Updates to G29 for probe error handling

master
Scott Lahteine 7 years ago
parent f54e0fc90f
commit 6bd63d27b5

@ -2222,7 +2222,14 @@ static void clean_up_after_endstop_or_probe_move() {
return false;
}
static bool do_probe_move(float z, float fr_mm_m) {
/**
* @brief Used by run_z_probe to do a single Z probe move.
*
* @param z Z destination
* @param fr_mm_s Feedrate in mm/s
* @return true to indicate an error
*/
static bool do_probe_move(const float z, const float fr_mm_m) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
#endif
@ -2241,7 +2248,7 @@ static void clean_up_after_endstop_or_probe_move() {
// Check to see if the probe was triggered
const bool probe_triggered = TEST(Endstops::endstop_hit_bits,
#ifdef Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
Z_MIN
#else
Z_MIN_PROBE
@ -2273,9 +2280,14 @@ static void clean_up_after_endstop_or_probe_move() {
return !probe_triggered;
}
// Do a single Z probe and return with current_position[Z_AXIS]
// at the height where the probe triggered.
static float run_z_probe(bool printable=true) {
/**
* @details Used by probe_pt to do a single Z probe.
* Leaves current_position[Z_AXIS] at the height where the probe triggered.
*
* @param short_move Flag for a shorter probe move towards the bed
* @return The raw Z position where the probe was triggered
*/
static float run_z_probe(const bool short_move=true) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
@ -2313,7 +2325,7 @@ static void clean_up_after_endstop_or_probe_move() {
#endif
// move down slowly to find bed
if (do_probe_move(-10 + (printable ? 0 : -(Z_MAX_LENGTH)), Z_PROBE_SPEED_SLOW)) return NAN;
if (do_probe_move(-10 + (short_move ? 0 : -(Z_MAX_LENGTH)), Z_PROBE_SPEED_SLOW)) return NAN;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
@ -2410,6 +2422,12 @@ static void clean_up_after_endstop_or_probe_move() {
feedrate_mm_s = old_feedrate_mm_s;
if (isnan(measured_z)) {
LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
}
return measured_z;
}
@ -3775,9 +3793,7 @@ inline void gcode_G4() {
// If an endstop was not hit, then damage can occur if homing is continued.
// This can occur if the delta height (DELTA_HEIGHT + home_offset[Z_AXIS]) is
// not set correctly.
if (!(TEST(Endstops::endstop_hit_bits, X_MAX) ||
TEST(Endstops::endstop_hit_bits, Y_MAX) ||
TEST(Endstops::endstop_hit_bits, Z_MAX))) {
if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
@ -4126,20 +4142,6 @@ void home_all_axes() { gcode_G28(true); }
#endif
#if HAS_BED_PROBE
static bool nan_error(const float v) {
const bool is_nan = isnan(v);
if (is_nan) {
LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
}
return is_nan;
}
#endif // HAS_BED_PROBE
#if ENABLED(MESH_BED_LEVELING)
// Save 130 bytes with non-duplication of PSTR
@ -4675,18 +4677,16 @@ void home_all_axes() { gcode_G28(true); }
SYNC_PLAN_POSITION_KINEMATIC();
}
if (!faux) setup_for_endstop_or_probe_move();
//xProbe = yProbe = measured_z = 0;
#if HAS_BED_PROBE
// Deploy the probe. Probe will raise if needed.
if (DEPLOY_PROBE()) {
planner.abl_enabled = abl_should_enable;
goto FAIL;
return;
}
#endif
if (!faux) setup_for_endstop_or_probe_move();
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
#if ENABLED(PROBE_MANUALLY)
@ -4907,7 +4907,7 @@ void home_all_axes() { gcode_G28(true); }
bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
// Outer loop is Y with PROBE_Y_FIRST disabled
for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
int8_t inStart, inStop, inInc;
@ -4944,9 +4944,9 @@ void home_all_axes() { gcode_G28(true); }
measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
if (nan_error(measured_z)) {
if (isnan(measured_z)) {
planner.abl_enabled = abl_should_enable;
goto FAIL;
break;
}
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
@ -4980,14 +4980,14 @@ void home_all_axes() { gcode_G28(true); }
xProbe = LOGICAL_X_POSITION(points[i].x);
yProbe = LOGICAL_Y_POSITION(points[i].y);
measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
if (nan_error(measured_z)) {
if (isnan(measured_z)) {
planner.abl_enabled = abl_should_enable;
goto FAIL;
break;
}
points[i].z = measured_z;
}
if (!dryrun) {
if (!dryrun && !isnan(measured_z)) {
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
if (planeNormal.z < 0) {
planeNormal.x *= -1;
@ -5005,7 +5005,7 @@ void home_all_axes() { gcode_G28(true); }
// Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
if (STOW_PROBE()) {
planner.abl_enabled = abl_should_enable;
goto FAIL;
measured_z = NAN;
}
}
#endif // !PROBE_MANUALLY
@ -5032,114 +5032,91 @@ void home_all_axes() { gcode_G28(true); }
#endif
// Calculate leveling, print reports, correct the position
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (!isnan(measured_z)) {
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (!dryrun) extrapolate_unprobed_bed_level();
print_bilinear_leveling_grid();
if (!dryrun) extrapolate_unprobed_bed_level();
print_bilinear_leveling_grid();
refresh_bed_level();
refresh_bed_level();
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
bed_level_virt_print();
#endif
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
bed_level_virt_print();
#endif
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
// For LINEAR leveling calculate matrix, print reports, correct the position
// For LINEAR leveling calculate matrix, print reports, correct the position
/**
* solve the plane equation ax + by + d = z
* A is the matrix with rows [x y 1] for all the probed points
* B is the vector of the Z positions
* the normal vector to the plane is formed by the coefficients of the
* plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
* so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
*/
float plane_equation_coefficients[3];
finish_incremental_LSF(&lsf_results);
plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
plane_equation_coefficients[2] = -lsf_results.D;
mean /= abl2;
if (verbose_level) {
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
SERIAL_PROTOCOLPGM(" b: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
SERIAL_PROTOCOLPGM(" d: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
SERIAL_EOL();
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
SERIAL_PROTOCOL_F(mean, 8);
/**
* solve the plane equation ax + by + d = z
* A is the matrix with rows [x y 1] for all the probed points
* B is the vector of the Z positions
* the normal vector to the plane is formed by the coefficients of the
* plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
* so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
*/
float plane_equation_coefficients[3];
finish_incremental_LSF(&lsf_results);
plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
plane_equation_coefficients[2] = -lsf_results.D;
mean /= abl2;
if (verbose_level) {
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
SERIAL_PROTOCOLPGM(" b: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
SERIAL_PROTOCOLPGM(" d: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
SERIAL_EOL();
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
SERIAL_PROTOCOL_F(mean, 8);
SERIAL_EOL();
}
}
}
// Create the matrix but don't correct the position yet
if (!dryrun)
planner.bed_level_matrix = matrix_3x3::create_look_at(
vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
);
// Create the matrix but don't correct the position yet
if (!dryrun)
planner.bed_level_matrix = matrix_3x3::create_look_at(
vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
);
// Show the Topography map if enabled
if (do_topography_map) {
SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
" +--- BACK --+\n"
" | |\n"
" L | (+) | R\n"
" E | | I\n"
" F | (-) N (+) | G\n"
" T | | H\n"
" | (-) | T\n"
" | |\n"
" O-- FRONT --+\n"
" (0,0)");
float min_diff = 999;
for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
int ind = indexIntoAB[xx][yy];
float diff = eqnBVector[ind] - mean,
x_tmp = eqnAMatrix[ind + 0 * abl2],
y_tmp = eqnAMatrix[ind + 1 * abl2],
z_tmp = 0;
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
NOMORE(min_diff, eqnBVector[ind] - z_tmp);
if (diff >= 0.0)
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
else
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL_F(diff, 5);
} // xx
SERIAL_EOL();
} // yy
SERIAL_EOL();
// Show the Topography map if enabled
if (do_topography_map) {
if (verbose_level > 3) {
SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
" +--- BACK --+\n"
" | |\n"
" L | (+) | R\n"
" E | | I\n"
" F | (-) N (+) | G\n"
" T | | H\n"
" | (-) | T\n"
" | |\n"
" O-- FRONT --+\n"
" (0,0)");
float min_diff = 999;
for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
int ind = indexIntoAB[xx][yy];
float x_tmp = eqnAMatrix[ind + 0 * abl2],
float diff = eqnBVector[ind] - mean,
x_tmp = eqnAMatrix[ind + 0 * abl2],
y_tmp = eqnAMatrix[ind + 1 * abl2],
z_tmp = 0;
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
float diff = eqnBVector[ind] - z_tmp - min_diff;
NOMORE(min_diff, eqnBVector[ind] - z_tmp);
if (diff >= 0.0)
SERIAL_PROTOCOLPGM(" +");
// Include + for column alignment
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
else
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL_F(diff, 5);
@ -5147,87 +5124,110 @@ void home_all_axes() { gcode_G28(true); }
SERIAL_EOL();
} // yy
SERIAL_EOL();
}
} //do_topography_map
#endif // AUTO_BED_LEVELING_LINEAR
if (verbose_level > 3) {
SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
int ind = indexIntoAB[xx][yy];
float x_tmp = eqnAMatrix[ind + 0 * abl2],
y_tmp = eqnAMatrix[ind + 1 * abl2],
z_tmp = 0;
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
float diff = eqnBVector[ind] - z_tmp - min_diff;
if (diff >= 0.0)
SERIAL_PROTOCOLPGM(" +");
// Include + for column alignment
else
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL_F(diff, 5);
} // xx
SERIAL_EOL();
} // yy
SERIAL_EOL();
}
} //do_topography_map
#if ABL_PLANAR
#endif // AUTO_BED_LEVELING_LINEAR
// For LINEAR and 3POINT leveling correct the current position
#if ABL_PLANAR
if (verbose_level > 0)
planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
// For LINEAR and 3POINT leveling correct the current position
if (!dryrun) {
//
// Correct the current XYZ position based on the tilted plane.
//
if (verbose_level > 0)
planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
#endif
if (!dryrun) {
//
// Correct the current XYZ position based on the tilted plane.
//
float converted[XYZ];
COPY(converted, current_position);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
#endif
planner.abl_enabled = true;
planner.unapply_leveling(converted); // use conversion machinery
planner.abl_enabled = false;
float converted[XYZ];
COPY(converted, current_position);
planner.abl_enabled = true;
planner.unapply_leveling(converted); // use conversion machinery
planner.abl_enabled = false;
// Use the last measured distance to the bed, if possible
if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
&& NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
) {
const float simple_z = current_position[Z_AXIS] - measured_z;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("Z from Probe:", simple_z);
SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
}
#endif
converted[Z_AXIS] = simple_z;
}
// The rotated XY and corrected Z are now current_position
COPY(current_position, converted);
// Use the last measured distance to the bed, if possible
if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
&& NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
) {
const float simple_z = current_position[Z_AXIS] - measured_z;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("Z from Probe:", simple_z);
SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
}
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
#endif
converted[Z_AXIS] = simple_z;
}
// The rotated XY and corrected Z are now current_position
COPY(current_position, converted);
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
#endif
}
if (!dryrun) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
#endif
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Unapply the offset because it is going to be immediately applied
// and cause compensation movement in Z
current_position[Z_AXIS] -= bilinear_z_offset(current_position);
if (!dryrun) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
#endif
}
// Unapply the offset because it is going to be immediately applied
// and cause compensation movement in Z
current_position[Z_AXIS] -= bilinear_z_offset(current_position);
#endif // ABL_PLANAR
#ifdef Z_PROBE_END_SCRIPT
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
#endif
}
#endif // ABL_PLANAR
#ifdef Z_PROBE_END_SCRIPT
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
stepper.synchronize();
#endif
enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
stepper.synchronize();
#endif
// Auto Bed Leveling is complete! Enable if possible.
planner.abl_enabled = dryrun ? abl_should_enable : true;
FAIL:
// Auto Bed Leveling is complete! Enable if possible.
planner.abl_enabled = dryrun ? abl_should_enable : true;
} // !isnan(measured_z)
// Restore state after probing
if (!faux) clean_up_after_endstop_or_probe_move();
@ -5272,7 +5272,7 @@ void home_all_axes() { gcode_G28(true); }
const float measured_z = probe_pt(xpos, ypos, parser.boolval('S', true), 1);
if (!nan_error(measured_z)) {
if (!isnan(measured_z)) {
SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));

Loading…
Cancel
Save