Stepper and Endstops as singleton objects

master
Scott Lahteine 8 years ago
parent 98f30283fa
commit 5e4e535ce8

@ -216,7 +216,7 @@ void manage_inactivity(bool ignore_stepper_queue = false);
*/
enum AxisEnum {X_AXIS = 0, A_AXIS = 0, Y_AXIS = 1, B_AXIS = 1, Z_AXIS = 2, C_AXIS = 2, E_AXIS = 3, X_HEAD = 4, Y_HEAD = 5, Z_HEAD = 5};
enum EndstopEnum {X_MIN = 0, Y_MIN = 1, Z_MIN = 2, Z_MIN_PROBE = 3, X_MAX = 4, Y_MAX = 5, Z_MAX = 6, Z2_MIN = 7, Z2_MAX = 8};
#define _AXIS(AXIS) AXIS ##_AXIS
void enable_all_steppers();
void disable_all_steppers();

@ -48,6 +48,7 @@
#include "ultralcd.h"
#include "planner.h"
#include "stepper.h"
#include "endstops.h"
#include "temperature.h"
#include "cardreader.h"
#include "configuration_store.h"
@ -547,10 +548,6 @@ static void report_current_position();
float extrude_min_temp = EXTRUDE_MINTEMP;
#endif
#if ENABLED(HAS_Z_MIN_PROBE)
extern volatile bool z_probe_is_active;
#endif
#if ENABLED(SDSUPPORT)
#include "SdFatUtil.h"
int freeMemory() { return SdFatUtil::FreeRam(); }
@ -711,7 +708,7 @@ void servo_init() {
#if HAS_SERVO_ENDSTOPS
z_probe_is_active = false;
endstops.enable_z_probe(false);
/**
* Set position of all defined Servo Endstops
@ -831,7 +828,7 @@ void setup() {
watchdog_init();
#endif
st_init(); // Initialize stepper, this enables interrupts!
stepper.init(); // Initialize stepper, this enables interrupts!
setup_photpin();
servo_init();
@ -915,7 +912,7 @@ void loop() {
commands_in_queue--;
cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
}
checkHitEndstops();
endstops.report_state();
idle();
}
@ -1445,9 +1442,9 @@ static void setup_for_endstop_move() {
feedrate_multiplier = 100;
refresh_cmd_timeout();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > endstops.enable()");
#endif
enable_endstops(true);
endstops.enable();
}
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
@ -1553,7 +1550,7 @@ static void setup_for_endstop_move() {
#if ENABLED(DELTA)
float start_z = current_position[Z_AXIS];
long start_steps = st_get_position(Z_AXIS);
long start_steps = stepper.position(Z_AXIS);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
@ -1563,14 +1560,14 @@ static void setup_for_endstop_move() {
feedrate = homing_feedrate[Z_AXIS] / 4;
destination[Z_AXIS] = -10;
prepare_move_raw(); // this will also set_current_to_destination
st_synchronize();
endstops_hit_on_purpose(); // clear endstop hit flags
stepper.synchronize();
endstops.hit_on_purpose(); // clear endstop hit flags
/**
* We have to let the planner know where we are right now as it
* is not where we said to go.
*/
long stop_steps = st_get_position(Z_AXIS);
long stop_steps = stepper.position(Z_AXIS);
float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
current_position[Z_AXIS] = mm;
@ -1588,10 +1585,10 @@ static void setup_for_endstop_move() {
// Move down until the Z probe (or endstop?) is triggered
float zPosition = -(Z_MAX_LENGTH + 10);
line_to_z(zPosition);
st_synchronize();
stepper.synchronize();
// Tell the planner where we ended up - Get this from the stepper handler
zPosition = st_get_axis_position_mm(Z_AXIS);
zPosition = stepper.get_axis_position_mm(Z_AXIS);
plan_set_position(
current_position[X_AXIS], current_position[Y_AXIS], zPosition,
current_position[E_AXIS]
@ -1600,19 +1597,19 @@ static void setup_for_endstop_move() {
// move up the retract distance
zPosition += home_bump_mm(Z_AXIS);
line_to_z(zPosition);
st_synchronize();
endstops_hit_on_purpose(); // clear endstop hit flags
stepper.synchronize();
endstops.hit_on_purpose(); // clear endstop hit flags
// move back down slowly to find bed
set_homing_bump_feedrate(Z_AXIS);
zPosition -= home_bump_mm(Z_AXIS) * 2;
line_to_z(zPosition);
st_synchronize();
endstops_hit_on_purpose(); // clear endstop hit flags
stepper.synchronize();
endstops.hit_on_purpose(); // clear endstop hit flags
// Get the current stepper position after bumping an endstop
current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
sync_plan_position();
#if ENABLED(DEBUG_LEVELING_FEATURE)
@ -1641,7 +1638,7 @@ static void setup_for_endstop_move() {
destination[Y_AXIS] = y;
destination[Z_AXIS] = z;
prepare_move_raw(); // this will also set_current_to_destination
st_synchronize();
stepper.synchronize();
#else
@ -1649,14 +1646,14 @@ static void setup_for_endstop_move() {
current_position[Z_AXIS] = z;
line_to_current_position();
st_synchronize();
stepper.synchronize();
feedrate = xy_travel_speed;
current_position[X_AXIS] = x;
current_position[Y_AXIS] = y;
line_to_current_position();
st_synchronize();
stepper.synchronize();
#endif
@ -1681,9 +1678,9 @@ static void setup_for_endstop_move() {
static void clean_up_after_endstop_move() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops.not_homing()");
#endif
endstops_not_homing();
endstops.not_homing();
feedrate = saved_feedrate;
feedrate_multiplier = saved_feedrate_multiplier;
refresh_cmd_timeout();
@ -1697,7 +1694,7 @@ static void setup_for_endstop_move() {
if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
#endif
if (z_probe_is_active) return;
if (endstops.z_probe_enabled) return;
#if HAS_SERVO_ENDSTOPS
@ -1757,7 +1754,7 @@ static void setup_for_endstop_move() {
destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
prepare_move_raw(); // this will also set_current_to_destination
st_synchronize();
stepper.synchronize();
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
@ -1778,10 +1775,10 @@ static void setup_for_endstop_move() {
#endif // Z_PROBE_ALLEN_KEY
#if ENABLED(FIX_MOUNTED_PROBE)
// Noting to be done. Just set z_probe_is_active
// Noting to be done. Just set endstops.z_probe_enabled
#endif
z_probe_is_active = true;
endstops.enable_z_probe();
}
@ -1793,7 +1790,7 @@ static void setup_for_endstop_move() {
if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
#endif
if (!z_probe_is_active) return;
if (!endstops.z_probe_enabled) return;
#if HAS_SERVO_ENDSTOPS
@ -1811,7 +1808,7 @@ static void setup_for_endstop_move() {
}
#endif
raise_z_after_probing(); // this also updates current_position
st_synchronize();
stepper.synchronize();
}
#endif
@ -1861,7 +1858,7 @@ static void setup_for_endstop_move() {
destination[Y_AXIS] = 0;
prepare_move_raw(); // this will also set_current_to_destination
st_synchronize();
stepper.synchronize();
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
@ -1881,10 +1878,10 @@ static void setup_for_endstop_move() {
#endif // Z_PROBE_ALLEN_KEY
#if ENABLED(FIX_MOUNTED_PROBE)
// Nothing to do here. Just clear z_probe_is_active
// Nothing to do here. Just clear endstops.z_probe_enabled
#endif
z_probe_is_active = false;
endstops.enable_z_probe(false);
}
#endif // HAS_Z_MIN_PROBE
@ -2081,13 +2078,13 @@ static void setup_for_endstop_move() {
}
#endif
if (z_probe_is_active == dock) return;
if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
axis_unhomed_error();
return;
}
if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
float oldXpos = current_position[X_AXIS]; // save x position
if (dock) {
#if Z_RAISE_AFTER_PROBING > 0
@ -2105,7 +2102,7 @@ static void setup_for_endstop_move() {
}
do_blocking_move_to_x(oldXpos); // return to position before docking
z_probe_is_active = dock;
endstops.enable_z_probe(!dock); // logically disable docked probe
}
#endif // Z_PROBE_SLED
@ -2167,39 +2164,39 @@ static void homeaxis(AxisEnum axis) {
// Engage an X or Y Servo endstop if enabled
if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
if (_Z_PROBE_SUBTEST) endstops.z_probe_enabled = true;
}
#endif
// Set a flag for Z motor locking
#if ENABLED(Z_DUAL_ENDSTOPS)
if (axis == Z_AXIS) In_Homing_Process(true);
if (axis == Z_AXIS) stepper.set_homing_flag(true);
#endif
// Move towards the endstop until an endstop is triggered
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
feedrate = homing_feedrate[axis];
line_to_destination();
st_synchronize();
stepper.synchronize();
// Set the axis position as setup for the move
current_position[axis] = 0;
sync_plan_position();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
#endif
enable_endstops(false); // Disable endstops while moving away
endstops.enable(false); // Disable endstops while moving away
// Move away from the endstop by the axis HOME_BUMP_MM
destination[axis] = -home_bump_mm(axis) * axis_home_dir;
line_to_destination();
st_synchronize();
stepper.synchronize();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
#endif
enable_endstops(true); // Enable endstops for next homing move
endstops.enable(true); // Enable endstops for next homing move
// Slow down the feedrate for the next move
set_homing_bump_feedrate(axis);
@ -2207,7 +2204,7 @@ static void homeaxis(AxisEnum axis) {
// Move slowly towards the endstop until triggered
destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
line_to_destination();
st_synchronize();
stepper.synchronize();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
@ -2224,17 +2221,17 @@ static void homeaxis(AxisEnum axis) {
else
lockZ1 = (z_endstop_adj < 0);
if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
sync_plan_position();
// Move to the adjusted endstop height
feedrate = homing_feedrate[axis];
destination[Z_AXIS] = adj;
line_to_destination();
st_synchronize();
stepper.synchronize();
if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
In_Homing_Process(false);
if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
stepper.set_homing_flag(false);
} // Z_AXIS
#endif
@ -2242,9 +2239,9 @@ static void homeaxis(AxisEnum axis) {
// retrace by the amount specified in endstop_adj
if (endstop_adj[axis] * axis_home_dir < 0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
#endif
enable_endstops(false); // Disable endstops while moving away
endstops.enable(false); // Disable endstops while moving away
sync_plan_position();
destination[axis] = endstop_adj[axis];
#if ENABLED(DEBUG_LEVELING_FEATURE)
@ -2254,11 +2251,11 @@ static void homeaxis(AxisEnum axis) {
}
#endif
line_to_destination();
st_synchronize();
stepper.synchronize();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
#endif
enable_endstops(true); // Enable endstops for next homing move
endstops.enable(true); // Enable endstops for next homing move
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
else {
@ -2280,7 +2277,7 @@ static void homeaxis(AxisEnum axis) {
destination[axis] = current_position[axis];
feedrate = 0.0;
endstops_hit_on_purpose(); // clear endstop hit flags
endstops.hit_on_purpose(); // clear endstop hit flags
axis_known_position[axis] = true;
axis_homed[axis] = true;
@ -2301,7 +2298,7 @@ static void homeaxis(AxisEnum axis) {
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
#endif
servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
if (_Z_PROBE_SUBTEST) endstops.enable_z_probe(false);
}
#endif
@ -2499,7 +2496,7 @@ inline void gcode_G4() {
if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait
st_synchronize();
stepper.synchronize();
refresh_cmd_timeout();
codenum += previous_cmd_ms; // keep track of when we started waiting
@ -2551,7 +2548,7 @@ inline void gcode_G28() {
#endif
// Wait for planner moves to finish!
st_synchronize();
stepper.synchronize();
// For auto bed leveling, clear the level matrix
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
@ -2594,8 +2591,8 @@ inline void gcode_G28() {
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
feedrate = 1.732 * homing_feedrate[X_AXIS];
line_to_destination();
st_synchronize();
endstops_hit_on_purpose(); // clear endstop hit flags
stepper.synchronize();
endstops.hit_on_purpose(); // clear endstop hit flags
// Destination reached
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
@ -2643,7 +2640,7 @@ inline void gcode_G28() {
}
#endif
line_to_destination();
st_synchronize();
stepper.synchronize();
/**
* Update the current Z position even if it currently not real from
@ -2676,7 +2673,7 @@ inline void gcode_G28() {
destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
line_to_destination();
st_synchronize();
stepper.synchronize();
set_axis_is_at_home(X_AXIS);
set_axis_is_at_home(Y_AXIS);
@ -2690,8 +2687,8 @@ inline void gcode_G28() {
destination[Y_AXIS] = current_position[Y_AXIS];
line_to_destination();
feedrate = 0.0;
st_synchronize();
endstops_hit_on_purpose(); // clear endstop hit flags
stepper.synchronize();
endstops.hit_on_purpose(); // clear endstop hit flags
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
@ -2784,7 +2781,7 @@ inline void gcode_G28() {
// Move in the XY plane
line_to_destination();
st_synchronize();
stepper.synchronize();
/**
* Update the current positions for XY, Z is still at least at
@ -2857,10 +2854,10 @@ inline void gcode_G28() {
#endif
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
enable_endstops(false);
endstops.enable(false);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING endstops.enable(false)");
}
#endif
#endif
@ -2875,7 +2872,7 @@ inline void gcode_G28() {
set_destination_to_current();
feedrate = homing_feedrate[Z_AXIS];
line_to_destination();
st_synchronize();
stepper.synchronize();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
#endif
@ -2885,7 +2882,7 @@ inline void gcode_G28() {
feedrate = saved_feedrate;
feedrate_multiplier = saved_feedrate_multiplier;
refresh_cmd_timeout();
endstops_hit_on_purpose(); // clear endstop hit flags
endstops.hit_on_purpose(); // clear endstop hit flags
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
@ -2921,7 +2918,7 @@ inline void gcode_G28() {
#endif
feedrate = saved_feedrate;
st_synchronize();
stepper.synchronize();
}
/**
@ -3015,7 +3012,7 @@ inline void gcode_G28() {
#endif
;
line_to_current_position();
st_synchronize();
stepper.synchronize();
// After recording the last point, activate the mbl and home
SERIAL_PROTOCOLLNPGM("Mesh probing done.");
@ -3240,7 +3237,7 @@ inline void gcode_G28() {
deploy_z_probe();
#endif
st_synchronize();
stepper.synchronize();
setup_for_endstop_move();
@ -3511,7 +3508,7 @@ inline void gcode_G28() {
float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
z_tmp = current_position[Z_AXIS],
real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
real_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
@ -3588,9 +3585,9 @@ inline void gcode_G28() {
#endif
enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
#if ENABLED(HAS_Z_MIN_PROBE)
z_probe_is_active = false;
endstops.enable_z_probe(false);
#endif
st_synchronize();
stepper.synchronize();
#endif
KEEPALIVE_STATE(IN_HANDLER);
@ -3615,7 +3612,7 @@ inline void gcode_G28() {
#endif
deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
st_synchronize();
stepper.synchronize();
// TODO: clear the leveling matrix or the planner will be set incorrectly
setup_for_endstop_move(); // Too late. Must be done before deploying.
@ -3650,7 +3647,7 @@ inline void gcode_G28() {
inline void gcode_G92() {
bool didE = code_seen(axis_codes[E_AXIS]);
if (!didE) st_synchronize();
if (!didE) stepper.synchronize();
bool didXYZ = false;
for (int i = 0; i < NUM_AXIS; i++) {
@ -3712,7 +3709,7 @@ inline void gcode_G92() {
}
lcd_ignore_click();
st_synchronize();
stepper.synchronize();
refresh_cmd_timeout();
if (codenum > 0) {
codenum += previous_cmd_ms; // wait until this time for a click
@ -3853,7 +3850,7 @@ inline void gcode_M31() {
*/
inline void gcode_M32() {
if (card.sdprinting)
st_synchronize();
stepper.synchronize();
char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
if (!namestartpos)
@ -4819,7 +4816,7 @@ inline void gcode_M140() {
*/
inline void gcode_M81() {
disable_all_heaters();
finishAndDisableSteppers();
stepper.finish_and_disable();
#if FAN_COUNT > 0
#if FAN_COUNT > 1
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
@ -4829,7 +4826,7 @@ inline void gcode_M81() {
#endif
delay(1000); // Wait 1 second before switching off
#if HAS_SUICIDE
st_synchronize();
stepper.synchronize();
suicide();
#elif HAS_POWER_SWITCH
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
@ -4864,10 +4861,10 @@ inline void gcode_M18_M84() {
else {
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
if (all_axis) {
finishAndDisableSteppers();
stepper.finish_and_disable();
}
else {
st_synchronize();
stepper.synchronize();
if (code_seen('X')) disable_x();
if (code_seen('Y')) disable_y();
if (code_seen('Z')) disable_z();
@ -4927,35 +4924,7 @@ static void report_current_position() {
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL(current_position[E_AXIS]);
CRITICAL_SECTION_START;
extern volatile long count_position[NUM_AXIS];
long xpos = count_position[X_AXIS],
ypos = count_position[Y_AXIS],
zpos = count_position[Z_AXIS];
CRITICAL_SECTION_END;
#if ENABLED(COREXY) || ENABLED(COREXZ)
SERIAL_PROTOCOLPGM(MSG_COUNT_A);
#else
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
#endif
SERIAL_PROTOCOL(xpos);
#if ENABLED(COREXY)
SERIAL_PROTOCOLPGM(" B:");
#else
SERIAL_PROTOCOLPGM(" Y:");
#endif
SERIAL_PROTOCOL(ypos);
#if ENABLED(COREXZ)
SERIAL_PROTOCOLPGM(" C:");
#else
SERIAL_PROTOCOLPGM(" Z:");
#endif
SERIAL_PROTOCOL(zpos);
SERIAL_EOL;
stepper.report_positions();
#if ENABLED(SCARA)
SERIAL_PROTOCOLPGM("SCARA Theta:");
@ -5039,12 +5008,12 @@ inline void gcode_M119() {
/**
* M120: Enable endstops and set non-homing endstop state to "enabled"
*/
inline void gcode_M120() { enable_endstops_globally(true); }
inline void gcode_M120() { endstops.enable_globally(true); }
/**
* M121: Disable endstops and set non-homing endstop state to "disabled"
*/
inline void gcode_M121() { enable_endstops_globally(false); }
inline void gcode_M121() { endstops.enable_globally(false); }
#if ENABLED(BLINKM)
@ -5439,7 +5408,7 @@ inline void gcode_M226() {
if (pin_number > -1) {
int target = LOW;
st_synchronize();
stepper.synchronize();
pinMode(pin_number, INPUT);
@ -5801,7 +5770,7 @@ inline void gcode_M303() {
/**
* M400: Finish all moves
*/
inline void gcode_M400() { st_synchronize(); }
inline void gcode_M400() { stepper.synchronize(); }
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
@ -5887,7 +5856,7 @@ inline void gcode_M400() { st_synchronize(); }
* This will stop the carriages mid-move, so most likely they
* will be out of sync with the stepper position after this.
*/
inline void gcode_M410() { quickStop(); }
inline void gcode_M410() { stepper.quick_stop(); }
#if ENABLED(MESH_BED_LEVELING)
@ -6111,7 +6080,7 @@ inline void gcode_M503() {
RUNPLAN;
//finish moves
st_synchronize();
stepper.synchronize();
//disable extruder steppers so filament can be removed
disable_e0();
disable_e1();
@ -6135,7 +6104,7 @@ inline void gcode_M503() {
current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
destination[E_AXIS] = current_position[E_AXIS];
line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
st_synchronize();
stepper.synchronize();
#endif
} // while(!lcd_clicked)
KEEPALIVE_STATE(IN_HANDLER);
@ -6143,7 +6112,7 @@ inline void gcode_M503() {
#if ENABLED(AUTO_FILAMENT_CHANGE)
current_position[E_AXIS] = 0;
st_synchronize();
stepper.synchronize();
#endif
//return to normal
@ -6198,7 +6167,7 @@ inline void gcode_M503() {
* Note: the X axis should be homed after changing dual x-carriage mode.
*/
inline void gcode_M605() {
st_synchronize();
stepper.synchronize();
if (code_seen('S')) dual_x_carriage_mode = code_value();
switch (dual_x_carriage_mode) {
case DXC_DUPLICATION_MODE:
@ -6375,7 +6344,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
st_synchronize();
stepper.synchronize();
}
// apply Y & Z extruder offset (x offset is already used in determining home pos)
@ -6460,7 +6429,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
} // (tmp_extruder != active_extruder)
#if ENABLED(EXT_SOLENOID)
st_synchronize();
stepper.synchronize();
disable_all_solenoids();
enable_solenoid_on_active_extruder();
#endif // EXT_SOLENOID
@ -7400,7 +7369,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
sync_plan_position();
st_synchronize();
stepper.synchronize();
extruder_duplication_enabled = true;
active_extruder_parked = false;
}
@ -7927,7 +7896,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
destination[E_AXIS] = oldedes;
plan_set_e_position(oldepos);
previous_cmd_ms = ms; // refresh_cmd_timeout()
st_synchronize();
stepper.synchronize();
switch (active_extruder) {
case 0:
E0_ENABLE_WRITE(oldstatus);
@ -8004,7 +7973,7 @@ void kill(const char* lcd_msg) {
if (!filament_ran_out) {
filament_ran_out = true;
enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
st_synchronize();
stepper.synchronize();
}
}

@ -596,7 +596,7 @@ void CardReader::updir() {
}
void CardReader::printingHasFinished() {
st_synchronize();
stepper.synchronize();
if (file_subcall_ctr > 0) { // Heading up to a parent file that called current as a procedure.
file.close();
file_subcall_ctr--;

@ -0,0 +1,317 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* endstops.cpp - A singleton object to manage endstops
*/
#include "Marlin.h"
#include "endstops.h"
#include "stepper.h"
#include "ultralcd.h"
// TEST_ENDSTOP: test the old and the current status of an endstop
#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits & old_endstop_bits, ENDSTOP))
Endstops endstops;
Endstops::Endstops() {
enable_globally(ENABLED(ENDSTOPS_ONLY_FOR_HOMING));
enable(true);
#if ENABLED(HAS_Z_MIN_PROBE)
enable_z_probe(false);
#endif
} // Endstops::Endstops
void Endstops::init() {
#if HAS_X_MIN
SET_INPUT(X_MIN_PIN);
#if ENABLED(ENDSTOPPULLUP_XMIN)
WRITE(X_MIN_PIN,HIGH);
#endif
#endif
#if HAS_Y_MIN
SET_INPUT(Y_MIN_PIN);
#if ENABLED(ENDSTOPPULLUP_YMIN)
WRITE(Y_MIN_PIN,HIGH);
#endif
#endif
#if HAS_Z_MIN
SET_INPUT(Z_MIN_PIN);
#if ENABLED(ENDSTOPPULLUP_ZMIN)
WRITE(Z_MIN_PIN,HIGH);
#endif
#endif
#if HAS_Z2_MIN
SET_INPUT(Z2_MIN_PIN);
#if ENABLED(ENDSTOPPULLUP_ZMIN)
WRITE(Z2_MIN_PIN,HIGH);
#endif
#endif
#if HAS_X_MAX
SET_INPUT(X_MAX_PIN);
#if ENABLED(ENDSTOPPULLUP_XMAX)
WRITE(X_MAX_PIN,HIGH);
#endif
#endif
#if HAS_Y_MAX
SET_INPUT(Y_MAX_PIN);
#if ENABLED(ENDSTOPPULLUP_YMAX)
WRITE(Y_MAX_PIN,HIGH);
#endif
#endif
#if HAS_Z_MAX
SET_INPUT(Z_MAX_PIN);
#if ENABLED(ENDSTOPPULLUP_ZMAX)
WRITE(Z_MAX_PIN,HIGH);
#endif
#endif
#if HAS_Z2_MAX
SET_INPUT(Z2_MAX_PIN);
#if ENABLED(ENDSTOPPULLUP_ZMAX)
WRITE(Z2_MAX_PIN,HIGH);
#endif
#endif
#if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
SET_INPUT(Z_MIN_PROBE_PIN);
#if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
WRITE(Z_MIN_PROBE_PIN,HIGH);
#endif
#endif
} // Endstops::init
void Endstops::report_state() {
if (endstop_hit_bits) {
#if ENABLED(ULTRA_LCD)
char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' ';
#define _SET_STOP_CHAR(A,C) (chr## A = C)
#else
#define _SET_STOP_CHAR(A,C) ;
#endif
#define _ENDSTOP_HIT_ECHO(A,C) do{ \
SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", stepper.triggered_position_mm(A ##_AXIS)); \
_SET_STOP_CHAR(A,C); }while(0)
#define _ENDSTOP_HIT_TEST(A,C) \
if (TEST(endstop_hit_bits, A ##_MIN) || TEST(endstop_hit_bits, A ##_MAX)) \
_ENDSTOP_HIT_ECHO(A,C)
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
_ENDSTOP_HIT_TEST(X, 'X');
_ENDSTOP_HIT_TEST(Y, 'Y');
_ENDSTOP_HIT_TEST(Z, 'Z');
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
#define P_AXIS Z_AXIS
if (TEST(endstop_hit_bits, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P');
#endif
SERIAL_EOL;
#if ENABLED(ULTRA_LCD)
char msg[3 * strlen(MSG_LCD_ENDSTOPS) + 8 + 1]; // Room for a UTF 8 string
sprintf_P(msg, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP);
lcd_setstatus(msg);
#endif
hit_on_purpose();
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
if (abort_on_endstop_hit) {
card.sdprinting = false;
card.closefile();
stepper.quick_stop();
disable_all_heaters(); // switch off all heaters.
}
#endif
}
} // Endstops::report_state
// Check endstops - Called from ISR!
void Endstops::update() {
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
#define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
// UPDATE_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
#define UPDATE_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
// COPY_BIT: copy the value of COPY_BIT to BIT in bits
#define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
#define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && stepper.current_block->steps[_AXIS(AXIS)] > 0) { \
_ENDSTOP_HIT(AXIS); \
stepper.endstop_triggered(_AXIS(AXIS)); \
} \
} while(0)
#if ENABLED(COREXY) || ENABLED(COREXZ)
// Head direction in -X axis for CoreXY and CoreXZ bots.
// If Delta1 == -Delta2, the movement is only in Y or Z axis
if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[CORE_AXIS_2]) || (stepper.motor_direction(A_AXIS) == stepper.motor_direction(CORE_AXIS_2))) {
if (stepper.motor_direction(X_HEAD))
#else
if (stepper.motor_direction(X_AXIS)) // stepping along -X axis (regular Cartesian bot)
#endif
{ // -direction
#if ENABLED(DUAL_X_CARRIAGE)
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR == -1) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR == -1))
#endif
{
#if HAS_X_MIN
UPDATE_ENDSTOP(X, MIN);
#endif
}
}
else { // +direction
#if ENABLED(DUAL_X_CARRIAGE)
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR == 1) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR == 1))
#endif
{
#if HAS_X_MAX
UPDATE_ENDSTOP(X, MAX);
#endif
}
}
#if ENABLED(COREXY) || ENABLED(COREXZ)
}
#endif
#if ENABLED(COREXY)
// Head direction in -Y axis for CoreXY bots.
// If DeltaX == DeltaY, the movement is only in X axis
if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[B_AXIS]) || (stepper.motor_direction(A_AXIS) != stepper.motor_direction(B_AXIS))) {
if (stepper.motor_direction(Y_HEAD))
#else
if (stepper.motor_direction(Y_AXIS)) // -direction
#endif
{ // -direction
#if HAS_Y_MIN
UPDATE_ENDSTOP(Y, MIN);
#endif
}
else { // +direction
#if HAS_Y_MAX
UPDATE_ENDSTOP(Y, MAX);
#endif
}
#if ENABLED(COREXY)
}
#endif
#if ENABLED(COREXZ)
// Head direction in -Z axis for CoreXZ bots.
// If DeltaX == DeltaZ, the movement is only in X axis
if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[C_AXIS]) || (stepper.motor_direction(A_AXIS) != stepper.motor_direction(C_AXIS))) {
if (stepper.motor_direction(Z_HEAD))
#else
if (stepper.motor_direction(Z_AXIS))
#endif
{ // z -direction
#if HAS_Z_MIN
#if ENABLED(Z_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(Z, MIN);
#if HAS_Z2_MIN
UPDATE_ENDSTOP_BIT(Z2, MIN);
#else
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
#endif
byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2
if (z_test && stepper.current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
stepper.endstop_triggered(Z_AXIS);
SBI(endstop_hit_bits, Z_MIN);
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
stepper.kill_current_block();
}
#else // !Z_DUAL_ENDSTOPS
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
if (z_probe_enabled) UPDATE_ENDSTOP(Z, MIN);
#else
UPDATE_ENDSTOP(Z, MIN);
#endif
#endif // !Z_DUAL_ENDSTOPS
#endif // HAS_Z_MIN
#if ENABLED(Z_MIN_PROBE_ENDSTOP) && DISABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
if (z_probe_enabled) {
UPDATE_ENDSTOP(Z, MIN_PROBE);
if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE);
}
#endif
}
else { // z +direction
#if HAS_Z_MAX
#if ENABLED(Z_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(Z, MAX);
#if HAS_Z2_MAX
UPDATE_ENDSTOP_BIT(Z2, MAX);
#else
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
#endif
byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2
if (z_test && stepper.current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
stepper.endstop_triggered(Z_AXIS);
SBI(endstop_hit_bits, Z_MIN);
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
stepper.kill_current_block();
}
#else // !Z_DUAL_ENDSTOPS
UPDATE_ENDSTOP(Z, MAX);
#endif // !Z_DUAL_ENDSTOPS
#endif // Z_MAX_PIN
}
#if ENABLED(COREXZ)
}
#endif
old_endstop_bits = current_endstop_bits;
} // Endstops::update()

@ -0,0 +1,94 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* endstops.h - manages endstops
*/
#ifndef ENDSTOPS_H
#define ENDSTOPS_H
enum EndstopEnum {X_MIN = 0, Y_MIN = 1, Z_MIN = 2, Z_MIN_PROBE = 3, X_MAX = 4, Y_MAX = 5, Z_MAX = 6, Z2_MIN = 7, Z2_MAX = 8};
class Endstops {
public:
volatile char endstop_hit_bits; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
#if ENABLED(Z_DUAL_ENDSTOPS)
uint16_t current_endstop_bits = 0,
old_endstop_bits = 0;
#else
byte current_endstop_bits = 0,
old_endstop_bits = 0;
#endif
bool enabled = true;
bool enabled_globally =
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
false
#else
true
#endif
;
Endstops();
/**
* Initialize the endstop pins
*/
void init();
/**
* Update the endstops bits from the pins
*/
void update();
/**
* Print an error message reporting the position when the endstops were last hit.
*/
void report_state(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered
// Enable / disable endstop checking globally
FORCE_INLINE void enable_globally(bool onoff=true) { enabled_globally = enabled = onoff; }
// Enable / disable endstop checking
FORCE_INLINE void enable(bool onoff=true) { enabled = onoff; }
// Disable / Enable endstops based on ENSTOPS_ONLY_FOR_HOMING and global enable
FORCE_INLINE void not_homing() { enabled = enabled_globally; }
// Clear endstops (i.e., they were hit intentionally) to suppress the report
FORCE_INLINE void hit_on_purpose() { endstop_hit_bits = 0; }
// Enable / disable endstop z-probe checking
#if ENABLED(HAS_Z_MIN_PROBE)
volatile bool z_probe_enabled = false;
FORCE_INLINE void enable_z_probe(bool onoff=true) { z_probe_enabled = onoff; }
#endif
};
extern Endstops endstops;
#endif // ENDSTOPS_H

@ -1085,7 +1085,7 @@ float junction_deviation = 0.1;
planner_recalculate();
st_wake_up();
stepper.wake_up();
} // plan_buffer_line()
@ -1097,7 +1097,7 @@ float junction_deviation = 0.1;
* On CORE machines XYZ is derived from ABC.
*/
vector_3 plan_get_position() {
vector_3 position = vector_3(st_get_axis_position_mm(X_AXIS), st_get_axis_position_mm(Y_AXIS), st_get_axis_position_mm(Z_AXIS));
vector_3 position = vector_3(stepper.get_axis_position_mm(X_AXIS), stepper.get_axis_position_mm(Y_AXIS), stepper.get_axis_position_mm(Z_AXIS));
//position.debug("in plan_get position");
//plan_bed_level_matrix.debug("in plan_get_position");
@ -1132,7 +1132,7 @@ float junction_deviation = 0.1;
ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]),
nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]),
ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
st_set_position(nx, ny, nz, ne);
stepper.set_position(nx, ny, nz, ne);
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
@ -1140,7 +1140,7 @@ float junction_deviation = 0.1;
void plan_set_e_position(const float& e) {
position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
st_set_e_position(position[E_AXIS]);
stepper.set_e_position(position[E_AXIS]);
}
// Calculate the steps/s^2 acceleration rates, based on the mm/s^s

@ -21,7 +21,7 @@
*/
/**
* stepper.cpp - stepper motor driver: executes motion plans using stepper motors
* stepper.cpp - A singleton object to execute motion plans using stepper motors
* Marlin Firmware
*
* Derived from Grbl
@ -46,6 +46,7 @@
#include "Marlin.h"
#include "stepper.h"
#include "endstops.h"
#include "planner.h"
#include "temperature.h"
#include "ultralcd.h"
@ -57,85 +58,7 @@
#include <SPI.h>
#endif
//===========================================================================
//============================= public variables ============================
//===========================================================================
block_t* current_block; // A pointer to the block currently being traced
#if ENABLED(HAS_Z_MIN_PROBE)
volatile bool z_probe_is_active = false;
#endif
//===========================================================================
//============================= private variables ===========================
//===========================================================================
//static makes it impossible to be called from outside of this file by extern.!
// Variables used by The Stepper Driver Interrupt
static unsigned char out_bits = 0; // The next stepping-bits to be output
static unsigned int cleaning_buffer_counter;
#if ENABLED(Z_DUAL_ENDSTOPS)
static bool performing_homing = false,
locked_z_motor = false,
locked_z2_motor = false;
#endif
// Counter variables for the Bresenham line tracer
static long counter_x, counter_y, counter_z, counter_e;
volatile static unsigned long step_events_completed; // The number of step events executed in the current block
#if ENABLED(ADVANCE)
static long advance_rate, advance, final_advance = 0;
static long old_advance = 0;
static long e_steps[4];
#endif
static long acceleration_time, deceleration_time;
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static unsigned short acc_step_rate; // needed for deceleration start point
static uint8_t step_loops;
static uint8_t step_loops_nominal;
static unsigned short OCR1A_nominal;
volatile long endstops_trigsteps[3] = { 0 };
volatile long endstops_stepsTotal, endstops_stepsDone;
static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
#if DISABLED(Z_DUAL_ENDSTOPS)
static byte
#else
static uint16_t
#endif
old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_MIN_PROBE, Z2_MIN, Z2_MAX
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
bool abort_on_endstop_hit = false;
#endif
#if HAS_MOTOR_CURRENT_PWM
#ifndef PWM_MOTOR_CURRENT
#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
#endif
const int motor_current_setting[3] = PWM_MOTOR_CURRENT;
#endif
static bool check_endstops = true;
static bool check_endstops_global =
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
false
#else
true
#endif
;
volatile long count_position[NUM_AXIS] = { 0 }; // Positions of stepper motors, in step units
volatile signed char count_direction[NUM_AXIS] = { 1 };
//===========================================================================
//================================ functions ================================
//===========================================================================
Stepper stepper; // Singleton
#if ENABLED(DUAL_X_CARRIAGE)
#define X_APPLY_DIR(v,ALWAYS) \
@ -173,12 +96,12 @@ volatile signed char count_direction[NUM_AXIS] = { 1 };
#define Z_APPLY_STEP(v,Q) \
if (performing_homing) { \
if (Z_HOME_DIR > 0) {\
if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
} \
else { \
if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
} \
} \
else { \
@ -195,31 +118,6 @@ volatile signed char count_direction[NUM_AXIS] = { 1 };
#define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r0 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (charIn1), \
"d" (intIn2) \
: \
"r26" \
)
// intRes = longIn1 * longIn2 >> 24
// uses:
// r26 to store 0
@ -281,312 +179,38 @@ volatile signed char count_direction[NUM_AXIS] = { 1 };
#define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
void enable_endstops(bool check) { check_endstops = check; }
void enable_endstops_globally(bool check) { check_endstops_global = check_endstops = check; }
void endstops_not_homing() { check_endstops = check_endstops_global; }
void endstops_hit_on_purpose() { endstop_hit_bits = 0; }
void checkHitEndstops() {
if (endstop_hit_bits) {
#if ENABLED(ULTRA_LCD)
char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' ';
#define _SET_STOP_CHAR(A,C) (chr## A = C)
#else
#define _SET_STOP_CHAR(A,C) ;
#endif
#define _ENDSTOP_HIT_ECHO(A,C) do{ \
SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", endstops_trigsteps[A ##_AXIS] / axis_steps_per_unit[A ##_AXIS]); \
_SET_STOP_CHAR(A,C); }while(0)
#define _ENDSTOP_HIT_TEST(A,C) \
if (TEST(endstop_hit_bits, A ##_MIN) || TEST(endstop_hit_bits, A ##_MAX)) \
_ENDSTOP_HIT_ECHO(A,C)
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
_ENDSTOP_HIT_TEST(X, 'X');
_ENDSTOP_HIT_TEST(Y, 'Y');
_ENDSTOP_HIT_TEST(Z, 'Z');
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
#define P_AXIS Z_AXIS
if (TEST(endstop_hit_bits, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P');
#endif
SERIAL_EOL;
#if ENABLED(ULTRA_LCD)
char msg[3 * strlen(MSG_LCD_ENDSTOPS) + 8 + 1]; // Room for a UTF 8 string
sprintf_P(msg, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP);
lcd_setstatus(msg);
#endif
endstops_hit_on_purpose();
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
if (abort_on_endstop_hit) {
card.sdprinting = false;
card.closefile();
quickStop();
disable_all_heaters(); // switch off all heaters.
}
#endif
}
}
// Check endstops - Called from ISR!
inline void update_endstops() {
#if ENABLED(Z_DUAL_ENDSTOPS)
uint16_t
#else
byte
#endif
current_endstop_bits = 0;
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
#define _AXIS(AXIS) AXIS ##_AXIS
#define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
// SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
#define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
// COPY_BIT: copy the value of COPY_BIT to BIT in bits
#define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
// TEST_ENDSTOP: test the old and the current status of an endstop
#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
#if ENABLED(COREXY) || ENABLED(COREXZ)
#define _SET_TRIGSTEPS(AXIS) do { \
float axis_pos = count_position[_AXIS(AXIS)]; \
if (_AXIS(AXIS) == A_AXIS) \
axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2; \
else if (_AXIS(AXIS) == CORE_AXIS_2) \
axis_pos = (count_position[A_AXIS] - axis_pos) / 2; \
endstops_trigsteps[_AXIS(AXIS)] = axis_pos; \
} while(0)
#else
#define _SET_TRIGSTEPS(AXIS) endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]
#endif // COREXY || COREXZ
#define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
SET_ENDSTOP_BIT(AXIS, MINMAX); \
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && current_block->steps[_AXIS(AXIS)] > 0) { \
_SET_TRIGSTEPS(AXIS); \
_ENDSTOP_HIT(AXIS); \
step_events_completed = current_block->step_event_count; \
} \
} while(0)
#if ENABLED(COREXY) || ENABLED(COREXZ)
// Head direction in -X axis for CoreXY and CoreXZ bots.
// If Delta1 == -Delta2, the movement is only in Y or Z axis
if ((current_block->steps[A_AXIS] != current_block->steps[CORE_AXIS_2]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, CORE_AXIS_2))) {
if (TEST(out_bits, X_HEAD))
#else
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
#endif
{ // -direction
#if ENABLED(DUAL_X_CARRIAGE)
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
#endif
{
#if HAS_X_MIN
UPDATE_ENDSTOP(X, MIN);
#endif
}
}
else { // +direction
#if ENABLED(DUAL_X_CARRIAGE)
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
#endif
{
#if HAS_X_MAX
UPDATE_ENDSTOP(X, MAX);
#endif
}
}
#if ENABLED(COREXY) || ENABLED(COREXZ)
}
#endif
#if ENABLED(COREXY)
// Head direction in -Y axis for CoreXY bots.
// If DeltaX == DeltaY, the movement is only in X axis
if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
if (TEST(out_bits, Y_HEAD))
#else
if (TEST(out_bits, Y_AXIS)) // -direction
#endif
{ // -direction
#if HAS_Y_MIN
UPDATE_ENDSTOP(Y, MIN);
#endif
}
else { // +direction
#if HAS_Y_MAX
UPDATE_ENDSTOP(Y, MAX);
#endif
}
#if ENABLED(COREXY)
}
#endif
#if ENABLED(COREXZ)
// Head direction in -Z axis for CoreXZ bots.
// If DeltaX == DeltaZ, the movement is only in X axis
if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
if (TEST(out_bits, Z_HEAD))
#else
if (TEST(out_bits, Z_AXIS))
#endif
{ // z -direction
#if HAS_Z_MIN
#if ENABLED(Z_DUAL_ENDSTOPS)
SET_ENDSTOP_BIT(Z, MIN);
#if HAS_Z2_MIN
SET_ENDSTOP_BIT(Z2, MIN);
#else
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
#endif
byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2
if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
SBI(endstop_hit_bits, Z_MIN);
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
step_events_completed = current_block->step_event_count;
}
#else // !Z_DUAL_ENDSTOPS
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
if (z_probe_is_active) UPDATE_ENDSTOP(Z, MIN);
#else
UPDATE_ENDSTOP(Z, MIN);
#endif
#endif // !Z_DUAL_ENDSTOPS
#endif
#if ENABLED(Z_MIN_PROBE_ENDSTOP) && DISABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
if (z_probe_is_active) {
UPDATE_ENDSTOP(Z, MIN_PROBE);
if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE);
}
#endif
}
else { // z +direction
#if HAS_Z_MAX
#if ENABLED(Z_DUAL_ENDSTOPS)
SET_ENDSTOP_BIT(Z, MAX);
#if HAS_Z2_MAX
SET_ENDSTOP_BIT(Z2, MAX);
#else
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
#endif
byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2
if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
SBI(endstop_hit_bits, Z_MIN);
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
step_events_completed = current_block->step_event_count;
}
#else // !Z_DUAL_ENDSTOPS
UPDATE_ENDSTOP(Z, MAX);
#endif // !Z_DUAL_ENDSTOPS
#endif // Z_MAX_PIN
}
#if ENABLED(COREXZ)
}
#endif
old_endstop_bits = current_endstop_bits;
}
// __________________________
// /| |\ _________________ ^
// / | | \ /| |\ |
// / | | \ / | | \ s
// / | | | | | \ p
// / | | | | | \ e
// +-----+------------------------+---+--+---------------+----+ e
// | BLOCK 1 | BLOCK 2 | d
//
// time ----->
//
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
// The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
void st_wake_up() {
/**
* __________________________
* /| |\ _________________ ^
* / | | \ /| |\ |
* / | | \ / | | \ s
* / | | | | | \ p
* / | | | | | \ e
* +-----+------------------------+---+--+---------------+----+ e
* | BLOCK 1 | BLOCK 2 | d
*
* time ----->
*
* The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
* first block->accelerate_until step_events_completed, then keeps going at constant speed until
* step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
* The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
*/
void Stepper::wake_up() {
// TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
unsigned short timer;
NOMORE(step_rate, MAX_STEP_FREQUENCY);
if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
step_rate = (step_rate >> 2) & 0x3fff;
step_loops = 4;
}
else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
step_rate = (step_rate >> 1) & 0x7fff;
step_loops = 2;
}
else {
step_loops = 1;
}
NOLESS(step_rate, F_CPU / 500000);
step_rate -= F_CPU / 500000; // Correct for minimal speed
if (step_rate >= (8 * 256)) { // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
MultiU16X8toH16(timer, tmp_step_rate, gain);
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
}
else { // lower step rates
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
table_address += ((step_rate) >> 1) & 0xfffc;
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
}
if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
return timer;
}
/**
* Set the stepper direction of each axis
*
* X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
* X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
*/
void set_stepper_direction() {
void Stepper::set_directions() {
#define SET_STEP_DIR(AXIS) \
if (TEST(out_bits, AXIS ##_AXIS)) { \
if (motor_direction(AXIS ##_AXIS)) { \
AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
count_direction[AXIS ##_AXIS] = -1; \
} \
@ -600,7 +224,7 @@ void set_stepper_direction() {
SET_STEP_DIR(Z); // C
#if DISABLED(ADVANCE)
if (TEST(out_bits, E_AXIS)) {
if (motor_direction(E_AXIS)) {
REV_E_DIR();
count_direction[E_AXIS] = -1;
}
@ -611,49 +235,11 @@ void set_stepper_direction() {
#endif //!ADVANCE
}
// Initializes the trapezoid generator from the current block. Called whenever a new
// block begins.
FORCE_INLINE void trapezoid_generator_reset() {
static int8_t last_extruder = -1;
if (current_block->direction_bits != out_bits || current_block->active_extruder != last_extruder) {
out_bits = current_block->direction_bits;
last_extruder = current_block->active_extruder;
set_stepper_direction();
}
#if ENABLED(ADVANCE)
advance = current_block->initial_advance;
final_advance = current_block->final_advance;
// Do E steps + advance steps
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif
deceleration_time = 0;
// step_rate to timer interval
OCR1A_nominal = calc_timer(current_block->nominal_rate);
// make a note of the number of step loops required at nominal speed
step_loops_nominal = step_loops;
acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time;
// SERIAL_ECHO_START;
// SERIAL_ECHOPGM("advance :");
// SERIAL_ECHO(current_block->advance/256.0);
// SERIAL_ECHOPGM("advance rate :");
// SERIAL_ECHO(current_block->advance_rate/256.0);
// SERIAL_ECHOPGM("initial advance :");
// SERIAL_ECHO(current_block->initial_advance/256.0);
// SERIAL_ECHOPGM("final advance :");
// SERIAL_ECHOLN(current_block->final_advance/256.0);
}
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect) {
ISR(TIMER1_COMPA_vect) { stepper.isr(); }
void Stepper::isr() {
if (cleaning_buffer_counter) {
current_block = NULL;
plan_discard_current_block();
@ -672,8 +258,8 @@ ISR(TIMER1_COMPA_vect) {
if (current_block) {
current_block->busy = true;
trapezoid_generator_reset();
counter_x = -(current_block->step_event_count >> 1);
counter_y = counter_z = counter_e = counter_x;
counter_X = -(current_block->step_event_count >> 1);
counter_Y = counter_Z = counter_E = counter_X;
step_events_completed = 0;
#if ENABLED(Z_LATE_ENABLE)
@ -697,9 +283,9 @@ ISR(TIMER1_COMPA_vect) {
// Update endstops state, if enabled
#if ENABLED(HAS_Z_MIN_PROBE)
if (check_endstops || z_probe_is_active) update_endstops();
if (endstops.enabled || endstops.z_probe_enabled) endstops.update();
#else
if (check_endstops) update_endstops();
if (endstops.enabled) endstops.update();
#endif
// Take multiple steps per interrupt (For high speed moves)
@ -709,48 +295,47 @@ ISR(TIMER1_COMPA_vect) {
#endif
#if ENABLED(ADVANCE)
counter_e += current_block->steps[E_AXIS];
if (counter_e > 0) {
counter_e -= current_block->step_event_count;
e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
counter_E += current_block->steps[E_AXIS];
if (counter_E > 0) {
counter_E -= current_block->step_event_count;
e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1;
}
#endif //ADVANCE
#define _COUNTER(axis) counter_## axis
#define _COUNTER(AXIS) counter_## AXIS
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
#define STEP_ADD(axis, AXIS) \
_COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
#define STEP_ADD(AXIS) \
_COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
STEP_ADD(x,X);
STEP_ADD(y,Y);
STEP_ADD(z,Z);
STEP_ADD(X);
STEP_ADD(Y);
STEP_ADD(Z);
#if DISABLED(ADVANCE)
STEP_ADD(e,E);
STEP_ADD(E);
#endif
#define STEP_IF_COUNTER(axis, AXIS) \
if (_COUNTER(axis) > 0) { \
_COUNTER(axis) -= current_block->step_event_count; \
#define STEP_IF_COUNTER(AXIS) \
if (_COUNTER(AXIS) > 0) { \
_COUNTER(AXIS) -= current_block->step_event_count; \
count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
}
STEP_IF_COUNTER(x, X);
STEP_IF_COUNTER(y, Y);
STEP_IF_COUNTER(z, Z);
STEP_IF_COUNTER(X);
STEP_IF_COUNTER(Y);
STEP_IF_COUNTER(Z);
#if DISABLED(ADVANCE)
STEP_IF_COUNTER(e, E);
STEP_IF_COUNTER(E);
#endif
step_events_completed++;
if (step_events_completed >= current_block->step_event_count) break;
}
// Calculate new timer value
unsigned short timer;
unsigned short step_rate;
unsigned short timer, step_rate;
if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
@ -817,10 +402,11 @@ ISR(TIMER1_COMPA_vect) {
}
#if ENABLED(ADVANCE)
unsigned char old_OCR0A;
// Timer interrupt for E. e_steps is set in the main routine;
// Timer 0 is shared with millies
ISR(TIMER0_COMPA_vect) {
ISR(TIMER0_COMPA_vect) { stepper.advance_isr(); }
void Stepper::advance_isr() {
old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
OCR0A = old_OCR0A;
@ -852,9 +438,10 @@ ISR(TIMER1_COMPA_vect) {
#endif
}
}
#endif // ADVANCE
void st_init() {
void Stepper::init() {
digipot_init(); //Initialize Digipot Motor Current
microstep_init(); //Initialize Microstepping Pins
@ -944,70 +531,10 @@ void st_init() {
if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
#endif
//endstops and pullups
#if HAS_X_MIN
SET_INPUT(X_MIN_PIN);
#if ENABLED(ENDSTOPPULLUP_XMIN)
WRITE(X_MIN_PIN,HIGH);
#endif
#endif
#if HAS_Y_MIN
SET_INPUT(Y_MIN_PIN);
#if ENABLED(ENDSTOPPULLUP_YMIN)
WRITE(Y_MIN_PIN,HIGH);
#endif
#endif
#if HAS_Z_MIN
SET_INPUT(Z_MIN_PIN);
#if ENABLED(ENDSTOPPULLUP_ZMIN)
WRITE(Z_MIN_PIN,HIGH);
#endif
#endif
#if HAS_Z2_MIN
SET_INPUT(Z2_MIN_PIN);
#if ENABLED(ENDSTOPPULLUP_ZMIN)
WRITE(Z2_MIN_PIN,HIGH);
#endif
#endif
#if HAS_X_MAX
SET_INPUT(X_MAX_PIN);
#if ENABLED(ENDSTOPPULLUP_XMAX)
WRITE(X_MAX_PIN,HIGH);
#endif
#endif
#if HAS_Y_MAX
SET_INPUT(Y_MAX_PIN);
#if ENABLED(ENDSTOPPULLUP_YMAX)
WRITE(Y_MAX_PIN,HIGH);
#endif
#endif
#if HAS_Z_MAX
SET_INPUT(Z_MAX_PIN);
#if ENABLED(ENDSTOPPULLUP_ZMAX)
WRITE(Z_MAX_PIN,HIGH);
#endif
#endif
#if HAS_Z2_MAX
SET_INPUT(Z2_MAX_PIN);
#if ENABLED(ENDSTOPPULLUP_ZMAX)
WRITE(Z2_MAX_PIN,HIGH);
#endif
#endif
#if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
SET_INPUT(Z_MIN_PROBE_PIN);
#if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
WRITE(Z_MIN_PROBE_PIN,HIGH);
#endif
#endif
//
// Init endstops and pullups here
//
endstops.init();
#define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
@ -1083,17 +610,17 @@ void st_init() {
SBI(TIMSK0, OCIE0A);
#endif //ADVANCE
enable_endstops(true); // Start with endstops active. After homing they can be disabled
endstops.enable(true); // Start with endstops active. After homing they can be disabled
sei();
set_stepper_direction(); // Init directions to out_bits = 0
set_directions(); // Init directions to last_direction_bits = 0
}
/**
* Block until all buffered steps are executed
*/
void st_synchronize() { while (blocks_queued()) idle(); }
void Stepper::synchronize() { while (blocks_queued()) idle(); }
/**
* Set the stepper positions directly in steps
@ -1101,10 +628,10 @@ void st_synchronize() { while (blocks_queued()) idle(); }
* The input is based on the typical per-axis XYZ steps.
* For CORE machines XYZ needs to be translated to ABC.
*
* This allows st_get_axis_position_mm to correctly
* This allows get_axis_position_mm to correctly
* derive the current XYZ position later on.
*/
void st_set_position(const long& x, const long& y, const long& z, const long& e) {
void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
CRITICAL_SECTION_START;
#if ENABLED(COREXY)
@ -1129,7 +656,7 @@ void st_set_position(const long& x, const long& y, const long& z, const long& e)
CRITICAL_SECTION_END;
}
void st_set_e_position(const long& e) {
void Stepper::set_e_position(const long& e) {
CRITICAL_SECTION_START;
count_position[E_AXIS] = e;
CRITICAL_SECTION_END;
@ -1138,7 +665,7 @@ void st_set_e_position(const long& e) {
/**
* Get a stepper's position in steps.
*/
long st_get_position(AxisEnum axis) {
long Stepper::position(AxisEnum axis) {
CRITICAL_SECTION_START;
long count_pos = count_position[axis];
CRITICAL_SECTION_END;
@ -1149,7 +676,7 @@ long st_get_position(AxisEnum axis) {
* Get an axis position according to stepper position(s)
* For CORE machines apply translation from ABC to XYZ.
*/
float st_get_axis_position_mm(AxisEnum axis) {
float Stepper::get_axis_position_mm(AxisEnum axis) {
float axis_steps;
#if ENABLED(COREXY) | ENABLED(COREXZ)
if (axis == X_AXIS || axis == CORE_AXIS_2) {
@ -1162,19 +689,19 @@ float st_get_axis_position_mm(AxisEnum axis) {
axis_steps = (pos1 + ((axis == X_AXIS) ? pos2 : -pos2)) / 2.0f;
}
else
axis_steps = st_get_position(axis);
axis_steps = position(axis);
#else
axis_steps = st_get_position(axis);
axis_steps = position(axis);
#endif
return axis_steps / axis_steps_per_unit[axis];
}
void finishAndDisableSteppers() {
st_synchronize();
void Stepper::finish_and_disable() {
synchronize();
disable_all_steppers();
}
void quickStop() {
void Stepper::quick_stop() {
cleaning_buffer_counter = 5000;
DISABLE_STEPPER_DRIVER_INTERRUPT();
while (blocks_queued()) plan_discard_current_block();
@ -1182,11 +709,62 @@ void quickStop() {
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
void Stepper::endstop_triggered(AxisEnum axis) {
#if ENABLED(COREXY) || ENABLED(COREXZ)
float axis_pos = count_position[axis];
if (axis == A_AXIS)
axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2;
else if (axis == CORE_AXIS_2)
axis_pos = (count_position[A_AXIS] - axis_pos) / 2;
endstops_trigsteps[axis] = axis_pos;
#else // !COREXY && !COREXZ
endstops_trigsteps[axis] = count_position[axis];
#endif // !COREXY && !COREXZ
kill_current_block();
}
void Stepper::report_positions() {
CRITICAL_SECTION_START;
long xpos = count_position[X_AXIS],
ypos = count_position[Y_AXIS],
zpos = count_position[Z_AXIS];
CRITICAL_SECTION_END;
#if ENABLED(COREXY) || ENABLED(COREXZ)
SERIAL_PROTOCOLPGM(MSG_COUNT_A);
#else
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
#endif
SERIAL_PROTOCOL(xpos);
#if ENABLED(COREXY) || ENABLED(COREXZ)
SERIAL_PROTOCOLPGM(" B:");
#else
SERIAL_PROTOCOLPGM(" Y:");
#endif
SERIAL_PROTOCOL(ypos);
#if ENABLED(COREXZ) || ENABLED(COREXZ)
SERIAL_PROTOCOLPGM(" C:");
#else
SERIAL_PROTOCOLPGM(" Z:");
#endif
SERIAL_PROTOCOL(zpos);
SERIAL_EOL;
}
#if ENABLED(BABYSTEPPING)
// MUST ONLY BE CALLED BY AN ISR,
// No other ISR should ever interrupt this!
void babystep(const uint8_t axis, const bool direction) {
void Stepper::babystep(const uint8_t axis, const bool direction) {
#define _ENABLE(axis) enable_## axis()
#define _READ_DIR(AXIS) AXIS ##_DIR_READ
@ -1256,10 +834,14 @@ void quickStop() {
#endif //BABYSTEPPING
/**
* Software-controlled Stepper Motor Current
*/
#if HAS_DIGIPOTSS
// From Arduino DigitalPotControl example
void digitalPotWrite(int address, int value) {
void Stepper::digitalPotWrite(int address, int value) {
digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
SPI.transfer(address); // send in the address and value via SPI:
SPI.transfer(value);
@ -1269,8 +851,7 @@ void quickStop() {
#endif //HAS_DIGIPOTSS
// Initialize Digipot Motor Current
void digipot_init() {
void Stepper::digipot_init() {
#if HAS_DIGIPOTSS
const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
@ -1299,7 +880,7 @@ void digipot_init() {
#endif
}
void digipot_current(uint8_t driver, int current) {
void Stepper::digipot_current(uint8_t driver, int current) {
#if HAS_DIGIPOTSS
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
digitalPotWrite(digipot_ch[driver], current);
@ -1322,7 +903,7 @@ void digipot_current(uint8_t driver, int current) {
#endif
}
void microstep_init() {
void Stepper::microstep_init() {
#if HAS_MICROSTEPS_E1
pinMode(E1_MS1_PIN, OUTPUT);
pinMode(E1_MS2_PIN, OUTPUT);
@ -1343,7 +924,11 @@ void microstep_init() {
#endif
}
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
/**
* Software-controlled Microstepping
*/
void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
if (ms1 >= 0) switch (driver) {
case 0: digitalWrite(X_MS1_PIN, ms1); break;
case 1: digitalWrite(Y_MS1_PIN, ms1); break;
@ -1364,7 +949,7 @@ void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
}
}
void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
switch (stepping_mode) {
case 1: microstep_ms(driver, MICROSTEP1); break;
case 2: microstep_ms(driver, MICROSTEP2); break;
@ -1374,7 +959,7 @@ void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
}
}
void microstep_readings() {
void Stepper::microstep_readings() {
SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
SERIAL_PROTOCOLPGM("X: ");
SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
@ -1396,7 +981,7 @@ void microstep_readings() {
}
#if ENABLED(Z_DUAL_ENDSTOPS)
void In_Homing_Process(bool state) { performing_homing = state; }
void Lock_z_motor(bool state) { locked_z_motor = state; }
void Lock_z2_motor(bool state) { locked_z2_motor = state; }
void Stepper::set_homing_flag(bool state) { performing_homing = state; }
void Stepper::set_z_lock(bool state) { locked_z_motor = state; }
void Stepper::set_z2_lock(bool state) { locked_z2_motor = state; }
#endif

@ -21,90 +21,313 @@
*/
/**
stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
Part of Grbl
* stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
* Part of Grbl
*
* Copyright (c) 2009-2011 Simen Svale Skogsrud
*
* Grbl is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Grbl is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
Copyright (c) 2009-2011 Simen Svale Skogsrud
#ifndef STEPPER_H
#define STEPPER_H
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#include "planner.h"
#include "speed_lookuptable.h"
#include "stepper_indirection.h"
#include "language.h"
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
class Stepper;
extern Stepper stepper;
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r0 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (charIn1), \
"d" (intIn2) \
: \
"r26" \
)
#ifndef stepper_h
#define stepper_h
class Stepper {
#include "planner.h"
#include "stepper_indirection.h"
public:
block_t* current_block = NULL; // A pointer to the block currently being traced
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
bool abort_on_endstop_hit = false;
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
bool performing_homing = false;
#endif
#if ENABLED(ADVANCE)
long e_steps[4];
#endif
private:
unsigned char last_direction_bits = 0; // The next stepping-bits to be output
unsigned int cleaning_buffer_counter = 0;
#if ENABLED(Z_DUAL_ENDSTOPS)
bool locked_z_motor = false,
locked_z2_motor = false;
#endif
// Counter variables for the Bresenham line tracer
long counter_X = 0, counter_Y = 0, counter_Z = 0, counter_E = 0;
volatile unsigned long step_events_completed = 0; // The number of step events executed in the current block
#if ENABLED(ADVANCE)
unsigned char old_OCR0A;
long advance_rate, advance, final_advance = 0;
long old_advance = 0;
#endif
long acceleration_time, deceleration_time;
//unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
unsigned short acc_step_rate; // needed for deceleration start point
uint8_t step_loops;
uint8_t step_loops_nominal;
unsigned short OCR1A_nominal;
volatile long endstops_trigsteps[3];
volatile long endstops_stepsTotal, endstops_stepsDone;
#if HAS_MOTOR_CURRENT_PWM
#ifndef PWM_MOTOR_CURRENT
#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
#endif
const int motor_current_setting[3] = PWM_MOTOR_CURRENT;
#endif
//
// Positions of stepper motors, in step units
//
volatile long count_position[NUM_AXIS] = { 0 };
//
// Current direction of stepper motors (+1 or -1)
//
volatile signed char count_direction[NUM_AXIS] = { 1 };
public:
//
// Constructor / initializer
//
Stepper() {};
//
// Initialize stepper hardware
//
void init();
//
// Interrupt Service Routines
//
void isr();
#if ENABLED(ADVANCE)
void advance_isr();
#endif
//
// Block until all buffered steps are executed
//
void synchronize();
//
// Set the current position in steps
//
void set_position(const long& x, const long& y, const long& z, const long& e);
void set_e_position(const long& e);
//
// Set direction bits for all steppers
//
void set_directions();
//
// Get the position of a stepper, in steps
//
long position(AxisEnum axis);
//
// Report the positions of the steppers, in steps
//
void report_positions();
//
// Get the position (mm) of an axis based on stepper position(s)
//
float get_axis_position_mm(AxisEnum axis);
//
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
// to notify the subsystem that it is time to go to work.
//
void wake_up();
//
// Wait for moves to finish and disable all steppers
//
void finish_and_disable();
//
// Quickly stop all steppers and clear the blocks queue
//
void quick_stop();
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
extern bool abort_on_endstop_hit;
#endif
//
// The direction of a single motor
//
FORCE_INLINE bool motor_direction(AxisEnum axis) { return TEST(last_direction_bits, axis); }
// Initialize and start the stepper motor subsystem
void st_init();
#if HAS_DIGIPOTSS
void digitalPotWrite(int address, int value);
#endif
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2);
void digipot_current(uint8_t driver, int current);
void microstep_readings();
// Block until all buffered steps are executed
void st_synchronize();
#if ENABLED(Z_DUAL_ENDSTOPS)
void set_homing_flag(bool state);
void set_z_lock(bool state);
void set_z2_lock(bool state);
#endif
// Set current position in steps
void st_set_position(const long& x, const long& y, const long& z, const long& e);
void st_set_e_position(const long& e);
#if ENABLED(BABYSTEPPING)
void babystep(const uint8_t axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
#endif
// Get current position in steps
long st_get_position(AxisEnum axis);
inline void kill_current_block() {
step_events_completed = current_block->step_event_count;
}
// Get current axis position in mm
float st_get_axis_position_mm(AxisEnum axis);
//
// Handle a triggered endstop
//
void endstop_triggered(AxisEnum axis);
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
// to notify the subsystem that it is time to go to work.
void st_wake_up();
//
// Triggered position of an axis in mm (not core-savvy)
//
FORCE_INLINE float triggered_position_mm(AxisEnum axis) {
return endstops_trigsteps[axis] / axis_steps_per_unit[axis];
}
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
unsigned short timer;
void checkHitEndstops(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered
void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homing and before a routine call of checkHitEndstops();
NOMORE(step_rate, MAX_STEP_FREQUENCY);
void enable_endstops(bool check); // Enable/disable endstop checking
if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
step_rate = (step_rate >> 2) & 0x3fff;
step_loops = 4;
}
else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
step_rate = (step_rate >> 1) & 0x7fff;
step_loops = 2;
}
else {
step_loops = 1;
}
void enable_endstops_globally(bool check);
void endstops_not_homing();
NOLESS(step_rate, F_CPU / 500000);
step_rate -= F_CPU / 500000; // Correct for minimal speed
if (step_rate >= (8 * 256)) { // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
MultiU16X8toH16(timer, tmp_step_rate, gain);
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
}
else { // lower step rates
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
table_address += ((step_rate) >> 1) & 0xfffc;
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
}
if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
return timer;
}
void checkStepperErrors(); //Print errors detected by the stepper
// Initializes the trapezoid generator from the current block. Called whenever a new
// block begins.
FORCE_INLINE void trapezoid_generator_reset() {
void finishAndDisableSteppers();
static int8_t last_extruder = -1;
extern block_t* current_block; // A pointer to the block currently being traced
if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) {
last_direction_bits = current_block->direction_bits;
last_extruder = current_block->active_extruder;
set_directions();
}
void quickStop();
#if ENABLED(ADVANCE)
advance = current_block->initial_advance;
final_advance = current_block->final_advance;
// Do E steps + advance steps
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif
deceleration_time = 0;
// step_rate to timer interval
OCR1A_nominal = calc_timer(current_block->nominal_rate);
// make a note of the number of step loops required at nominal speed
step_loops_nominal = step_loops;
acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time;
#if HAS_DIGIPOTSS
void digitalPotWrite(int address, int value);
#endif
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2);
void microstep_mode(uint8_t driver, uint8_t stepping);
void digipot_init();
void digipot_current(uint8_t driver, int current);
void microstep_init();
void microstep_readings();
// SERIAL_ECHO_START;
// SERIAL_ECHOPGM("advance :");
// SERIAL_ECHO(current_block->advance/256.0);
// SERIAL_ECHOPGM("advance rate :");
// SERIAL_ECHO(current_block->advance_rate/256.0);
// SERIAL_ECHOPGM("initial advance :");
// SERIAL_ECHO(current_block->initial_advance/256.0);
// SERIAL_ECHOPGM("final advance :");
// SERIAL_ECHOLN(current_block->final_advance/256.0);
}
#if ENABLED(Z_DUAL_ENDSTOPS)
void In_Homing_Process(bool state);
void Lock_z_motor(bool state);
void Lock_z2_motor(bool state);
#endif
private:
void microstep_mode(uint8_t driver, uint8_t stepping);
void digipot_init();
void microstep_init();
#if ENABLED(BABYSTEPPING)
void babystep(const uint8_t axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
#endif
};
#endif
#endif // STEPPER_H

@ -604,7 +604,7 @@ float get_pid_output(int e) {
#if ENABLED(PID_ADD_EXTRUSION_RATE)
cTerm[e] = 0;
if (e == active_extruder) {
long e_position = st_get_position(E_AXIS);
long e_position = stepper.position(E_AXIS);
if (e_position > last_position[e]) {
lpq[lpq_ptr++] = e_position - last_position[e];
last_position[e] = e_position;

@ -476,7 +476,7 @@ inline void line_to_current(AxisEnum axis) {
static void lcd_sdcard_resume() { card.startFileprint(); }
static void lcd_sdcard_stop() {
quickStop();
stepper.quick_stop();
card.sdprinting = false;
card.closefile();
autotempShutdown();
@ -911,7 +911,7 @@ void lcd_cooldown() {
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
line_to_current(Z_AXIS);
#endif
st_synchronize();
stepper.synchronize();
}
static void _lcd_level_goto_next_point();
@ -964,7 +964,7 @@ void lcd_cooldown() {
#endif
;
line_to_current(Z_AXIS);
st_synchronize();
stepper.synchronize();
mbl.active = true;
enqueue_and_echo_commands_P(PSTR("G28"));

Loading…
Cancel
Save