M666 normalize positive values to <=0

M666

+ tower radians absolute value
master
LVD-AC 8 years ago committed by teemuatlut
parent d8102aeca8
commit 7a6a1ef583

@ -5202,7 +5202,7 @@ inline void gcode_G28() {
LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
delta_radius += r_delta;
const float z_temp = MAX3(endstop_adj[0], endstop_adj[1], endstop_adj[2]);
const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
home_offset[Z_AXIS] -= z_temp;
LOOP_XYZ(i) endstop_adj[i] -= z_temp;
@ -7570,6 +7570,10 @@ inline void gcode_M205() {
SERIAL_ECHOLNPGM("<<< gcode_M666");
}
#endif
// normalize endstops so all are <=0; set the residue to delta height
const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
home_offset[Z_AXIS] -= z_temp;
LOOP_XYZ(i) endstop_adj[i] -= z_temp;
}
#elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
@ -10552,10 +10556,10 @@ void ok_to_send() {
void recalc_delta_settings(float radius, float diagonal_rod) {
const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
delta_tower[A_AXIS][X_AXIS] = -cos(RADIANS(30 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
delta_tower[A_AXIS][Y_AXIS] = -sin(RADIANS(30 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(30 - delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
delta_tower[B_AXIS][Y_AXIS] = -sin(RADIANS(30 - delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);

@ -1811,8 +1811,8 @@ void kill_screen(const char* lcd_msg) {
current_position[Z_AXIS] = max(Z_HOMING_HEIGHT, Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5;
line_to_current(Z_AXIS);
current_position[X_AXIS] = a < 0 ? LOGICAL_X_POSITION(X_HOME_POS) : sin(a) * -(delta_calibration_radius);
current_position[Y_AXIS] = a < 0 ? LOGICAL_Y_POSITION(Y_HOME_POS) : cos(a) * (delta_calibration_radius);
current_position[X_AXIS] = a < 0 ? LOGICAL_X_POSITION(X_HOME_POS) : cos(RADIANS(a)) * delta_calibration_radius;
current_position[Y_AXIS] = a < 0 ? LOGICAL_Y_POSITION(Y_HOME_POS) : sin(RADIANS(a)) * delta_calibration_radius;
line_to_current(Z_AXIS);
current_position[Z_AXIS] = 4.0;
@ -1824,9 +1824,9 @@ void kill_screen(const char* lcd_msg) {
lcd_goto_screen(lcd_move_z);
}
void _goto_tower_x() { _goto_tower_pos(RADIANS(120)); }
void _goto_tower_y() { _goto_tower_pos(RADIANS(240)); }
void _goto_tower_z() { _goto_tower_pos(0); }
void _goto_tower_x() { _goto_tower_pos(210); }
void _goto_tower_y() { _goto_tower_pos(330); }
void _goto_tower_z() { _goto_tower_pos(90); }
void _goto_center() { _goto_tower_pos(-1); }
void lcd_delta_calibrate_menu() {

Loading…
Cancel
Save