|
|
|
@ -191,8 +191,10 @@ void Config_Postprocess() {
|
|
|
|
|
#if ENABLED(EEPROM_SETTINGS)
|
|
|
|
|
|
|
|
|
|
#define DUMMY_PID_VALUE 3000.0f
|
|
|
|
|
#define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value))
|
|
|
|
|
#define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value))
|
|
|
|
|
#define EEPROM_START() int eeprom_index = EEPROM_OFFSET
|
|
|
|
|
#define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
|
|
|
|
|
#define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
|
|
|
|
|
#define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* M500 - Store Configuration
|
|
|
|
@ -200,26 +202,27 @@ void Config_Postprocess() {
|
|
|
|
|
void Config_StoreSettings() {
|
|
|
|
|
float dummy = 0.0f;
|
|
|
|
|
char ver[4] = "000";
|
|
|
|
|
int i = EEPROM_OFFSET;
|
|
|
|
|
|
|
|
|
|
EEPROM_WRITE_VAR(i, ver); // invalidate data first
|
|
|
|
|
i += sizeof(eeprom_checksum); // Skip the checksum slot
|
|
|
|
|
EEPROM_START();
|
|
|
|
|
|
|
|
|
|
EEPROM_WRITE(ver); // invalidate data first
|
|
|
|
|
EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
|
|
|
|
|
|
|
|
|
|
eeprom_checksum = 0; // clear before first "real data"
|
|
|
|
|
|
|
|
|
|
EEPROM_WRITE_VAR(i, planner.axis_steps_per_mm);
|
|
|
|
|
EEPROM_WRITE_VAR(i, planner.max_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE_VAR(i, planner.max_acceleration_mm_per_s2);
|
|
|
|
|
EEPROM_WRITE_VAR(i, planner.acceleration);
|
|
|
|
|
EEPROM_WRITE_VAR(i, planner.retract_acceleration);
|
|
|
|
|
EEPROM_WRITE_VAR(i, planner.travel_acceleration);
|
|
|
|
|
EEPROM_WRITE_VAR(i, planner.min_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE_VAR(i, planner.min_travel_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE_VAR(i, planner.min_segment_time);
|
|
|
|
|
EEPROM_WRITE_VAR(i, planner.max_xy_jerk);
|
|
|
|
|
EEPROM_WRITE_VAR(i, planner.max_z_jerk);
|
|
|
|
|
EEPROM_WRITE_VAR(i, planner.max_e_jerk);
|
|
|
|
|
EEPROM_WRITE_VAR(i, home_offset);
|
|
|
|
|
EEPROM_WRITE(planner.axis_steps_per_mm);
|
|
|
|
|
EEPROM_WRITE(planner.max_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
|
|
|
|
|
EEPROM_WRITE(planner.acceleration);
|
|
|
|
|
EEPROM_WRITE(planner.retract_acceleration);
|
|
|
|
|
EEPROM_WRITE(planner.travel_acceleration);
|
|
|
|
|
EEPROM_WRITE(planner.min_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(planner.min_segment_time);
|
|
|
|
|
EEPROM_WRITE(planner.max_xy_jerk);
|
|
|
|
|
EEPROM_WRITE(planner.max_z_jerk);
|
|
|
|
|
EEPROM_WRITE(planner.max_e_jerk);
|
|
|
|
|
EEPROM_WRITE(home_offset);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
|
// Compile time test that sizeof(mbl.z_values) is as expected
|
|
|
|
@ -227,45 +230,45 @@ void Config_StoreSettings() {
|
|
|
|
|
uint8_t mesh_num_x = MESH_NUM_X_POINTS,
|
|
|
|
|
mesh_num_y = MESH_NUM_Y_POINTS,
|
|
|
|
|
dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
|
|
|
|
|
EEPROM_WRITE_VAR(i, dummy_uint8);
|
|
|
|
|
EEPROM_WRITE_VAR(i, mbl.z_offset);
|
|
|
|
|
EEPROM_WRITE_VAR(i, mesh_num_x);
|
|
|
|
|
EEPROM_WRITE_VAR(i, mesh_num_y);
|
|
|
|
|
EEPROM_WRITE_VAR(i, mbl.z_values);
|
|
|
|
|
EEPROM_WRITE(dummy_uint8);
|
|
|
|
|
EEPROM_WRITE(mbl.z_offset);
|
|
|
|
|
EEPROM_WRITE(mesh_num_x);
|
|
|
|
|
EEPROM_WRITE(mesh_num_y);
|
|
|
|
|
EEPROM_WRITE(mbl.z_values);
|
|
|
|
|
#else
|
|
|
|
|
// For disabled MBL write a default mesh
|
|
|
|
|
uint8_t mesh_num_x = 3,
|
|
|
|
|
mesh_num_y = 3,
|
|
|
|
|
dummy_uint8 = 0;
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
EEPROM_WRITE_VAR(i, dummy_uint8);
|
|
|
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
|
|
|
EEPROM_WRITE_VAR(i, mesh_num_x);
|
|
|
|
|
EEPROM_WRITE_VAR(i, mesh_num_y);
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE_VAR(i, dummy);
|
|
|
|
|
EEPROM_WRITE(dummy_uint8);
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
EEPROM_WRITE(mesh_num_x);
|
|
|
|
|
EEPROM_WRITE(mesh_num_y);
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE(dummy);
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
#if !HAS_BED_PROBE
|
|
|
|
|
float zprobe_zoffset = 0;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_WRITE_VAR(i, zprobe_zoffset);
|
|
|
|
|
EEPROM_WRITE(zprobe_zoffset);
|
|
|
|
|
|
|
|
|
|
// 9 floats for DELTA / Z_DUAL_ENDSTOPS
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats
|
|
|
|
|
EEPROM_WRITE_VAR(i, delta_radius); // 1 float
|
|
|
|
|
EEPROM_WRITE_VAR(i, delta_diagonal_rod); // 1 float
|
|
|
|
|
EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
|
|
|
|
|
EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float
|
|
|
|
|
EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float
|
|
|
|
|
EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float
|
|
|
|
|
EEPROM_WRITE(endstop_adj); // 3 floats
|
|
|
|
|
EEPROM_WRITE(delta_radius); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_segments_per_second); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
|
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
|
EEPROM_WRITE_VAR(i, z_endstop_adj); // 1 float
|
|
|
|
|
EEPROM_WRITE(z_endstop_adj); // 1 float
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q = 8; q--;) EEPROM_WRITE_VAR(i, dummy);
|
|
|
|
|
for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
|
|
|
|
|
#else
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q = 9; q--;) EEPROM_WRITE_VAR(i, dummy);
|
|
|
|
|
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if DISABLED(ULTIPANEL)
|
|
|
|
@ -273,34 +276,34 @@ void Config_StoreSettings() {
|
|
|
|
|
preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND, preheatBedTemp2 = PREHEAT_2_TEMP_BED, preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
|
|
|
|
|
#endif // !ULTIPANEL
|
|
|
|
|
|
|
|
|
|
EEPROM_WRITE_VAR(i, preheatHotendTemp1);
|
|
|
|
|
EEPROM_WRITE_VAR(i, preheatBedTemp1);
|
|
|
|
|
EEPROM_WRITE_VAR(i, preheatFanSpeed1);
|
|
|
|
|
EEPROM_WRITE_VAR(i, preheatHotendTemp2);
|
|
|
|
|
EEPROM_WRITE_VAR(i, preheatBedTemp2);
|
|
|
|
|
EEPROM_WRITE_VAR(i, preheatFanSpeed2);
|
|
|
|
|
EEPROM_WRITE(preheatHotendTemp1);
|
|
|
|
|
EEPROM_WRITE(preheatBedTemp1);
|
|
|
|
|
EEPROM_WRITE(preheatFanSpeed1);
|
|
|
|
|
EEPROM_WRITE(preheatHotendTemp2);
|
|
|
|
|
EEPROM_WRITE(preheatBedTemp2);
|
|
|
|
|
EEPROM_WRITE(preheatFanSpeed2);
|
|
|
|
|
|
|
|
|
|
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
|
if (e < HOTENDS) {
|
|
|
|
|
EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
|
|
|
|
|
EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
|
|
|
|
|
EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Kp, e));
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Ki, e));
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Kd, e));
|
|
|
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
|
|
|
EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e));
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Kc, e));
|
|
|
|
|
#else
|
|
|
|
|
dummy = 1.0f; // 1.0 = default kc
|
|
|
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
#endif // !PIDTEMP
|
|
|
|
|
{
|
|
|
|
|
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
|
|
|
|
|
EEPROM_WRITE_VAR(i, dummy); // Kp
|
|
|
|
|
EEPROM_WRITE(dummy); // Kp
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy); // Ki, Kd, Kc
|
|
|
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // Hotends Loop
|
|
|
|
@ -308,67 +311,68 @@ void Config_StoreSettings() {
|
|
|
|
|
#if DISABLED(PID_ADD_EXTRUSION_RATE)
|
|
|
|
|
int lpq_len = 20;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_WRITE_VAR(i, lpq_len);
|
|
|
|
|
EEPROM_WRITE(lpq_len);
|
|
|
|
|
|
|
|
|
|
#if DISABLED(PIDTEMPBED)
|
|
|
|
|
dummy = DUMMY_PID_VALUE;
|
|
|
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
|
|
|
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_WRITE_VAR(i, thermalManager.bedKp);
|
|
|
|
|
EEPROM_WRITE_VAR(i, thermalManager.bedKi);
|
|
|
|
|
EEPROM_WRITE_VAR(i, thermalManager.bedKd);
|
|
|
|
|
EEPROM_WRITE(thermalManager.bedKp);
|
|
|
|
|
EEPROM_WRITE(thermalManager.bedKi);
|
|
|
|
|
EEPROM_WRITE(thermalManager.bedKd);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if !HAS_LCD_CONTRAST
|
|
|
|
|
const int lcd_contrast = 32;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_WRITE_VAR(i, lcd_contrast);
|
|
|
|
|
EEPROM_WRITE(lcd_contrast);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SCARA)
|
|
|
|
|
EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
|
|
|
|
|
EEPROM_WRITE(axis_scaling); // 3 floats
|
|
|
|
|
#else
|
|
|
|
|
dummy = 1.0f;
|
|
|
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
|
EEPROM_WRITE_VAR(i, autoretract_enabled);
|
|
|
|
|
EEPROM_WRITE_VAR(i, retract_length);
|
|
|
|
|
EEPROM_WRITE(autoretract_enabled);
|
|
|
|
|
EEPROM_WRITE(retract_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
EEPROM_WRITE_VAR(i, retract_length_swap);
|
|
|
|
|
EEPROM_WRITE(retract_length_swap);
|
|
|
|
|
#else
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_WRITE_VAR(i, retract_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE_VAR(i, retract_zlift);
|
|
|
|
|
EEPROM_WRITE_VAR(i, retract_recover_length);
|
|
|
|
|
EEPROM_WRITE(retract_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(retract_zlift);
|
|
|
|
|
EEPROM_WRITE(retract_recover_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
EEPROM_WRITE_VAR(i, retract_recover_length_swap);
|
|
|
|
|
EEPROM_WRITE(retract_recover_length_swap);
|
|
|
|
|
#else
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_WRITE_VAR(i, retract_recover_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(retract_recover_feedrate_mm_s);
|
|
|
|
|
#endif // FWRETRACT
|
|
|
|
|
|
|
|
|
|
EEPROM_WRITE_VAR(i, volumetric_enabled);
|
|
|
|
|
EEPROM_WRITE(volumetric_enabled);
|
|
|
|
|
|
|
|
|
|
// Save filament sizes
|
|
|
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
|
|
|
if (q < COUNT(filament_size)) dummy = filament_size[q];
|
|
|
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
uint16_t final_checksum = eeprom_checksum;
|
|
|
|
|
uint16_t final_checksum = eeprom_checksum,
|
|
|
|
|
eeprom_size = eeprom_index;
|
|
|
|
|
|
|
|
|
|
int j = EEPROM_OFFSET;
|
|
|
|
|
EEPROM_WRITE_VAR(j, version);
|
|
|
|
|
EEPROM_WRITE_VAR(j, final_checksum);
|
|
|
|
|
eeprom_index = EEPROM_OFFSET;
|
|
|
|
|
EEPROM_WRITE(version);
|
|
|
|
|
EEPROM_WRITE(final_checksum);
|
|
|
|
|
|
|
|
|
|
// Report storage size
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR("Settings Stored (", i);
|
|
|
|
|
SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
|
|
|
|
|
SERIAL_ECHOLNPGM(" bytes)");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -376,11 +380,15 @@ void Config_StoreSettings() {
|
|
|
|
|
* M501 - Retrieve Configuration
|
|
|
|
|
*/
|
|
|
|
|
void Config_RetrieveSettings() {
|
|
|
|
|
int i = EEPROM_OFFSET;
|
|
|
|
|
|
|
|
|
|
EEPROM_START();
|
|
|
|
|
|
|
|
|
|
char stored_ver[4];
|
|
|
|
|
EEPROM_READ(stored_ver);
|
|
|
|
|
|
|
|
|
|
uint16_t stored_checksum;
|
|
|
|
|
EEPROM_READ_VAR(i, stored_ver);
|
|
|
|
|
EEPROM_READ_VAR(i, stored_checksum);
|
|
|
|
|
EEPROM_READ(stored_checksum);
|
|
|
|
|
|
|
|
|
|
// SERIAL_ECHOPAIR("Version: [", ver);
|
|
|
|
|
// SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
|
|
|
|
|
// SERIAL_ECHOLNPGM("]");
|
|
|
|
@ -394,63 +402,63 @@ void Config_RetrieveSettings() {
|
|
|
|
|
eeprom_checksum = 0; // clear before reading first "real data"
|
|
|
|
|
|
|
|
|
|
// version number match
|
|
|
|
|
EEPROM_READ_VAR(i, planner.axis_steps_per_mm);
|
|
|
|
|
EEPROM_READ_VAR(i, planner.max_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ_VAR(i, planner.max_acceleration_mm_per_s2);
|
|
|
|
|
|
|
|
|
|
EEPROM_READ_VAR(i, planner.acceleration);
|
|
|
|
|
EEPROM_READ_VAR(i, planner.retract_acceleration);
|
|
|
|
|
EEPROM_READ_VAR(i, planner.travel_acceleration);
|
|
|
|
|
EEPROM_READ_VAR(i, planner.min_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ_VAR(i, planner.min_travel_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ_VAR(i, planner.min_segment_time);
|
|
|
|
|
EEPROM_READ_VAR(i, planner.max_xy_jerk);
|
|
|
|
|
EEPROM_READ_VAR(i, planner.max_z_jerk);
|
|
|
|
|
EEPROM_READ_VAR(i, planner.max_e_jerk);
|
|
|
|
|
EEPROM_READ_VAR(i, home_offset);
|
|
|
|
|
EEPROM_READ(planner.axis_steps_per_mm);
|
|
|
|
|
EEPROM_READ(planner.max_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(planner.max_acceleration_mm_per_s2);
|
|
|
|
|
|
|
|
|
|
EEPROM_READ(planner.acceleration);
|
|
|
|
|
EEPROM_READ(planner.retract_acceleration);
|
|
|
|
|
EEPROM_READ(planner.travel_acceleration);
|
|
|
|
|
EEPROM_READ(planner.min_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(planner.min_travel_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(planner.min_segment_time);
|
|
|
|
|
EEPROM_READ(planner.max_xy_jerk);
|
|
|
|
|
EEPROM_READ(planner.max_z_jerk);
|
|
|
|
|
EEPROM_READ(planner.max_e_jerk);
|
|
|
|
|
EEPROM_READ(home_offset);
|
|
|
|
|
|
|
|
|
|
uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
|
|
|
|
|
EEPROM_READ_VAR(i, dummy_uint8);
|
|
|
|
|
EEPROM_READ_VAR(i, dummy);
|
|
|
|
|
EEPROM_READ_VAR(i, mesh_num_x);
|
|
|
|
|
EEPROM_READ_VAR(i, mesh_num_y);
|
|
|
|
|
EEPROM_READ(dummy_uint8);
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
EEPROM_READ(mesh_num_x);
|
|
|
|
|
EEPROM_READ(mesh_num_y);
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
|
mbl.status = dummy_uint8;
|
|
|
|
|
mbl.z_offset = dummy;
|
|
|
|
|
if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
|
|
|
|
|
// EEPROM data fits the current mesh
|
|
|
|
|
EEPROM_READ_VAR(i, mbl.z_values);
|
|
|
|
|
EEPROM_READ(mbl.z_values);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// EEPROM data is stale
|
|
|
|
|
mbl.reset();
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
|
|
|
|
|
}
|
|
|
|
|
#else
|
|
|
|
|
// MBL is disabled - skip the stored data
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
#if !HAS_BED_PROBE
|
|
|
|
|
float zprobe_zoffset = 0;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ_VAR(i, zprobe_zoffset);
|
|
|
|
|
EEPROM_READ(zprobe_zoffset);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
EEPROM_READ_VAR(i, endstop_adj); // 3 floats
|
|
|
|
|
EEPROM_READ_VAR(i, delta_radius); // 1 float
|
|
|
|
|
EEPROM_READ_VAR(i, delta_diagonal_rod); // 1 float
|
|
|
|
|
EEPROM_READ_VAR(i, delta_segments_per_second); // 1 float
|
|
|
|
|
EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float
|
|
|
|
|
EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float
|
|
|
|
|
EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float
|
|
|
|
|
EEPROM_READ(endstop_adj); // 3 floats
|
|
|
|
|
EEPROM_READ(delta_radius); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod); // 1 float
|
|
|
|
|
EEPROM_READ(delta_segments_per_second); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
|
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
|
EEPROM_READ_VAR(i, z_endstop_adj);
|
|
|
|
|
EEPROM_READ(z_endstop_adj);
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q=8; q--;) EEPROM_READ_VAR(i, dummy);
|
|
|
|
|
for (uint8_t q=8; q--;) EEPROM_READ(dummy);
|
|
|
|
|
#else
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q=9; q--;) EEPROM_READ_VAR(i, dummy);
|
|
|
|
|
for (uint8_t q=9; q--;) EEPROM_READ(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if DISABLED(ULTIPANEL)
|
|
|
|
@ -458,86 +466,86 @@ void Config_RetrieveSettings() {
|
|
|
|
|
preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
EEPROM_READ_VAR(i, preheatHotendTemp1);
|
|
|
|
|
EEPROM_READ_VAR(i, preheatBedTemp1);
|
|
|
|
|
EEPROM_READ_VAR(i, preheatFanSpeed1);
|
|
|
|
|
EEPROM_READ_VAR(i, preheatHotendTemp2);
|
|
|
|
|
EEPROM_READ_VAR(i, preheatBedTemp2);
|
|
|
|
|
EEPROM_READ_VAR(i, preheatFanSpeed2);
|
|
|
|
|
EEPROM_READ(preheatHotendTemp1);
|
|
|
|
|
EEPROM_READ(preheatBedTemp1);
|
|
|
|
|
EEPROM_READ(preheatFanSpeed1);
|
|
|
|
|
EEPROM_READ(preheatHotendTemp2);
|
|
|
|
|
EEPROM_READ(preheatBedTemp2);
|
|
|
|
|
EEPROM_READ(preheatFanSpeed2);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
|
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
|
|
|
|
|
EEPROM_READ_VAR(i, dummy); // Kp
|
|
|
|
|
EEPROM_READ(dummy); // Kp
|
|
|
|
|
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
|
|
|
|
|
// do not need to scale PID values as the values in EEPROM are already scaled
|
|
|
|
|
PID_PARAM(Kp, e) = dummy;
|
|
|
|
|
EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
|
|
|
|
|
EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
|
|
|
|
|
EEPROM_READ(PID_PARAM(Ki, e));
|
|
|
|
|
EEPROM_READ(PID_PARAM(Kd, e));
|
|
|
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
|
|
|
EEPROM_READ_VAR(i, PID_PARAM(Kc, e));
|
|
|
|
|
EEPROM_READ(PID_PARAM(Kc, e));
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_READ_VAR(i, dummy);
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
|
|
|
|
|
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#else // !PIDTEMP
|
|
|
|
|
// 4 x 4 = 16 slots for PID parameters
|
|
|
|
|
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ_VAR(i, dummy); // Kp, Ki, Kd, Kc
|
|
|
|
|
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
|
|
|
|
|
#endif // !PIDTEMP
|
|
|
|
|
|
|
|
|
|
#if DISABLED(PID_ADD_EXTRUSION_RATE)
|
|
|
|
|
int lpq_len;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ_VAR(i, lpq_len);
|
|
|
|
|
EEPROM_READ(lpq_len);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
|
EEPROM_READ_VAR(i, dummy); // bedKp
|
|
|
|
|
EEPROM_READ(dummy); // bedKp
|
|
|
|
|
if (dummy != DUMMY_PID_VALUE) {
|
|
|
|
|
thermalManager.bedKp = dummy;
|
|
|
|
|
EEPROM_READ_VAR(i, thermalManager.bedKi);
|
|
|
|
|
EEPROM_READ_VAR(i, thermalManager.bedKd);
|
|
|
|
|
EEPROM_READ(thermalManager.bedKi);
|
|
|
|
|
EEPROM_READ(thermalManager.bedKd);
|
|
|
|
|
}
|
|
|
|
|
#else
|
|
|
|
|
for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // bedKp, bedKi, bedKd
|
|
|
|
|
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if !HAS_LCD_CONTRAST
|
|
|
|
|
int lcd_contrast;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ_VAR(i, lcd_contrast);
|
|
|
|
|
EEPROM_READ(lcd_contrast);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SCARA)
|
|
|
|
|
EEPROM_READ_VAR(i, axis_scaling); // 3 floats
|
|
|
|
|
EEPROM_READ(axis_scaling); // 3 floats
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_READ_VAR(i, dummy);
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
|
EEPROM_READ_VAR(i, autoretract_enabled);
|
|
|
|
|
EEPROM_READ_VAR(i, retract_length);
|
|
|
|
|
EEPROM_READ(autoretract_enabled);
|
|
|
|
|
EEPROM_READ(retract_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
EEPROM_READ_VAR(i, retract_length_swap);
|
|
|
|
|
EEPROM_READ(retract_length_swap);
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_READ_VAR(i, dummy);
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ_VAR(i, retract_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ_VAR(i, retract_zlift);
|
|
|
|
|
EEPROM_READ_VAR(i, retract_recover_length);
|
|
|
|
|
EEPROM_READ(retract_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(retract_zlift);
|
|
|
|
|
EEPROM_READ(retract_recover_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
EEPROM_READ_VAR(i, retract_recover_length_swap);
|
|
|
|
|
EEPROM_READ(retract_recover_length_swap);
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_READ_VAR(i, dummy);
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ_VAR(i, retract_recover_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(retract_recover_feedrate_mm_s);
|
|
|
|
|
#endif // FWRETRACT
|
|
|
|
|
|
|
|
|
|
EEPROM_READ_VAR(i, volumetric_enabled);
|
|
|
|
|
EEPROM_READ(volumetric_enabled);
|
|
|
|
|
|
|
|
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
|
|
|
EEPROM_READ_VAR(i, dummy);
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
if (q < COUNT(filament_size)) filament_size[q] = dummy;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -545,7 +553,7 @@ void Config_RetrieveSettings() {
|
|
|
|
|
Config_Postprocess();
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHO(version);
|
|
|
|
|
SERIAL_ECHOPAIR(" stored settings retrieved (", i);
|
|
|
|
|
SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index);
|
|
|
|
|
SERIAL_ECHOLNPGM(" bytes)");
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|