diff --git a/Marlin/Configuration_adv.h b/Marlin/Configuration_adv.h index 5f1c77a05..648a9beaf 100644 --- a/Marlin/Configuration_adv.h +++ b/Marlin/Configuration_adv.h @@ -18,12 +18,6 @@ //#define WATCH_TEMP_PERIOD 40000 //40 seconds //#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds -// Wait for Cooldown -// This defines if the M109 call should not block if it is cooling down. -// example: From a current temp of 220, you set M109 S200. -// if CooldownNoWait is defined M109 will not wait for the cooldown to finish -#define CooldownNoWait true - #ifdef PIDTEMP // this adds an experimental additional term to the heatingpower, proportional to the extrusion speed. // if Kc is choosen well, the additional required power due to increased melting should be compensated. @@ -152,6 +146,68 @@ #define EXTRUDERS 1 #endif +// Same again but for Y Axis. +#define Y_DUAL_STEPPER_DRIVERS + +// Define if the two Y drives need to rotate in opposite directions +#define INVERT_Y2_VS_Y_DIR true + +#ifdef Y_DUAL_STEPPER_DRIVERS + #undef EXTRUDERS + #define EXTRUDERS 1 +#endif + +#ifdef Z_DUAL_STEPPER_DRIVERS && Y_DUAL_STEPPER_DRIVERS + #error "You cannot have dual drivers for both Y and Z" +#endif + +// Enable this for dual x-carriage printers. +// A dual x-carriage design has the advantage that the inactive extruder can be parked which +// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage +// allowing faster printing speeds. +//#define DUAL_X_CARRIAGE +#ifdef DUAL_X_CARRIAGE +// Configuration for second X-carriage +// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop; +// the second x-carriage always homes to the maximum endstop. +#define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage +#define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed +#define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position +#define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position + // However: In this mode the EXTRUDER_OFFSET_X value for the second extruder provides a software + // override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops + // without modifying the firmware (through the "M218 T1 X???" command). + // Remember: you should set the second extruder x-offset to 0 in your slicer. + +// Pins for second x-carriage stepper driver (defined here to avoid further complicating pins.h) +#define X2_ENABLE_PIN 29 +#define X2_STEP_PIN 25 +#define X2_DIR_PIN 23 + +// There are a few selectable movement modes for dual x-carriages using M605 S +// Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results +// as long as it supports dual x-carriages. (M605 S0) +// Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so +// that additional slicer support is not required. (M605 S1) +// Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all +// actions of the first x-carriage. This allows the printer to print 2 arbitrary items at +// once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm]) + +// This is the default power-up mode which can be later using M605. +#define DEFAULT_DUAL_X_CARRIAGE_MODE 0 + +// As the x-carriages are independent we can now account for any relative Z offset +#define EXTRUDER1_Z_OFFSET 0.0 // z offset relative to extruder 0 + +// Default settings in "Auto-park Mode" +#define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder +#define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder + +// Default x offset in duplication mode (typically set to half print bed width) +#define DEFAULT_DUPLICATION_X_OFFSET 100 + +#endif //DUAL_X_CARRIAGE + //homing hits the endstop, then retracts by this distance, before it tries to slowly bump again: #define X_HOME_RETRACT_MM 5 #define Y_HOME_RETRACT_MM 5 @@ -174,6 +230,11 @@ #define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate #define DEFAULT_MINTRAVELFEEDRATE 0.0 +// Feedrates for manual moves along X, Y, Z, E from panel +#ifdef ULTIPANEL +#define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60} // set the speeds for manual moves (mm/min) +#endif + // minimum time in microseconds that a movement needs to take if the buffer is emptied. #define DEFAULT_MINSEGMENTTIME 20000 diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h index c9759eb21..306601796 100644 --- a/Marlin/Marlin.h +++ b/Marlin/Marlin.h @@ -51,22 +51,22 @@ #define MYSERIAL MSerial #endif -#define SERIAL_PROTOCOL(x) MYSERIAL.print(x); -#define SERIAL_PROTOCOL_F(x,y) MYSERIAL.print(x,y); -#define SERIAL_PROTOCOLPGM(x) serialprintPGM(PSTR(x)); -#define SERIAL_PROTOCOLLN(x) {MYSERIAL.print(x);MYSERIAL.write('\n');} -#define SERIAL_PROTOCOLLNPGM(x) {serialprintPGM(PSTR(x));MYSERIAL.write('\n');} +#define SERIAL_PROTOCOL(x) (MYSERIAL.print(x)) +#define SERIAL_PROTOCOL_F(x,y) (MYSERIAL.print(x,y)) +#define SERIAL_PROTOCOLPGM(x) (serialprintPGM(PSTR(x))) +#define SERIAL_PROTOCOLLN(x) (MYSERIAL.print(x),MYSERIAL.write('\n')) +#define SERIAL_PROTOCOLLNPGM(x) (serialprintPGM(PSTR(x)),MYSERIAL.write('\n')) const char errormagic[] PROGMEM ="Error:"; const char echomagic[] PROGMEM ="echo:"; -#define SERIAL_ERROR_START serialprintPGM(errormagic); +#define SERIAL_ERROR_START (serialprintPGM(errormagic)) #define SERIAL_ERROR(x) SERIAL_PROTOCOL(x) #define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x) #define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x) #define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x) -#define SERIAL_ECHO_START serialprintPGM(echomagic); +#define SERIAL_ECHO_START (serialprintPGM(echomagic)) #define SERIAL_ECHO(x) SERIAL_PROTOCOL(x) #define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x) #define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x) @@ -96,7 +96,11 @@ void process_commands(); void manage_inactivity(); -#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 +#if defined(DUAL_X_CARRIAGE) && defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 \ + && defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1 + #define enable_x() do { WRITE(X_ENABLE_PIN, X_ENABLE_ON); WRITE(X2_ENABLE_PIN, X_ENABLE_ON); } while (0) + #define disable_x() do { WRITE(X_ENABLE_PIN,!X_ENABLE_ON); WRITE(X2_ENABLE_PIN,!X_ENABLE_ON); } while (0) +#elif defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 #define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON) #define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON) #else @@ -105,8 +109,13 @@ void manage_inactivity(); #endif #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1 - #define enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON) - #define disable_y() WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON) + #ifdef Y_DUAL_STEPPER_DRIVERS + #define enable_y() { WRITE(Y_ENABLE_PIN, Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN, Y_ENABLE_ON); } + #define disable_y() { WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN, !Y_ENABLE_ON); } + #else + #define enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON) + #define disable_y() WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON) + #endif #else #define enable_y() ; #define disable_y() ; @@ -159,6 +168,7 @@ void ClearToSend(); void get_coordinates(); #ifdef DELTA void calculate_delta(float cartesian[3]); +extern float delta[3]; #endif void prepare_move(); void kill(); diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp index a7991501e..217030217 100644 --- a/Marlin/stepper.cpp +++ b/Marlin/stepper.cpp @@ -48,8 +48,8 @@ block_t *current_block; // A pointer to the block currently being traced // Variables used by The Stepper Driver Interrupt static unsigned char out_bits; // The next stepping-bits to be output static long counter_x, // Counter variables for the bresenham line tracer - counter_y, - counter_z, + counter_y, + counter_z, counter_e; volatile static unsigned long step_events_completed; // The number of step events executed in the current block #ifdef ADVANCE @@ -224,27 +224,27 @@ void enable_endstops(bool check) // | BLOCK 1 | BLOCK 2 | d // // time -----> -// -// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates -// first block->accelerate_until step_events_completed, then keeps going at constant speed until +// +// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates +// first block->accelerate_until step_events_completed, then keeps going at constant speed until // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. // The slope of acceleration is calculated with the leib ramp alghorithm. void st_wake_up() { // TCNT1 = 0; - ENABLE_STEPPER_DRIVER_INTERRUPT(); + ENABLE_STEPPER_DRIVER_INTERRUPT(); } void step_wait(){ for(int8_t i=0; i < 6; i++){ } } - + FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { unsigned short timer; if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY; - + if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times step_rate = (step_rate >> 2)&0x3fff; step_loops = 4; @@ -255,11 +255,11 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { } else { step_loops = 1; - } - + } + if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000); step_rate -= (F_CPU/500000); // Correct for minimal speed - if(step_rate >= (8*256)){ // higher step rate + if(step_rate >= (8*256)){ // higher step rate unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0]; unsigned char tmp_step_rate = (step_rate & 0x00ff); unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2); @@ -276,7 +276,7 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { return timer; } -// Initializes the trapezoid generator from the current block. Called whenever a new +// Initializes the trapezoid generator from the current block. Called whenever a new // block begins. FORCE_INLINE void trapezoid_generator_reset() { #ifdef ADVANCE @@ -284,7 +284,7 @@ FORCE_INLINE void trapezoid_generator_reset() { final_advance = current_block->final_advance; // Do E steps + advance steps e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); - old_advance = advance >>8; + old_advance = advance >>8; #endif deceleration_time = 0; // step_rate to timer interval @@ -294,7 +294,7 @@ FORCE_INLINE void trapezoid_generator_reset() { acc_step_rate = current_block->initial_rate; acceleration_time = calc_timer(acc_step_rate); OCR1A = acceleration_time; - + // SERIAL_ECHO_START; // SERIAL_ECHOPGM("advance :"); // SERIAL_ECHO(current_block->advance/256.0); @@ -304,13 +304,13 @@ FORCE_INLINE void trapezoid_generator_reset() { // SERIAL_ECHO(current_block->initial_advance/256.0); // SERIAL_ECHOPGM("final advance :"); // SERIAL_ECHOLN(current_block->final_advance/256.0); - + } -// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. -// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. +// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. +// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. ISR(TIMER1_COMPA_vect) -{ +{ // If there is no current block, attempt to pop one from the buffer if (current_block == NULL) { // Anything in the buffer? @@ -322,24 +322,24 @@ ISR(TIMER1_COMPA_vect) counter_y = counter_x; counter_z = counter_x; counter_e = counter_x; - step_events_completed = 0; - - #ifdef Z_LATE_ENABLE + step_events_completed = 0; + + #ifdef Z_LATE_ENABLE if(current_block->steps_z > 0) { enable_z(); OCR1A = 2000; //1ms wait return; } #endif - + // #ifdef ADVANCE // e_steps[current_block->active_extruder] = 0; // #endif - } + } else { OCR1A=2000; // 1kHz. - } - } + } + } if (current_block != NULL) { // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt @@ -348,22 +348,58 @@ ISR(TIMER1_COMPA_vect) // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY) if((out_bits & (1<active_extruder != 0) + WRITE(X2_DIR_PIN, INVERT_X_DIR); + else + WRITE(X_DIR_PIN, INVERT_X_DIR); + } + #else + WRITE(X_DIR_PIN, INVERT_X_DIR); + #endif count_direction[X_AXIS]=-1; } else{ - WRITE(X_DIR_PIN, !INVERT_X_DIR); + #ifdef DUAL_X_CARRIAGE + if (extruder_duplication_enabled){ + WRITE(X_DIR_PIN, !INVERT_X_DIR); + WRITE(X2_DIR_PIN, !INVERT_X_DIR); + } + else{ + if (current_block->active_extruder != 0) + WRITE(X2_DIR_PIN, !INVERT_X_DIR); + else + WRITE(X_DIR_PIN, !INVERT_X_DIR); + } + #else + WRITE(X_DIR_PIN, !INVERT_X_DIR); + #endif count_direction[X_AXIS]=1; } if((out_bits & (1< -1 - bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING); - if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) { - endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; - endstop_x_hit=true; - step_events_completed = current_block->step_event_count; - } - old_x_min_endstop = x_min_endstop; - #endif + #ifdef DUAL_X_CARRIAGE + // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder + if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) + || (current_block->active_extruder != 0 && X2_HOME_DIR == -1)) + #endif + { + #if defined(X_MIN_PIN) && X_MIN_PIN > -1 + bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING); + if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) { + endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; + endstop_x_hit=true; + step_events_completed = current_block->step_event_count; + } + old_x_min_endstop = x_min_endstop; + #endif + } } } else { // +direction - CHECK_ENDSTOPS + CHECK_ENDSTOPS { - #if defined(X_MAX_PIN) && X_MAX_PIN > -1 - bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING); - if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){ - endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; - endstop_x_hit=true; - step_events_completed = current_block->step_event_count; - } - old_x_max_endstop = x_max_endstop; - #endif + #ifdef DUAL_X_CARRIAGE + // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder + if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) + || (current_block->active_extruder != 0 && X2_HOME_DIR == 1)) + #endif + { + #if defined(X_MAX_PIN) && X_MAX_PIN > -1 + bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING); + if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){ + endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; + endstop_x_hit=true; + step_events_completed = current_block->step_event_count; + } + old_x_max_endstop = x_max_endstop; + #endif + } } } @@ -406,7 +456,7 @@ ISR(TIMER1_COMPA_vect) CHECK_ENDSTOPS { #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 - bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING); + bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING); if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) { endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstop_y_hit=true; @@ -420,7 +470,7 @@ ISR(TIMER1_COMPA_vect) CHECK_ENDSTOPS { #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 - bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING); + bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING); if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){ endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstop_y_hit=true; @@ -434,15 +484,15 @@ ISR(TIMER1_COMPA_vect) if ((out_bits & (1< -1 - bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING); + bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstop_z_hit=true; @@ -455,7 +505,7 @@ ISR(TIMER1_COMPA_vect) else { // +direction WRITE(Z_DIR_PIN,!INVERT_Z_DIR); - #ifdef Z_DUAL_STEPPER_DRIVERS + #ifdef Z_DUAL_STEPPER_DRIVERS WRITE(Z2_DIR_PIN,!INVERT_Z_DIR); #endif @@ -463,7 +513,7 @@ ISR(TIMER1_COMPA_vect) CHECK_ENDSTOPS { #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 - bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING); + bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING); if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstop_z_hit=true; @@ -484,10 +534,10 @@ ISR(TIMER1_COMPA_vect) count_direction[E_AXIS]=1; } #endif //!ADVANCE - - - for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves) + + + for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves) #ifndef AT90USB MSerial.checkRx(); // Check for serial chars. #endif @@ -502,38 +552,73 @@ ISR(TIMER1_COMPA_vect) else { e_steps[current_block->active_extruder]++; } - } + } #endif //ADVANCE counter_x += current_block->steps_x; if (counter_x > 0) { + #ifdef DUAL_X_CARRIAGE + if (extruder_duplication_enabled){ + WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); + WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN); + } + else { + if (current_block->active_extruder != 0) + WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN); + else + WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); + } + #else WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); + #endif counter_x -= current_block->step_event_count; count_position[X_AXIS]+=count_direction[X_AXIS]; + #ifdef DUAL_X_CARRIAGE + if (extruder_duplication_enabled){ + WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); + WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN); + } + else { + if (current_block->active_extruder != 0) + WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN); + else + WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); + } + #else WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); + #endif } - + counter_y += current_block->steps_y; if (counter_y > 0) { WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); - counter_y -= current_block->step_event_count; - count_position[Y_AXIS]+=count_direction[Y_AXIS]; + + #ifdef Y_DUAL_STEPPER_DRIVERS + WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN); + #endif + + counter_y -= current_block->step_event_count; + count_position[Y_AXIS]+=count_direction[Y_AXIS]; WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); + + #ifdef Y_DUAL_STEPPER_DRIVERS + WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN); + #endif } - + counter_z += current_block->steps_z; if (counter_z > 0) { WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); - #ifdef Z_DUAL_STEPPER_DRIVERS + #ifdef Z_DUAL_STEPPER_DRIVERS WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN); #endif - + counter_z -= current_block->step_event_count; count_position[Z_AXIS]+=count_direction[Z_AXIS]; WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); - #ifdef Z_DUAL_STEPPER_DRIVERS + #ifdef Z_DUAL_STEPPER_DRIVERS WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN); #endif } @@ -547,17 +632,17 @@ ISR(TIMER1_COMPA_vect) WRITE_E_STEP(INVERT_E_STEP_PIN); } #endif //!ADVANCE - step_events_completed += 1; + step_events_completed += 1; if(step_events_completed >= current_block->step_event_count) break; } // Calculare new timer value unsigned short timer; unsigned short step_rate; if (step_events_completed <= (unsigned long int)current_block->accelerate_until) { - + MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); acc_step_rate += current_block->initial_rate; - + // upper limit if(acc_step_rate > current_block->nominal_rate) acc_step_rate = current_block->nominal_rate; @@ -573,13 +658,13 @@ ISR(TIMER1_COMPA_vect) //if(advance > current_block->advance) advance = current_block->advance; // Do E steps + advance steps e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); - old_advance = advance >>8; - + old_advance = advance >>8; + #endif - } - else if (step_events_completed > (unsigned long int)current_block->decelerate_after) { + } + else if (step_events_completed > (unsigned long int)current_block->decelerate_after) { MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate); - + if(step_rate > acc_step_rate) { // Check step_rate stays positive step_rate = current_block->final_rate; } @@ -602,7 +687,7 @@ ISR(TIMER1_COMPA_vect) if(advance < final_advance) advance = final_advance; // Do E steps + advance steps e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); - old_advance = advance >>8; + old_advance = advance >>8; #endif //ADVANCE } else { @@ -611,12 +696,12 @@ ISR(TIMER1_COMPA_vect) step_loops = step_loops_nominal; } - // If current block is finished, reset pointer + // If current block is finished, reset pointer if (step_events_completed >= current_block->step_event_count) { current_block = NULL; plan_discard_current_block(); - } - } + } + } } #ifdef ADVANCE @@ -635,7 +720,7 @@ ISR(TIMER1_COMPA_vect) WRITE(E0_DIR_PIN, INVERT_E0_DIR); e_steps[0]++; WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); - } + } else if (e_steps[0] > 0) { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); e_steps[0]--; @@ -649,7 +734,7 @@ ISR(TIMER1_COMPA_vect) WRITE(E1_DIR_PIN, INVERT_E1_DIR); e_steps[1]++; WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN); - } + } else if (e_steps[1] > 0) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); e_steps[1]--; @@ -664,7 +749,7 @@ ISR(TIMER1_COMPA_vect) WRITE(E2_DIR_PIN, INVERT_E2_DIR); e_steps[2]++; WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN); - } + } else if (e_steps[2] > 0) { WRITE(E2_DIR_PIN, !INVERT_E2_DIR); e_steps[2]--; @@ -680,22 +765,29 @@ void st_init() { digipot_init(); //Initialize Digipot Motor Current microstep_init(); //Initialize Microstepping Pins - + //Initialize Dir Pins #if defined(X_DIR_PIN) && X_DIR_PIN > -1 SET_OUTPUT(X_DIR_PIN); #endif - #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1 + #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1 + SET_OUTPUT(X2_DIR_PIN); + #endif + #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1 SET_OUTPUT(Y_DIR_PIN); + + #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1) + SET_OUTPUT(Y2_DIR_PIN); + #endif #endif - #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1 + #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1 SET_OUTPUT(Z_DIR_PIN); #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1) SET_OUTPUT(Z2_DIR_PIN); #endif #endif - #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1 + #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1 SET_OUTPUT(E0_DIR_PIN); #endif #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1) @@ -711,14 +803,23 @@ void st_init() SET_OUTPUT(X_ENABLE_PIN); if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH); #endif + #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1 + SET_OUTPUT(X2_ENABLE_PIN); + if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH); + #endif #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1 SET_OUTPUT(Y_ENABLE_PIN); if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH); + + #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1) + SET_OUTPUT(Y2_ENABLE_PIN); + if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH); + #endif #endif #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1 SET_OUTPUT(Z_ENABLE_PIN); if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH); - + #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1) SET_OUTPUT(Z2_ENABLE_PIN); if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH); @@ -738,62 +839,71 @@ void st_init() #endif //endstops and pullups - + #if defined(X_MIN_PIN) && X_MIN_PIN > -1 - SET_INPUT(X_MIN_PIN); + SET_INPUT(X_MIN_PIN); #ifdef ENDSTOPPULLUP_XMIN WRITE(X_MIN_PIN,HIGH); #endif #endif - + #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 - SET_INPUT(Y_MIN_PIN); + SET_INPUT(Y_MIN_PIN); #ifdef ENDSTOPPULLUP_YMIN WRITE(Y_MIN_PIN,HIGH); #endif #endif - + #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 - SET_INPUT(Z_MIN_PIN); + SET_INPUT(Z_MIN_PIN); #ifdef ENDSTOPPULLUP_ZMIN WRITE(Z_MIN_PIN,HIGH); #endif #endif - + #if defined(X_MAX_PIN) && X_MAX_PIN > -1 - SET_INPUT(X_MAX_PIN); + SET_INPUT(X_MAX_PIN); #ifdef ENDSTOPPULLUP_XMAX WRITE(X_MAX_PIN,HIGH); #endif #endif - + #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 - SET_INPUT(Y_MAX_PIN); + SET_INPUT(Y_MAX_PIN); #ifdef ENDSTOPPULLUP_YMAX WRITE(Y_MAX_PIN,HIGH); #endif #endif - + #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 - SET_INPUT(Z_MAX_PIN); + SET_INPUT(Z_MAX_PIN); #ifdef ENDSTOPPULLUP_ZMAX WRITE(Z_MAX_PIN,HIGH); #endif #endif - + //Initialize Step Pins - #if defined(X_STEP_PIN) && (X_STEP_PIN > -1) + #if defined(X_STEP_PIN) && (X_STEP_PIN > -1) SET_OUTPUT(X_STEP_PIN); WRITE(X_STEP_PIN,INVERT_X_STEP_PIN); disable_x(); - #endif - #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1) + #endif + #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1) + SET_OUTPUT(X2_STEP_PIN); + WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN); + disable_x(); + #endif + #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1) SET_OUTPUT(Y_STEP_PIN); WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN); + #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1) + SET_OUTPUT(Y2_STEP_PIN); + WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN); + #endif disable_y(); - #endif - #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1) + #endif + #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1) SET_OUTPUT(Z_STEP_PIN); WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN); #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1) @@ -801,33 +911,33 @@ void st_init() WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN); #endif disable_z(); - #endif - #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1) + #endif + #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1) SET_OUTPUT(E0_STEP_PIN); WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN); disable_e0(); - #endif - #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1) + #endif + #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1) SET_OUTPUT(E1_STEP_PIN); WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN); disable_e1(); - #endif - #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1) + #endif + #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1) SET_OUTPUT(E2_STEP_PIN); WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN); disable_e2(); - #endif + #endif // waveform generation = 0100 = CTC TCCR1B &= ~(1< -1 const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT; - - SPI.begin(); - pinMode(DIGIPOTSS_PIN, OUTPUT); - for(int i=0;i<=4;i++) + + SPI.begin(); + pinMode(DIGIPOTSS_PIN, OUTPUT); + for(int i=0;i<=4;i++) //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]); digipot_current(i,digipot_motor_current[i]); #endif