_angle[1]); //stow
} // pulse detected
} // for loop waiting for trigger
} // for loop waiting for trigger
if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
} // measure active signal length
} // measure active signal length
#endif
} // servo_probe_test
/**
@ -5977,39 +6024,43 @@ inline void gcode_M42() {
}
// Get the range of pins to test or watch
int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
if (code_seen('P')) {
first_pin = last_pin = code_value_byte();
if (first_pin > NUM_DIGITAL_PINS - 1) return;
}
const uint8_t first_pin = code_seen('P') ? code_value_byte() : 0,
last_pin = code_seen('P') ? first_pin : NUM_DIGITAL_PINS - 1;
bool ignore_protection = code_seen('I') ? code_value_bool() : false;
if (first_pin > last_pin) return;
const bool ignore_protection = code_seen('I') && code_value_bool();
// Watch until click, M108, or reset
if (code_seen('W') && code_value_bool()) { // watch digital pins
if (code_seen('W') && code_value_bool()) {
SERIAL_PROTOCOLLNPGM("Watching pins");
byte pin_state[last_pin - first_pin + 1];
for (int8_t pin = first_pin; pin <= last_pin; pin++) {
if (pin_is_protected(pin) && !ignore_protection) continue;
pinMode(pin, INPUT_PULLUP);
// if (IS_ANALOG(pin))
// pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
// else
pin_state[pin - first_pin] = digitalRead(pin);
/*
if (IS_ANALOG(pin))
pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
else
//*/
pin_state[pin - first_pin] = digitalRead(pin);
}
#if HAS_RESUME_CONTINUE
wait_for_user = true;
KEEPALIVE_STATE(PAUSED_FOR_USER);
#endif
for(;;) {
for (;;) {
for (int8_t pin = first_pin; pin <= last_pin; pin++) {
if (pin_is_protected(pin)) continue;
byte val;
// if (IS_ANALOG(pin))
// val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
// else
val = digitalRead(pin);
const byte val =
/*
IS_ANALOG(pin)
? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
:
//*/
digitalRead(pin);
if (val != pin_state[pin - first_pin]) {
report_pin_state(pin);
pin_state[pin - first_pin] = val;
@ -6017,7 +6068,10 @@ inline void gcode_M42() {
}
#if HAS_RESUME_CONTINUE
if (!wait_for_user) break;
if (!wait_for_user) {
KEEPALIVE_STATE(IN_HANDLER);
break;
}
#endif
safe_delay(500);
@ -9571,8 +9625,8 @@ void process_next_command() {
SERIAL_ECHO_START;
SERIAL_ECHOLN(current_command);
#if ENABLED(M100_FREE_MEMORY_WATCHER)
SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
M100_dump_routine( " Command Queue:", &command_queue[0][0], &command_queue[BUFSIZE][MAX_CMD_SIZE] );
SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
M100_dump_routine(" Command Queue:", &command_queue[0][0], &command_queue[BUFSIZE][MAX_CMD_SIZE]);
#endif
}
@ -11166,19 +11220,20 @@ void prepare_move_to_destination() {
*/
void plan_arc(
float logical[XYZE], // Destination position
float* offset, // Center of rotation relative to current_position
uint8_t clockwise // Clockwise?
float *offset, // Center of rotation relative to current_position
uint8_t clockwise // Clockwise?
) {
float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
center_X = current_position[X_AXIS] + offset[X_AXIS],
center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
r_X = -offset[X_AXIS], // Radius vector from center to current location
r_Y = -offset[Y_AXIS],
rt_X = logical[X_AXIS] - center_X,
rt_Y = logical[Y_AXIS] - center_Y;
float r_X = -offset[X_AXIS], // Radius vector from center to current location
r_Y = -offset[Y_AXIS];
const float radius = HYPOT(r_X, r_Y),
center_X = current_position[X_AXIS] - r_X,
center_Y = current_position[Y_AXIS] - r_Y,
rt_X = logical[X_AXIS] - center_X,
rt_Y = logical[Y_AXIS] - center_Y,
linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
@ -11222,12 +11277,12 @@ void prepare_move_to_destination() {
* This is important when there are successive arc motions.
*/
// Vector rotation matrix values
float arc_target[XYZE],
theta_per_segment = angular_travel / segments,
linear_per_segment = linear_travel / segments,
extruder_per_segment = extruder_travel / segments,
sin_T = theta_per_segment,
cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
float arc_target[XYZE];
const float theta_per_segment = angular_travel / segments,
linear_per_segment = linear_travel / segments,
extruder_per_segment = extruder_travel / segments,
sin_T = theta_per_segment,
cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
// Initialize the linear axis
arc_target[Z_AXIS] = current_position[Z_AXIS];
@ -11235,7 +11290,7 @@ void prepare_move_to_destination() {
// Initialize the extruder axis
arc_target[E_AXIS] = current_position[E_AXIS];
float fr_mm_s = MMS_SCALED(feedrate_mm_s);
const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
millis_t next_idle_ms = millis() + 200UL;
@ -11250,7 +11305,7 @@ void prepare_move_to_destination() {
if (++count < N_ARC_CORRECTION) {
// Apply vector rotation matrix to previous r_X / 1
float r_new_Y = r_X * sin_T + r_Y * cos_T;
const float r_new_Y = r_X * sin_T + r_Y * cos_T;
r_X = r_X * cos_T - r_Y * sin_T;
r_Y = r_new_Y;
}
@ -11259,8 +11314,8 @@ void prepare_move_to_destination() {
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
// To reduce stuttering, the sin and cos could be computed at different times.
// For now, compute both at the same time.
float cos_Ti = cos(i * theta_per_segment),
sin_Ti = sin(i * theta_per_segment);
const float cos_Ti = cos(i * theta_per_segment),
sin_Ti = sin(i * theta_per_segment);
r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
count = 0;
@ -11774,30 +11829,15 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
enable_E0();
#else // !SWITCHING_EXTRUDER
switch (active_extruder) {
case 0:
oldstatus = E0_ENABLE_READ;
enable_E0();
break;
case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break;
#if E_STEPPERS > 1
case 1:
oldstatus = E1_ENABLE_READ;
enable_E1();
break;
case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
#if E_STEPPERS > 2
case 2:
oldstatus = E2_ENABLE_READ;
enable_E2();
break;
case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
#if E_STEPPERS > 3
case 3:
oldstatus = E3_ENABLE_READ;
enable_E3();
break;
case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
#if E_STEPPERS > 4
case 4:
oldstatus = E4_ENABLE_READ;
enable_E4();
break;
case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
#endif // E_STEPPERS > 4
#endif // E_STEPPERS > 3
#endif // E_STEPPERS > 2
@ -11817,25 +11857,15 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
E0_ENABLE_WRITE(oldstatus);
#else
switch (active_extruder) {
case 0:
E0_ENABLE_WRITE(oldstatus);
break;
case 0: E0_ENABLE_WRITE(oldstatus); break;
#if E_STEPPERS > 1
case 1:
E1_ENABLE_WRITE(oldstatus);
break;
case 1: E1_ENABLE_WRITE(oldstatus); break;
#if E_STEPPERS > 2
case 2:
E2_ENABLE_WRITE(oldstatus);
break;
case 2: E2_ENABLE_WRITE(oldstatus); break;
#if E_STEPPERS > 3
case 3:
E3_ENABLE_WRITE(oldstatus);
break;
case 3: E3_ENABLE_WRITE(oldstatus); break;
#if E_STEPPERS > 4
case 4:
E4_ENABLE_WRITE(oldstatus);
break;
case 4: E4_ENABLE_WRITE(oldstatus); break;
#endif // E_STEPPERS > 4
#endif // E_STEPPERS > 3
#endif // E_STEPPERS > 2

@ -339,7 +339,10 @@ void MarlinSettings::postprocess() {
#if ENABLED(MESH_BED_LEVELING)
// Compile time test that sizeof(mbl.z_values) is as expected
typedef char c_assert[(sizeof(mbl.z_values) == (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y) * sizeof(dummy)) ? 1 : -1];
static_assert(
sizeof(mbl.z_values) == (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y) * sizeof(mbl.z_values[0][0]),
"MBL Z array is the wrong size."
);
const bool leveling_is_on = TEST(mbl.status, MBL_STATUS_HAS_MESH_BIT);
const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
EEPROM_WRITE(leveling_is_on);
@ -381,7 +384,10 @@ void MarlinSettings::postprocess() {
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Compile time test that sizeof(bed_level_grid) is as expected
typedef char c_assert[(sizeof(bed_level_grid) == (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y) * sizeof(dummy)) ? 1 : -1];
static_assert(
sizeof(bed_level_grid) == (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y) * sizeof(bed_level_grid[0][0]),
"Bilinear Z array is the wrong size."
);
const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
EEPROM_WRITE(grid_max_x); // 1 byte
EEPROM_WRITE(grid_max_y); // 1 byte

@ -19,32 +19,35 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "Marlin.h"
#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(M100_FREE_MEMORY_WATCHER)
#include "hex_print_routines.h"
static char _hex[5] = { 0 };
static char _hex[7] = "0x0000";
char* hex_byte(const uint8_t b) {
_hex[0] = hex_nybble(b >> 4);
_hex[1] = hex_nybble(b);
_hex[2] = '\0';
return _hex;
_hex[4] = hex_nybble(b >> 4);
_hex[5] = hex_nybble(b);
return &_hex[4];
}
char* hex_word(const uint16_t w) {
_hex[0] = hex_nybble(w >> 12);
_hex[1] = hex_nybble(w >> 8);
_hex[2] = hex_nybble(w >> 4);
_hex[3] = hex_nybble(w);
_hex[2] = hex_nybble(w >> 12);
_hex[3] = hex_nybble(w >> 8);
_hex[4] = hex_nybble(w >> 4);
_hex[5] = hex_nybble(w);
return &_hex[2];
}
char* hex_address(const void * const w) {
(void)hex_word((uint16_t)w);
return _hex;
}
void print_hex_nybble(const uint8_t n) { SERIAL_CHAR(hex_nybble(n)); }
void print_hex_byte(const uint8_t b) { SERIAL_ECHO(hex_byte(b)); }
void print_hex_word(const uint16_t w) { SERIAL_ECHO(hex_word(w)); }
void print_hex_nybble(const uint8_t n) { SERIAL_CHAR(hex_nybble(n)); }
void print_hex_byte(const uint8_t b) { SERIAL_ECHO(hex_byte(b)); }
void print_hex_word(const uint16_t w) { SERIAL_ECHO(hex_word(w)); }
void print_hex_address(const void * const w) { SERIAL_ECHO(hex_address(w)); }
#endif // AUTO_BED_LEVELING_UBL || M100_FREE_MEMORY_WATCHER

@ -36,10 +36,12 @@ inline char hex_nybble(const uint8_t n) {
}
char* hex_byte(const uint8_t b);
char* hex_word(const uint16_t w);
char* hex_address(const void * const w);
void print_hex_nybble(const uint8_t n);
void print_hex_byte(const uint8_t b);
void print_hex_word(const uint16_t w);
void print_hex_address(const void * const w);
#endif // AUTO_BED_LEVELING_UBL || M100_FREE_MEMORY_WATCHER
#endif // HEX_PRINT_ROUTINES_H

@ -255,12 +255,11 @@ static void err_is_counter() {
SERIAL_PROTOCOLPGM(" non-standard PWM mode");
}
static void err_is_interrupt() {
SERIAL_PROTOCOLPGM(" compare interrupt enabled ");
SERIAL_PROTOCOLPGM(" compare interrupt enabled");
}
static void err_prob_interrupt() {
SERIAL_PROTOCOLPGM(" overflow interrupt enabled");
}
static void can_be_used() { SERIAL_PROTOCOLPGM(" can be used as PWM "); }
void com_print(uint8_t N, uint8_t Z) {
uint8_t *TCCRA = (uint8_t*) TCCR_A(N);
@ -325,9 +324,6 @@ void timer_prefix(uint8_t T, char L, uint8_t N) { // T - timer L - pwm n -
}
static void pwm_details(uint8_t pin) {
char buffer[20]; // for the sprintf statements
uint8_t WGM;
switch(digitalPinToTimer(pin)) {
#if defined(TCCR0A) && defined(COM0A1)
@ -524,7 +520,7 @@ inline void report_pin_state_extended(int8_t pin, bool ignore, bool extended = t
SERIAL_PROTOCOLPAIR(" Input = ", digitalRead_mod(pin));
}
//if (!pwm_status(pin)) SERIAL_ECHOCHAR(' '); // add padding if it's not a PWM pin
//if (!pwm_status(pin)) SERIAL_CHAR(' '); // add padding if it's not a PWM pin
if (extended) pwm_details(pin); // report PWM capabilities only if doing an extended report
SERIAL_EOL;
}

@ -118,7 +118,7 @@
eeprom_read_block((void *)&z_values, (void *)j, sizeof(z_values));
SERIAL_PROTOCOLPAIR("Mesh loaded from slot ", m);
SERIAL_PROTOCOLLNPAIR(" at offset 0x", hex_word(j));
SERIAL_PROTOCOLLNPAIR(" at offset ", hex_address((void*)j));
}
void unified_bed_leveling::store_mesh(const int16_t m) {
@ -140,7 +140,7 @@
eeprom_write_block((const void *)&z_values, (void *)j, sizeof(z_values));
SERIAL_PROTOCOLPAIR("Mesh saved in slot ", m);
SERIAL_PROTOCOLLNPAIR(" at offset 0x", hex_word(j));
SERIAL_PROTOCOLLNPAIR(" at offset ", hex_address((void*)j));
}
void unified_bed_leveling::reset() {

@ -35,7 +35,6 @@
#include <math.h>
void lcd_babystep_z();
void lcd_return_to_status();
bool lcd_clicked();
void lcd_implementation_clear();
@ -305,7 +304,7 @@
// The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
static int g29_verbose_level, phase_value = -1, repetition_cnt,
storage_slot=0, map_type, grid_size;
storage_slot = 0, map_type, grid_size;
static bool repeat_flag, c_flag, x_flag, y_flag;
static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0;
@ -330,13 +329,10 @@
// Invalidate Mesh Points. This command is a little bit asymetrical because
// it directly specifies the repetition count and does not use the 'R' parameter.
if (code_seen('I')) {
int cnt = 0;
uint8_t cnt = 0;
repetition_cnt = code_has_value() ? code_value_int() : 1;
while (repetition_cnt--) {
if (cnt>20) {
cnt = 0;
idle();
}
if (cnt > 20) { cnt = 0; idle(); }
const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
if (location.x_index < 0) {
SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
@ -381,7 +377,7 @@
}
if (code_seen('J')) {
if (grid_size<2 || grid_size>5) {
if (!WITHIN(grid_size, 2, 5)) {
SERIAL_PROTOCOLLNPGM("ERROR - grid size must be between 2 and 5");
return;
}
@ -996,7 +992,7 @@
repetition_cnt = 0;
repeat_flag = code_seen('R');
if (repeat_flag) {
repetition_cnt = code_has_value() ? code_value_int() : GRID_MAX_POINTS_X*GRID_MAX_POINTS_Y;
repetition_cnt = code_has_value() ? code_value_int() : (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y);
if (repetition_cnt < 1) {
SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
return UBL_ERR;
@ -1206,9 +1202,9 @@
SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
SERIAL_EOL;
safe_delay(50);
SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl.eeprom_start));
SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: ", hex_address((void*)ubl.eeprom_start));
SERIAL_PROTOCOLLNPAIR("end of EEPROM : 0x", hex_word(E2END));
SERIAL_PROTOCOLLNPAIR("end of EEPROM : ", hex_address((void*)E2END));
safe_delay(50);
SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
@ -1217,7 +1213,7 @@
SERIAL_EOL;
safe_delay(50);
SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: 0x", hex_word(k));
SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)k));
safe_delay(50);
SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(ubl.z_values));
@ -1295,7 +1291,7 @@
eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address 0x", hex_word(j)); // Soon, we can remove the extra clutter of printing
SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_address((void*)j)); // Soon, we can remove the extra clutter of printing
// the address in the EEPROM where the Mesh is stored.
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)

Loading…
Cancel
Save