Remove requirement for LCD when UBL is used. (#6971)

* Remove requirement for LCD when UBL is used.

* fix previous oversights

* further refinement - error messages for P2 & P4

* require R on G26 when not using LCD; default to all points
master
bgort 8 years ago committed by GitHub
parent 2c2b991b59
commit 82e662fc69

@ -99,7 +99,8 @@
* will be purged before continuing. If no amount is specified the command will start
* purging filament until the user provides an LCD Click and then it will continue with
* printing the Mesh. You can carefully remove the spent filament with a needle nose
* pliers while holding the LCD Click wheel in a depressed state.
* pliers while holding the LCD Click wheel in a depressed state. If you do not have
* an LCD, you must specify a value if you use P.
*
* Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
* un-retraction is at 1.2mm These numbers will be scaled by the specified amount
@ -108,6 +109,11 @@
* If a parameter isn't given, every point will be printed unless G26 is interrupted.
* This works the same way that the UBL G29 P4 R parameter works.
*
* NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are
* aware that there's some risk associated with printing without the ability to abort in
* cases where mesh point Z value may be inaccurate. As above, if you do not include a
* parameter, every point will be printed.
*
* S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
*
* U # Random Randomize the order that the circles are drawn on the bed. The search for the closest
@ -131,9 +137,11 @@
void set_destination_to_current();
void set_current_to_destination();
void prepare_move_to_destination();
void lcd_setstatusPGM(const char* const message, const int8_t level);
void sync_plan_position_e();
void chirp_at_user();
#if ENABLED(NEWPANEL)
void lcd_setstatusPGM(const char* const message, const int8_t level);
void chirp_at_user();
#endif
// Private functions
@ -173,28 +181,30 @@
feedrate_mm_s = save_feedrate; // restore global feed rate
}
/**
* Detect ubl_lcd_clicked, debounce it, and return true for cancel
*/
bool user_canceled() {
if (!ubl_lcd_clicked()) return false;
safe_delay(10); // Wait for click to settle
#if ENABLED(NEWPANEL)
/**
* Detect ubl_lcd_clicked, debounce it, and return true for cancel
*/
bool user_canceled() {
if (!ubl_lcd_clicked()) return false;
safe_delay(10); // Wait for click to settle
#if ENABLED(ULTRA_LCD)
lcd_setstatusPGM(PSTR("Mesh Validation Stopped."), 99);
lcd_quick_feedback();
#endif
#if ENABLED(ULTRA_LCD)
lcd_setstatusPGM(PSTR("Mesh Validation Stopped."), 99);
lcd_quick_feedback();
#endif
while (!ubl_lcd_clicked()) idle(); // Wait for button release
while (!ubl_lcd_clicked()) idle(); // Wait for button release
// If the button is suddenly pressed again,
// ask the user to resolve the issue
lcd_setstatusPGM(PSTR("Release button"), 99); // will never appear...
while (ubl_lcd_clicked()) idle(); // unless this loop happens
lcd_reset_status();
// If the button is suddenly pressed again,
// ask the user to resolve the issue
lcd_setstatusPGM(PSTR("Release button"), 99); // will never appear...
while (ubl_lcd_clicked()) idle(); // unless this loop happens
lcd_reset_status();
return true;
}
return true;
}
#endif
/**
* G26: Mesh Validation Pattern generation.
@ -310,7 +320,9 @@
for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
#if ENABLED(NEWPANEL)
if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
#endif
int tmp_div_30 = tmp / 30.0;
if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
@ -426,7 +438,9 @@
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
if (user_canceled()) return true; // Check if the user wants to stop the Mesh Validation
#if ENABLED(NEWPANEL)
if (user_canceled()) return true; // Check if the user wants to stop the Mesh Validation
#endif
if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
// This is already a half circle because we are at the edge of the bed.
@ -663,9 +677,14 @@
}
if (parser.seen('P')) {
if (!parser.has_value())
g26_prime_flag = -1;
else {
if (!parser.has_value()) {
#if ENABLED(NEWPANEL)
g26_prime_flag = -1;
#else
SERIAL_PROTOCOLLNPGM("?Prime length must be specified when not using an LCD.");
return UBL_ERR;
#endif
} else {
g26_prime_flag++;
g26_prime_length = parser.value_linear_units();
if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
@ -682,7 +701,7 @@
return UBL_ERR;
}
}
g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
// scale up or down the length needed to get the
// same volume of filament
@ -702,7 +721,14 @@
random_deviation = parser.has_value() ? parser.value_float() : 50.0;
}
g26_repeats = parser.seen('R') ? (parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1) : GRID_MAX_POINTS + 1;
#if ENABLED(NEWPANEL)
g26_repeats = parser.seen('R') && parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
#else
if (!parser.seen('R')) {
SERIAL_PROTOCOLLNPGM("?(R)epeat must be specified when not using an LCD.");
return UBL_ERR;
} else g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
#endif
if (g26_repeats < 1) {
SERIAL_PROTOCOLLNPGM("?(R)epeat value not plausible; must be at least 1.");
return UBL_ERR;
@ -723,11 +749,13 @@
return UBL_OK;
}
bool unified_bed_leveling::exit_from_g26() {
lcd_setstatusPGM(PSTR("Leaving G26"), -1);
while (ubl_lcd_clicked()) idle();
return UBL_ERR;
}
#if ENABLED(NEWPANEL)
bool unified_bed_leveling::exit_from_g26() {
lcd_setstatusPGM(PSTR("Leaving G26"), -1);
while (ubl_lcd_clicked()) idle();
return UBL_ERR;
}
#endif
/**
* Turn on the bed and nozzle heat and
@ -744,7 +772,11 @@
has_control_of_lcd_panel = true;
thermalManager.setTargetBed(g26_bed_temp);
while (abs(thermalManager.degBed() - g26_bed_temp) > 3) {
if (ubl_lcd_clicked()) return exit_from_g26();
#if ENABLED(NEWPANEL)
if (ubl_lcd_clicked()) return exit_from_g26();
#endif
if (PENDING(millis(), next)) {
next = millis() + 5000UL;
print_heaterstates();
@ -761,7 +793,11 @@
// Start heating the nozzle and wait for it to reach temperature.
thermalManager.setTargetHotend(g26_hotend_temp, 0);
while (abs(thermalManager.degHotend(0) - g26_hotend_temp) > 3) {
if (ubl_lcd_clicked()) return exit_from_g26();
#if ENABLED(NEWPANEL)
if (ubl_lcd_clicked()) return exit_from_g26();
#endif
if (PENDING(millis(), next)) {
next = millis() + 5000UL;
print_heaterstates();
@ -781,49 +817,53 @@
* Prime the nozzle if needed. Return true on error.
*/
bool unified_bed_leveling::prime_nozzle() {
float Total_Prime = 0.0;
if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
#if ENABLED(NEWPANEL)
float Total_Prime = 0.0;
has_control_of_lcd_panel = true;
if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
lcd_setstatusPGM(PSTR("User-Controlled Prime"), 99);
chirp_at_user();
set_destination_to_current();
recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
while (!ubl_lcd_clicked()) {
has_control_of_lcd_panel = true;
lcd_setstatusPGM(PSTR("User-Controlled Prime"), 99);
chirp_at_user();
destination[E_AXIS] += 0.25;
#ifdef PREVENT_LENGTHY_EXTRUDE
Total_Prime += 0.25;
if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
#endif
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
stepper.synchronize(); // Without this synchronize, the purge is more consistent,
// but because the planner has a buffer, we won't be able
// to stop as quickly. So we put up with the less smooth
// action to give the user a more responsive 'Stop'.
set_destination_to_current();
idle();
}
while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel
recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
#if ENABLED(ULTRA_LCD)
strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatusPGM() without having it continue;
// So... We cheat to get a message up.
lcd_setstatusPGM(PSTR("Done Priming"), 99);
lcd_quick_feedback();
#endif
while (!ubl_lcd_clicked()) {
chirp_at_user();
destination[E_AXIS] += 0.25;
#ifdef PREVENT_LENGTHY_EXTRUDE
Total_Prime += 0.25;
if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
#endif
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
stepper.synchronize(); // Without this synchronize, the purge is more consistent,
// but because the planner has a buffer, we won't be able
// to stop as quickly. So we put up with the less smooth
// action to give the user a more responsive 'Stop'.
set_destination_to_current();
idle();
}
has_control_of_lcd_panel = false;
while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel
}
else {
#if ENABLED(ULTRA_LCD)
strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatusPGM() without having it continue;
// So... We cheat to get a message up.
lcd_setstatusPGM(PSTR("Done Priming"), 99);
lcd_quick_feedback();
#endif
has_control_of_lcd_panel = false;
}
else {
#else
{
#endif
#if ENABLED(ULTRA_LCD)
lcd_setstatusPGM(PSTR("Fixed Length Prime."), 99);
lcd_quick_feedback();

@ -468,8 +468,6 @@ static_assert(1 >= 0
#if ENABLED(AUTO_BED_LEVELING_UBL)
#if IS_SCARA
#error "AUTO_BED_LEVELING_UBL does not yet support SCARA printers."
#elif DISABLED(NEWPANEL)
#error "AUTO_BED_LEVELING_UBL requires an LCD controller."
#endif
#endif

@ -40,11 +40,14 @@
extern float destination[XYZE], current_position[XYZE];
void lcd_return_to_status();
void lcd_mesh_edit_setup(float initial);
float lcd_mesh_edit();
void lcd_z_offset_edit_setup(float);
float lcd_z_offset_edit();
#if ENABLED(NEWPANEL)
void lcd_return_to_status();
void lcd_mesh_edit_setup(float initial);
float lcd_mesh_edit();
void lcd_z_offset_edit_setup(float);
float lcd_z_offset_edit();
#endif
extern float meshedit_done;
extern long babysteps_done;
extern float probe_pt(const float &x, const float &y, bool, int);
@ -149,9 +152,10 @@
* parameter can be given to prioritize where the command should be trying to measure points.
* If the X and Y parameters are not specified the current probe position is used.
* P1 accepts a 'T' (Topology) parameter so you can observe mesh generation.
* P1 also watches for the LCD Panel Encoder Switch to be held down, and will suspend
* generation of the Mesh in that case. (Note: This check is only done between probe points,
* so you must press and hold the switch until the Phase 1 command detects it.)
* P1 also watches for the LCD Panel Encoder Switch to be held down (assuming you have one),
* and will suspend generation of the Mesh in that case. (Note: This check is only done
* between probe points, so you must press and hold the switch until the Phase 1 command
* detects it.)
*
* P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
* parameter to control the height between Mesh points. The default height for movement
@ -187,6 +191,8 @@
* Phase 2 allows the T (Map) parameter to be specified. This helps the user see the progression
* of the Mesh being built.
*
* NOTE: P2 is not available unless you have LCD support enabled!
*
* P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths the
* user can go down. If the user specifies the value using the C parameter, the closest invalid
* mesh points to the nozzle will be filled. The user can specify a repeat count using the R
@ -204,8 +210,9 @@
* numbers. You should use some scrutiny and caution.
*
* P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existence of
* an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
* (More work and details on doing this later!)
* an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel using
* G42 and M421; see the UBL documentation for further details.
*
* The System will search for the closest Mesh Point to the nozzle. It will move the
* nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
* so it is just barely touching the bed. When the user clicks the control, the System
@ -228,6 +235,7 @@
* LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
* RAISE the Mesh Point at that location.
*
* NOTE: P4 is not available unless you have LCD support enabled!
*
* P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
* work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
@ -452,52 +460,57 @@
break;
case 2: {
//
// Manually Probe Mesh in areas that can't be reached by the probe
//
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.");
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
if (!g29_x_flag && !g29_y_flag) {
/**
* Use a good default location for the path.
* The flipped > and < operators in these comparisons is intentional.
* It should cause the probed points to follow a nice path on Cartesian printers.
* It may make sense to have Delta printers default to the center of the bed.
* Until that is decided, this can be forced with the X and Y parameters.
*/
#if IS_KINEMATIC
g29_x_pos = X_HOME_POS;
g29_y_pos = Y_HOME_POS;
#else // cartesian
g29_x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS;
g29_y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS;
#endif
}
#if ENABLED(NEWPANEL)
//
// Manually Probe Mesh in areas that can't be reached by the probe
//
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.");
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
if (!g29_x_flag && !g29_y_flag) {
/**
* Use a good default location for the path.
* The flipped > and < operators in these comparisons is intentional.
* It should cause the probed points to follow a nice path on Cartesian printers.
* It may make sense to have Delta printers default to the center of the bed.
* Until that is decided, this can be forced with the X and Y parameters.
*/
#if IS_KINEMATIC
g29_x_pos = X_HOME_POS;
g29_y_pos = Y_HOME_POS;
#else // cartesian
g29_x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS;
g29_y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS;
#endif
}
if (parser.seen('C')) {
g29_x_pos = current_position[X_AXIS];
g29_y_pos = current_position[Y_AXIS];
}
if (parser.seen('C')) {
g29_x_pos = current_position[X_AXIS];
g29_y_pos = current_position[Y_AXIS];
}
float height = Z_CLEARANCE_BETWEEN_PROBES;
float height = Z_CLEARANCE_BETWEEN_PROBES;
if (parser.seen('B')) {
g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness(height);
if (fabs(g29_card_thickness) > 1.5) {
SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.");
return;
if (parser.seen('B')) {
g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness(height);
if (fabs(g29_card_thickness) > 1.5) {
SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.");
return;
}
}
}
if (parser.seen('H') && parser.has_value()) height = parser.value_float();
if (parser.seen('H') && parser.has_value()) height = parser.value_float();
if (!position_is_reachable_xy(g29_x_pos, g29_y_pos)) {
SERIAL_PROTOCOLLNPGM("XY outside printable radius.");
return;
}
if (!position_is_reachable_xy(g29_x_pos, g29_y_pos)) {
SERIAL_PROTOCOLLNPGM("XY outside printable radius.");
return;
}
manually_probe_remaining_mesh(g29_x_pos, g29_y_pos, height, g29_card_thickness, parser.seen('T'));
SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
manually_probe_remaining_mesh(g29_x_pos, g29_y_pos, height, g29_card_thickness, parser.seen('T'));
SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
#else
SERIAL_PROTOCOLLNPGM("?P2 is only available when an LCD is present.");
return;
#endif
} break;
case 3: {
@ -557,11 +570,13 @@
break;
}
case 4:
//
// Fine Tune (i.e., Edit) the Mesh
//
fine_tune_mesh(g29_x_pos, g29_y_pos, parser.seen('T'));
case 4: // Fine Tune (i.e., Edit) the Mesh
#if ENABLED(NEWPANEL)
fine_tune_mesh(g29_x_pos, g29_y_pos, parser.seen('T'));
#else
SERIAL_PROTOCOLLNPGM("?P4 is only available when an LCD is present.");
return;
#endif
break;
case 5: find_mean_mesh_height(); break;
@ -716,11 +731,15 @@
LEAVE:
lcd_reset_alert_level();
LCD_MESSAGEPGM("");
lcd_quick_feedback();
#if ENABLED(NEWPANEL)
lcd_reset_alert_level();
LCD_MESSAGEPGM("");
lcd_quick_feedback();
has_control_of_lcd_panel = false;
has_control_of_lcd_panel = false;
#endif
return;
}
void unified_bed_leveling::find_mean_mesh_height() {
@ -782,16 +801,18 @@
uint16_t max_iterations = GRID_MAX_POINTS;
do {
if (ubl_lcd_clicked()) {
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
lcd_quick_feedback();
STOW_PROBE();
while (ubl_lcd_clicked()) idle();
has_control_of_lcd_panel = false;
restore_ubl_active_state_and_leave();
safe_delay(50); // Debounce the Encoder wheel
return;
}
#if ENABLED(NEWPANEL)
if (ubl_lcd_clicked()) {
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
lcd_quick_feedback();
STOW_PROBE();
while (ubl_lcd_clicked()) idle();
has_control_of_lcd_panel = false;
restore_ubl_active_state_and_leave();
safe_delay(50); // Debounce the Encoder wheel
return;
}
#endif
location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, close_or_far);
@ -920,155 +941,165 @@
}
}
float unified_bed_leveling::measure_point_with_encoder() {
#if ENABLED(NEWPANEL)
float unified_bed_leveling::measure_point_with_encoder() {
while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
delay(50); // debounce
while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
delay(50); // debounce
KEEPALIVE_STATE(PAUSED_FOR_USER);
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle();
if (encoder_diff) {
do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(encoder_diff));
encoder_diff = 0;
KEEPALIVE_STATE(PAUSED_FOR_USER);
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle();
if (encoder_diff) {
do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(encoder_diff));
encoder_diff = 0;
}
}
KEEPALIVE_STATE(IN_HANDLER);
return current_position[Z_AXIS];
}
KEEPALIVE_STATE(IN_HANDLER);
return current_position[Z_AXIS];
}
static void echo_and_take_a_measurement() { SERIAL_PROTOCOLLNPGM(" and take a measurement."); }
static void echo_and_take_a_measurement() { SERIAL_PROTOCOLLNPGM(" and take a measurement."); }
float unified_bed_leveling::measure_business_card_thickness(float &in_height) {
has_control_of_lcd_panel = true;
save_ubl_active_state_and_disable(); // Disable bed level correction for probing
float unified_bed_leveling::measure_business_card_thickness(float &in_height) {
has_control_of_lcd_panel = true;
save_ubl_active_state_and_disable(); // Disable bed level correction for probing
do_blocking_move_to_z(in_height);
do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
//, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
stepper.synchronize();
do_blocking_move_to_z(in_height);
do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
//, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
stepper.synchronize();
SERIAL_PROTOCOLPGM("Place shim under nozzle");
LCD_MESSAGEPGM("Place shim & measure"); // TODO: Make translatable string
lcd_return_to_status();
echo_and_take_a_measurement();
SERIAL_PROTOCOLPGM("Place shim under nozzle");
LCD_MESSAGEPGM("Place shim & measure"); // TODO: Make translatable string
lcd_return_to_status();
echo_and_take_a_measurement();
const float z1 = measure_point_with_encoder();
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
stepper.synchronize();
const float z1 = measure_point_with_encoder();
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
stepper.synchronize();
SERIAL_PROTOCOLPGM("Remove shim");
LCD_MESSAGEPGM("Remove & measure bed"); // TODO: Make translatable string
echo_and_take_a_measurement();
SERIAL_PROTOCOLPGM("Remove shim");
LCD_MESSAGEPGM("Remove & measure bed"); // TODO: Make translatable string
echo_and_take_a_measurement();
const float z2 = measure_point_with_encoder();
const float z2 = measure_point_with_encoder();
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
const float thickness = abs(z1 - z2);
const float thickness = abs(z1 - z2);
if (g29_verbose_level > 1) {
SERIAL_PROTOCOLPGM("Business Card is ");
SERIAL_PROTOCOL_F(thickness, 4);
SERIAL_PROTOCOLLNPGM("mm thick.");
}
if (g29_verbose_level > 1) {
SERIAL_PROTOCOLPGM("Business Card is ");
SERIAL_PROTOCOL_F(thickness, 4);
SERIAL_PROTOCOLLNPGM("mm thick.");
}
in_height = current_position[Z_AXIS]; // do manual probing at lower height
in_height = current_position[Z_AXIS]; // do manual probing at lower height
has_control_of_lcd_panel = false;
has_control_of_lcd_panel = false;
restore_ubl_active_state_and_leave();
restore_ubl_active_state_and_leave();
return thickness;
}
return thickness;
}
void unified_bed_leveling::manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) {
void unified_bed_leveling::manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) {
has_control_of_lcd_panel = true;
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
do_blocking_move_to_xy(lx, ly);
has_control_of_lcd_panel = true;
lcd_return_to_status();
mesh_index_pair location;
do {
location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL, false);
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
if (location.x_index < 0 && location.y_index < 0) continue;
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
do_blocking_move_to_xy(lx, ly);
const float rawx = mesh_index_to_xpos(location.x_index),
rawy = mesh_index_to_ypos(location.y_index),
xProbe = LOGICAL_X_POSITION(rawx),
yProbe = LOGICAL_Y_POSITION(rawy);
lcd_return_to_status();
if (!position_is_reachable_raw_xy(rawx, rawy)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
mesh_index_pair location;
do {
location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL, false);
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
if (location.x_index < 0 && location.y_index < 0) continue;
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
const float rawx = mesh_index_to_xpos(location.x_index),
rawy = mesh_index_to_ypos(location.y_index),
xProbe = LOGICAL_X_POSITION(rawx),
yProbe = LOGICAL_Y_POSITION(rawy);
LCD_MESSAGEPGM("Moving to next"); // TODO: Make translatable string
if (!position_is_reachable_raw_xy(rawx, rawy)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
do_blocking_move_to_xy(xProbe, yProbe);
do_blocking_move_to_z(z_clearance);
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
KEEPALIVE_STATE(PAUSED_FOR_USER);
has_control_of_lcd_panel = true;
LCD_MESSAGEPGM("Moving to next"); // TODO: Make translatable string
do_blocking_move_to_xy(xProbe, yProbe);
do_blocking_move_to_z(z_clearance);
if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
KEEPALIVE_STATE(PAUSED_FOR_USER);
has_control_of_lcd_panel = true;
serialprintPGM(parser.seen('B') ? PSTR("Place shim & measure") : PSTR("Measure")); // TODO: Make translatable strings
if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
const float z_step = 0.01; // existing behavior: 0.01mm per click, occasionally step
//const float z_step = 1.0 / planner.axis_steps_per_mm[Z_AXIS]; // approx one step each click
serialprintPGM(parser.seen('B') ? PSTR("Place shim & measure") : PSTR("Measure")); // TODO: Make translatable strings
while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
delay(50); // debounce
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle();
if (encoder_diff) {
do_blocking_move_to_z(current_position[Z_AXIS] + float(encoder_diff) * z_step);
encoder_diff = 0;
const float z_step = 0.01; // existing behavior: 0.01mm per click, occasionally step
//const float z_step = 1.0 / planner.axis_steps_per_mm[Z_AXIS]; // approx one step each click
while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
delay(50); // debounce
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle();
if (encoder_diff) {
do_blocking_move_to_z(current_position[Z_AXIS] + float(encoder_diff) * z_step);
encoder_diff = 0;
}
}
}
// this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
// a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
// should be redone and compressed.
const millis_t nxt = millis() + 1500L;
while (ubl_lcd_clicked()) { // debounce and watch for abort
idle();
if (ELAPSED(millis(), nxt)) {
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
lcd_quick_feedback();
while (ubl_lcd_clicked()) idle();
has_control_of_lcd_panel = false;
KEEPALIVE_STATE(IN_HANDLER);
restore_ubl_active_state_and_leave();
return;
// this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
// a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
// should be redone and compressed.
const millis_t nxt = millis() + 1500L;
while (ubl_lcd_clicked()) { // debounce and watch for abort
idle();
if (ELAPSED(millis(), nxt)) {
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
#if ENABLED(NEWPANEL)
lcd_quick_feedback();
while (ubl_lcd_clicked()) idle();
has_control_of_lcd_panel = false;
#endif
KEEPALIVE_STATE(IN_HANDLER);
restore_ubl_active_state_and_leave();
return;
}
}
}
z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - thick;
if (g29_verbose_level > 2) {
SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
SERIAL_EOL;
}
} while (location.x_index >= 0 && location.y_index >= 0);
z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - thick;
if (g29_verbose_level > 2) {
SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
SERIAL_EOL;
}
} while (location.x_index >= 0 && location.y_index >= 0);
if (do_ubl_mesh_map) display_map(g29_map_type);
if (do_ubl_mesh_map) display_map(g29_map_type);
restore_ubl_active_state_and_leave();
KEEPALIVE_STATE(IN_HANDLER);
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
do_blocking_move_to_xy(lx, ly);
}
restore_ubl_active_state_and_leave();
KEEPALIVE_STATE(IN_HANDLER);
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
do_blocking_move_to_xy(lx, ly);
}
#endif
bool unified_bed_leveling::g29_parameter_parsing() {
bool err_flag = false;
LCD_MESSAGEPGM("Doing G29 UBL!"); // TODO: Make translatable string
lcd_quick_feedback();
#if ENABLED(NEWPANEL)
LCD_MESSAGEPGM("Doing G29 UBL!"); // TODO: Make translatable string
lcd_quick_feedback();
#endif
g29_constant = 0.0;
g29_repetition_cnt = 0;
@ -1174,8 +1205,12 @@
ubl_state_recursion_chk++;
if (ubl_state_recursion_chk != 1) {
SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
LCD_MESSAGEPGM("save_UBL_active() error"); // TODO: Make translatable string
lcd_quick_feedback();
#if ENABLED(NEWPANEL)
LCD_MESSAGEPGM("save_UBL_active() error"); // TODO: Make translatable string
lcd_quick_feedback();
#endif
return;
}
ubl_state_at_invocation = state.active;
@ -1185,8 +1220,12 @@
void unified_bed_leveling::restore_ubl_active_state_and_leave() {
if (--ubl_state_recursion_chk) {
SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
LCD_MESSAGEPGM("restore_UBL_active() error"); // TODO: Make translatable string
lcd_quick_feedback();
#if ENABLED(NEWPANEL)
LCD_MESSAGEPGM("restore_UBL_active() error"); // TODO: Make translatable string
lcd_quick_feedback();
#endif
return;
}
set_bed_leveling_enabled(ubl_state_at_invocation);
@ -1420,114 +1459,116 @@
return out_mesh;
}
void unified_bed_leveling::fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified
g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided.
#if ENABLED(NEWPANEL)
void unified_bed_leveling::fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified
g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided.
mesh_index_pair location;
uint16_t not_done[16];
mesh_index_pair location;
uint16_t not_done[16];
if (!position_is_reachable_xy(lx, ly)) {
SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
return;
}
if (!position_is_reachable_xy(lx, ly)) {
SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
return;
}
save_ubl_active_state_and_disable();
save_ubl_active_state_and_disable();
memset(not_done, 0xFF, sizeof(not_done));
memset(not_done, 0xFF, sizeof(not_done));
LCD_MESSAGEPGM("Fine Tuning Mesh"); // TODO: Make translatable string
LCD_MESSAGEPGM("Fine Tuning Mesh"); // TODO: Make translatable string
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
do_blocking_move_to_xy(lx, ly);
do {
location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
do_blocking_move_to_xy(lx, ly);
do {
location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
if (location.x_index < 0) break; // stop when we can't find any more reachable points.
if (location.x_index < 0) break; // stop when we can't find any more reachable points.
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
// different location the next time through the loop
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
// different location the next time through the loop
const float rawx = mesh_index_to_xpos(location.x_index),
rawy = mesh_index_to_ypos(location.y_index);
const float rawx = mesh_index_to_xpos(location.x_index),
rawy = mesh_index_to_ypos(location.y_index);
if (!position_is_reachable_raw_xy(rawx, rawy)) // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
break;
if (!position_is_reachable_raw_xy(rawx, rawy)) // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
break;
float new_z = z_values[location.x_index][location.y_index];
float new_z = z_values[location.x_index][location.y_index];
if (isnan(new_z)) // if the mesh point is invalid, set it to 0.0 so it can be edited
new_z = 0.0;
if (isnan(new_z)) // if the mesh point is invalid, set it to 0.0 so it can be edited
new_z = 0.0;
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); // Move the nozzle to where we are going to edit
do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); // Move the nozzle to where we are going to edit
do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
new_z = floor(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
new_z = floor(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
KEEPALIVE_STATE(PAUSED_FOR_USER);
has_control_of_lcd_panel = true;
KEEPALIVE_STATE(PAUSED_FOR_USER);
has_control_of_lcd_panel = true;
if (do_ubl_mesh_map) display_map(g29_map_type); // show the user which point is being adjusted
if (do_ubl_mesh_map) display_map(g29_map_type); // show the user which point is being adjusted
lcd_refresh();
lcd_refresh();
lcd_mesh_edit_setup(new_z);
lcd_mesh_edit_setup(new_z);
do {
new_z = lcd_mesh_edit();
#ifdef UBL_MESH_EDIT_MOVES_Z
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES + new_z); // Move the nozzle as the point is edited
#endif
idle();
} while (!ubl_lcd_clicked());
do {
new_z = lcd_mesh_edit();
#ifdef UBL_MESH_EDIT_MOVES_Z
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES + new_z); // Move the nozzle as the point is edited
#endif
idle();
} while (!ubl_lcd_clicked());
lcd_return_to_status();
lcd_return_to_status();
// The technique used here generates a race condition for the encoder click.
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) or here.
// Let's work on specifying a proper API for the LCD ASAP, OK?
has_control_of_lcd_panel = true;
// The technique used here generates a race condition for the encoder click.
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) or here.
// Let's work on specifying a proper API for the LCD ASAP, OK?
has_control_of_lcd_panel = true;
// this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
// a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
// should be redone and compressed.
const millis_t nxt = millis() + 1500UL;
while (ubl_lcd_clicked()) { // debounce and watch for abort
idle();
if (ELAPSED(millis(), nxt)) {
lcd_return_to_status();
//SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
LCD_MESSAGEPGM("Mesh Editing Stopped"); // TODO: Make translatable string
// this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
// a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
// should be redone and compressed.
const millis_t nxt = millis() + 1500UL;
while (ubl_lcd_clicked()) { // debounce and watch for abort
idle();
if (ELAPSED(millis(), nxt)) {
lcd_return_to_status();
//SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
LCD_MESSAGEPGM("Mesh Editing Stopped"); // TODO: Make translatable string
while (ubl_lcd_clicked()) idle();
while (ubl_lcd_clicked()) idle();
goto FINE_TUNE_EXIT;
goto FINE_TUNE_EXIT;
}
}
}
safe_delay(20); // We don't want any switch noise.
safe_delay(20); // We don't want any switch noise.
z_values[location.x_index][location.y_index] = new_z;
z_values[location.x_index][location.y_index] = new_z;
lcd_refresh();
lcd_refresh();
} while (location.x_index >= 0 && --g29_repetition_cnt > 0);
} while (location.x_index >= 0 && --g29_repetition_cnt > 0);
FINE_TUNE_EXIT:
FINE_TUNE_EXIT:
has_control_of_lcd_panel = false;
KEEPALIVE_STATE(IN_HANDLER);
has_control_of_lcd_panel = false;
KEEPALIVE_STATE(IN_HANDLER);
if (do_ubl_mesh_map) display_map(g29_map_type);
restore_ubl_active_state_and_leave();
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
if (do_ubl_mesh_map) display_map(g29_map_type);
restore_ubl_active_state_and_leave();
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
do_blocking_move_to_xy(lx, ly);
do_blocking_move_to_xy(lx, ly);
LCD_MESSAGEPGM("Done Editing Mesh"); // TODO: Make translatable string
SERIAL_ECHOLNPGM("Done Editing Mesh");
}
LCD_MESSAGEPGM("Done Editing Mesh"); // TODO: Make translatable string
SERIAL_ECHOLNPGM("Done Editing Mesh");
}
#endif
/**
* 'Smart Fill': Scan from the outward edges of the mesh towards the center.

Loading…
Cancel
Save