Implement delta auto-calibration and delta_height

master
LVD-AC 7 years ago committed by Scott Lahteine
parent 03bda24d19
commit 8821963873

@ -61,6 +61,7 @@
* G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
* G31 - Dock sled (Z_PROBE_SLED only)
* G32 - Undock sled (Z_PROBE_SLED only)
* G33 - Delta '4-point' auto calibration iteration
* G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
* G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates
@ -1443,7 +1444,7 @@ bool get_target_extruder_from_command(int code) {
#endif // NO_WORKSPACE_OFFSETS
#if DISABLED(NO_WORKSPACE_OFFSETS)
#if DISABLED(NO_WORKSPACE_OFFSETS) && DISABLED(DELTA)
/**
* Change the home offset for an axis, update the current
* position and the software endstops to retain the same
@ -1457,7 +1458,7 @@ bool get_target_extruder_from_command(int code) {
home_offset[axis] = v;
update_software_endstops(axis);
}
#endif // NO_WORKSPACE_OFFSETS
#endif // !NO_WORKSPACE_OFFSETS && !DELTA
/**
* Set an axis' current position to its home position (after homing).
@ -2299,7 +2300,7 @@ static void clean_up_after_endstop_or_probe_move() {
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL_F(y, 3);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL_F(FIXFLOAT(measured_z), 3);
SERIAL_PROTOCOL_F(measured_z, 3);
SERIAL_EOL;
}
@ -4901,8 +4902,366 @@ inline void gcode_G28() {
#endif // Z_PROBE_SLED
#if ENABLED(DELTA_AUTO_CALIBRATION)
/**
* G33: Delta '4-point' auto calibration iteration
*
* Usage: G33 <Cn> <Vn>
*
* C (default) = Calibrate endstops, height and delta radius
*
* -2, 1-4: n x n probe points, default 3 x 3
*
* 1: probe center
* set height only - useful when z_offset is changed
* 2: probe center and towers
* solve one '4 point' calibration
* -2: probe center and opposite the towers
* solve one '4 point' calibration
* 3: probe 3 center points, towers and opposite-towers
* averages between 2 '4 point' calibrations
* 4: probe 4 center points, towers, opposite-towers and itermediate points
* averages between 4 '4 point' calibrations
*
* V Verbose level (0-3, default 1)
*
* 0: Dry-run mode: no calibration
* 1: Settings
* 2: Setting + probe results
* 3: Expert mode: setting + iteration factors (see Configuration_adv.h)
* This prematurely stops the iteration process when factors are found
*/
inline void gcode_G33() {
stepper.synchronize();
#if PLANNER_LEVELING
set_bed_leveling_enabled(false);
#endif
const int8_t pp = code_seen('C') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS,
probe_points = (WITHIN(pp, 1, 4) || pp == -2) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS;
int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
#define _MAX_M33_V 3
if (verbose_level == 3 && probe_points == 1) verbose_level--; // needs at least 4 points
#else
#define _MAX_M33_V 2
if (verbose_level > 2)
SERIAL_PROTOCOLLNPGM("Enable DELTA_CALIBRATE_EXPERT_MODE in Configuration_adv.h");
#endif
if (!WITHIN(verbose_level, 0, _MAX_M33_V)) verbose_level = 1;
float zero_std_dev = verbose_level ? 999.0 : 0.0; // 0.0 in dry-run mode : forced end
gcode_G28();
float e_old[XYZ],
dr_old = delta_radius,
zh_old = home_offset[Z_AXIS];
COPY(e_old,endstop_adj);
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
// expert variables
float h_f_old = 1.00, r_f_old = 0.00,
h_diff_min = 1.00, r_diff_max = 0.10;
#endif
// print settings
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
SERIAL_PROTOCOLPGM("Checking... AC");
if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
if (verbose_level == 3) SERIAL_PROTOCOLPGM(" (EXPERT)");
#endif
SERIAL_EOL;
LCD_MESSAGEPGM("Checking... AC");
SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
if (abs(probe_points) > 1) {
SERIAL_PROTOCOLPGM(" Ex:");
if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
SERIAL_PROTOCOLPGM(" Ey:");
if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
SERIAL_PROTOCOLPGM(" Ez:");
if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
}
SERIAL_EOL;
#if ENABLED(Z_PROBE_SLED)
DEPLOY_PROBE();
#endif
float test_precision;
int8_t iterations = 0;
do { // start iterations
setup_for_endstop_or_probe_move();
test_precision =
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
// Expert mode : forced end at std_dev < 0.1
(verbose_level == 3 && zero_std_dev < 0.1) ? 0.0 :
#endif
zero_std_dev
;
float z_at_pt[13] = { 0 };
iterations++;
// probe the points
int16_t center_points = 0;
if (probe_points != 3) {
z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
center_points = 1;
}
int16_t step_axis = 4;
if (probe_points >= 3) {
for (int8_t axis = 9; axis > 0; axis -= step_axis) { // uint8_t starts endless loop
z_at_pt[0] += probe_pt(
0.1 * cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS),
0.1 * sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1);
}
center_points += 3;
z_at_pt[0] /= center_points;
}
float S1 = z_at_pt[0], S2 = sq(S1);
int16_t N = 1, start = (probe_points == -2) ? 3 : 1;
step_axis = (abs(probe_points) == 2) ? 4 : (probe_points == 3) ? 2 : 1;
if (probe_points != 1) {
for (uint8_t axis = start; axis < 13; axis += step_axis)
z_at_pt[axis] += probe_pt(
cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS),
sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1
);
if (probe_points == 4) step_axis = 2;
}
for (uint8_t axis = start; axis < 13; axis += step_axis) {
if (probe_points == 4)
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
S1 += z_at_pt[axis];
S2 += sq(z_at_pt[axis]);
N++;
}
zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // deviation from zero plane
// Solve matrices
if (zero_std_dev < test_precision) {
COPY(e_old, endstop_adj);
dr_old = delta_radius;
zh_old = home_offset[Z_AXIS];
float e_delta[XYZ] = { 0.0 }, r_delta = 0.0;
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
float h_f_new = 0.0, r_f_new = 0.0 , t_f_new = 0.0,
h_diff = 0.00, r_diff = 0.00;
#endif
#define ZP(N,I) ((N) * z_at_pt[I])
#define Z1000(I) ZP(1.00, I)
#define Z1050(I) ZP(H_FACTOR, I)
#define Z0700(I) ZP((H_FACTOR) * 2.0 / 3.00, I)
#define Z0350(I) ZP((H_FACTOR) / 3.00, I)
#define Z0175(I) ZP((H_FACTOR) / 6.00, I)
#define Z2250(I) ZP(R_FACTOR, I)
#define Z0750(I) ZP((R_FACTOR) / 3.00, I)
#define Z0375(I) ZP((R_FACTOR) / 6.00, I)
switch (probe_points) {
case 1:
LOOP_XYZ(i) e_delta[i] = Z1000(0);
r_delta = 0.00;
break;
case 2:
e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
break;
case -2:
e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
break;
default:
e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
break;
}
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
// Calculate h & r factors
if (verbose_level == 3) {
LOOP_XYZ(axis) h_f_new += e_delta[axis] / 3;
r_f_new = r_delta;
h_diff = (1.0 / H_FACTOR) * (h_f_old - h_f_new) / h_f_old;
if (h_diff < h_diff_min && h_diff > 0.9) h_diff_min = h_diff;
if (r_f_old != 0)
r_diff = ( 0.0301 * sq(R_FACTOR) * R_FACTOR
+ 0.311 * sq(R_FACTOR)
+ 1.1493 * R_FACTOR
+ 1.7952
) * (r_f_old - r_f_new) / r_f_old;
if (r_diff > r_diff_max && r_diff < 0.4444) r_diff_max = r_diff;
SERIAL_EOL;
h_f_old = h_f_new;
r_f_old = r_f_new;
}
#endif // DELTA_CALIBRATE_EXPERT_MODE
// Adjust delta_height and endstops by the max amount
LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
delta_radius += r_delta;
const float z_temp = MAX3(endstop_adj[0], endstop_adj[1], endstop_adj[2]);
home_offset[Z_AXIS] -= z_temp;
LOOP_XYZ(i) endstop_adj[i] -= z_temp;
recalc_delta_settings(delta_radius, delta_diagonal_rod);
}
else { // !iterate
// step one back
COPY(endstop_adj, e_old);
delta_radius = dr_old;
home_offset[Z_AXIS] = zh_old;
recalc_delta_settings(delta_radius, delta_diagonal_rod);
}
// print report
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
if (verbose_level == 3) {
const float r_factor = 22.902 * sq(r_diff_max) * r_diff_max
- 44.988 * sq(r_diff_max)
+ 31.697 * r_diff_max
- 9.4439;
SERIAL_PROTOCOLPAIR("h_factor:", 1.0 / h_diff_min);
SERIAL_PROTOCOLPAIR(" r_factor:", r_factor);
SERIAL_EOL;
}
#endif
if (verbose_level == 2) {
SERIAL_PROTOCOLPGM(". c:");
if (z_at_pt[0] > 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(z_at_pt[0], 2);
if (probe_points > 1) {
SERIAL_PROTOCOLPGM(" x:");
if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(z_at_pt[1], 2);
SERIAL_PROTOCOLPGM(" y:");
if (z_at_pt[5] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(z_at_pt[5], 2);
SERIAL_PROTOCOLPGM(" z:");
if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(z_at_pt[9], 2);
}
if (probe_points > 0) SERIAL_EOL;
if (probe_points > 2 || probe_points == -2) {
if (probe_points > 2) SERIAL_PROTOCOLPGM(". ");
SERIAL_PROTOCOLPGM(" yz:");
if (z_at_pt[7] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(z_at_pt[7], 2);
SERIAL_PROTOCOLPGM(" zx:");
if (z_at_pt[11] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(z_at_pt[11], 2);
SERIAL_PROTOCOLPGM(" xy:");
if (z_at_pt[3] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(z_at_pt[3], 2);
SERIAL_EOL;
}
}
if (test_precision != 0.0) { // !forced end
if (zero_std_dev >= test_precision) {
SERIAL_PROTOCOLPGM("Calibration OK");
SERIAL_PROTOCOLLNPGM(" rolling back 1");
LCD_MESSAGEPGM("Calibration OK");
SERIAL_EOL;
}
else { // !end iterations
char mess[15] = "No convergence";
if (iterations < 31)
sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
SERIAL_PROTOCOL(mess);
SERIAL_PROTOCOLPGM(" std dev:");
SERIAL_PROTOCOL_F(zero_std_dev, 3);
SERIAL_EOL;
lcd_setstatus(mess);
}
SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
if (abs(probe_points) > 1) {
SERIAL_PROTOCOLPGM(" Ex:");
if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
SERIAL_PROTOCOLPGM(" Ey:");
if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
SERIAL_PROTOCOLPGM(" Ez:");
if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
}
SERIAL_EOL;
if (zero_std_dev >= test_precision)
SERIAL_PROTOCOLLNPGM("Save with M500");
}
else { // forced end
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
if (verbose_level == 3)
SERIAL_PROTOCOLLNPGM("Copy to Configuration_adv.h");
else
#endif
{
SERIAL_PROTOCOLPGM("End DRY-RUN std dev:");
SERIAL_PROTOCOL_F(zero_std_dev, 3);
SERIAL_EOL;
}
}
clean_up_after_endstop_or_probe_move();
stepper.synchronize();
gcode_G28();
} while (zero_std_dev < test_precision && iterations < 31);
#if ENABLED(Z_PROBE_SLED)
RETRACT_PROBE();
#endif
}
#endif // DELTA_AUTO_CALIBRATION
#endif // HAS_BED_PROBE
#if ENABLED(G38_PROBE_TARGET)
static bool G38_run_probe() {
@ -5631,7 +5990,7 @@ inline void gcode_M42() {
if (axis_unhomed_error(true, true, true)) return;
int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
if (!WITHIN(verbose_level, 0, 4)) {
SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
return;
@ -7023,7 +7382,7 @@ inline void gcode_M205() {
if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
}
#if DISABLED(NO_WORKSPACE_OFFSETS)
#if DISABLED(NO_WORKSPACE_OFFSETS) && DISABLED(DELTA)
/**
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
@ -7048,6 +7407,7 @@ inline void gcode_M205() {
/**
* M665: Set delta configurations
*
* H = diagonal rod // AC-version
* L = diagonal rod
* R = delta radius
* S = segments per second
@ -7056,6 +7416,12 @@ inline void gcode_M205() {
* C = Gamma (Tower 3) diagonal rod trim
*/
inline void gcode_M665() {
if (code_seen('H')) {
home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
current_position[Z_AXIS] += code_value_linear_units() - DELTA_HEIGHT - home_offset[Z_AXIS];
home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
update_software_endstops(Z_AXIS);
}
if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
if (code_seen('R')) delta_radius = code_value_linear_units();
if (code_seen('S')) delta_segments_per_second = code_value_float();
@ -7914,7 +8280,7 @@ void quickstop_stepper() {
#endif
#if DISABLED(NO_WORKSPACE_OFFSETS)
#if DISABLED(NO_WORKSPACE_OFFSETS) && DISABLED(DELTA)
/**
* M428: Set home_offset based on the distance between the
@ -9203,6 +9569,15 @@ void process_next_command() {
break;
#endif // Z_PROBE_SLED
#if ENABLED(DELTA_AUTO_CALIBRATION)
case 33: // G33: Delta Auto Calibrate
gcode_G33();
break;
#endif // DELTA_AUTO_CALIBRATION
#endif // HAS_BED_PROBE
#if ENABLED(G38_PROBE_TARGET)
@ -9520,7 +9895,7 @@ void process_next_command() {
gcode_M205();
break;
#if DISABLED(NO_WORKSPACE_OFFSETS)
#if DISABLED(NO_WORKSPACE_OFFSETS) && DISABLED(DELTA)
case 206: // M206: Set home offsets
gcode_M206();
break;
@ -9688,7 +10063,7 @@ void process_next_command() {
break;
#endif
#if DISABLED(NO_WORKSPACE_OFFSETS)
#if DISABLED(NO_WORKSPACE_OFFSETS) && DISABLED(DELTA)
case 428: // M428: Apply current_position to home_offset
gcode_M428();
break;
@ -11054,6 +11429,9 @@ void disable_all_steppers() {
#if ENABLED(E3_IS_TMC2130)
automatic_current_control(stepperE3);
#endif
#if ENABLED(E4_IS_TMC2130)
automatic_current_control(stepperE4);
#endif
}
}

@ -395,7 +395,7 @@
* Delta Auto calibration
*/
#if ENABLED(DELTA_AUTO_CALIBRATION) && ENABLED(NO_WORKSPACE_OFFSETS)
#error "To use DELTA_AUTO_CALIBRATION you must disable NO_WORKSPACE_OFFSETS."
#error "DELTA_AUTO_CALIBRATION is incompatible with NO_WORKSPACE_OFFSETS."
#endif
/**

@ -47,7 +47,7 @@
* 100 Version (char x4)
* 104 EEPROM Checksum (uint16_t)
*
* 106 E_STEPPERS (uint8_t)
* 106 E_STEPPERS (uint8_t)
* 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x8)
* 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x8)
* 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x8)
@ -300,9 +300,17 @@ void MarlinSettings::postprocess() {
EEPROM_WRITE(planner.min_segment_time);
EEPROM_WRITE(planner.max_jerk);
#if ENABLED(NO_WORKSPACE_OFFSETS)
float home_offset[XYZ] = { 0 };
const float home_offset[XYZ] = { 0 };
#endif
#if ENABLED(DELTA)
dummy = 0.0;
EEPROM_WRITE(dummy);
EEPROM_WRITE(dummy);
dummy = DELTA_HEIGHT + home_offset[Z_AXIS];
EEPROM_WRITE(dummy);
#else
EEPROM_WRITE(home_offset);
#endif
EEPROM_WRITE(home_offset);
#if HOTENDS > 1
// Skip hotend 0 which must be 0
@ -488,7 +496,7 @@ void MarlinSettings::postprocess() {
EEPROM_WRITE(dummy);
}
// Save TCM2130 Configuration, and placeholder values
// Save TMC2130 Configuration, and placeholder values
uint16_t val;
#if ENABLED(HAVE_TMC2130)
#if ENABLED(X_IS_TMC2130)
@ -551,6 +559,12 @@ void MarlinSettings::postprocess() {
val = 0;
#endif
EEPROM_WRITE(val);
#if ENABLED(E4_IS_TMC2130)
val = stepperE4.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
#else
val = 0;
for (uint8_t q = 0; q < 11; ++q) EEPROM_WRITE(val);
@ -644,6 +658,12 @@ void MarlinSettings::postprocess() {
#endif
EEPROM_READ(home_offset);
#if ENABLED(DELTA)
home_offset[X_AXIS] = 0.0;
home_offset[Y_AXIS] = 0.0;
home_offset[Z_AXIS] -= DELTA_HEIGHT;
#endif
#if HOTENDS > 1
// Skip hotend 0 which must be 0
for (uint8_t e = 1; e < HOTENDS; e++)
@ -1019,6 +1039,9 @@ void MarlinSettings::reset() {
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
COPY(delta_diagonal_rod_trim, drt);
COPY(delta_tower_angle_trim, dta);
#if ENABLED(DELTA)
home_offset[Z_AXIS] = 0;
#endif
#elif ENABLED(Z_DUAL_ENDSTOPS)
float z_endstop_adj =
#ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
@ -1143,7 +1166,7 @@ void MarlinSettings::reset() {
/**
* M503 - Report current settings in RAM
*
*
* Unless specifically disabled, M503 is available even without EEPROM
*/
void MarlinSettings::report(bool forReplay) {
@ -1231,7 +1254,7 @@ void MarlinSettings::reset() {
SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
SERIAL_EOL;
#if DISABLED(NO_WORKSPACE_OFFSETS)
#if DISABLED(NO_WORKSPACE_OFFSETS) && DISABLED(DELTA)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Home offset (mm)");
@ -1346,11 +1369,12 @@ void MarlinSettings::reset() {
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Delta settings: L=diagonal rod, R=radius, S=segments-per-second, ABC=diagonal rod trim, IJK=tower angle trim");
SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, H=height, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
SERIAL_ECHOPAIR(" R", delta_radius);
SERIAL_ECHOPAIR(" H", DELTA_HEIGHT + home_offset[Z_AXIS]);
SERIAL_ECHOPAIR(" S", delta_segments_per_second);
SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim[A_AXIS]);
SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim[B_AXIS]);

@ -498,6 +498,12 @@
#ifndef MSG_DELTA_CALIBRATE_CENTER
#define MSG_DELTA_CALIBRATE_CENTER _UxGT("Calibrate Center")
#endif
#ifndef MSG_DELTA_AUTO_CALIBRATE
#define MSG_DELTA_AUTO_CALIBRATE _UxGT("Auto Calibration")
#endif
#ifndef MSG_DELTA_HEIGHT_CALIBRATE
#define MSG_DELTA_HEIGHT_CALIBRATE _UxGT("Set Delta Height")
#endif
#ifndef MSG_INFO_MENU
#define MSG_INFO_MENU _UxGT("About Printer")
#endif

@ -817,7 +817,7 @@ void kill_screen(const char* lcd_msg) {
*
*/
#if DISABLED(NO_WORKSPACE_OFFSETS)
#if DISABLED(NO_WORKSPACE_OFFSETS) && DISABLED(DELTA)
/**
* Set the home offset based on the current_position
*/
@ -1672,7 +1672,7 @@ void kill_screen(const char* lcd_msg) {
#endif
#if DISABLED(NO_WORKSPACE_OFFSETS)
#if DISABLED(NO_WORKSPACE_OFFSETS) && DISABLED(DELTA)
//
// Set Home Offsets
//
@ -1770,14 +1770,20 @@ void kill_screen(const char* lcd_msg) {
lcd_goto_screen(_lcd_calibrate_homing);
}
#if ENABLED(DELTA_AUTO_CALIBRATION)
#define _DELTA_TOWER_MOVE_RADIUS DELTA_CALIBRATION_RADIUS
#else
#define _DELTA_TOWER_MOVE_RADIUS DELTA_PRINTABLE_RADIUS
#endif
// Move directly to the tower position with uninterpolated moves
// If we used interpolated moves it would cause this to become re-entrant
void _goto_tower_pos(const float &a) {
current_position[Z_AXIS] = max(Z_HOMING_HEIGHT, Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5;
line_to_current(Z_AXIS);
current_position[X_AXIS] = a < 0 ? X_HOME_POS : sin(a) * -(DELTA_PRINTABLE_RADIUS);
current_position[Y_AXIS] = a < 0 ? Y_HOME_POS : cos(a) * (DELTA_PRINTABLE_RADIUS);
current_position[X_AXIS] = a < 0 ? LOGICAL_X_POSITION(X_HOME_POS) : sin(a) * -(_DELTA_TOWER_MOVE_RADIUS);
current_position[Y_AXIS] = a < 0 ? LOGICAL_Y_POSITION(Y_HOME_POS) : cos(a) * (_DELTA_TOWER_MOVE_RADIUS);
line_to_current(Z_AXIS);
current_position[Z_AXIS] = 4.0;
@ -1797,6 +1803,10 @@ void kill_screen(const char* lcd_msg) {
void lcd_delta_calibrate_menu() {
START_MENU();
MENU_BACK(MSG_MAIN);
#if ENABLED(DELTA_AUTO_CALIBRATION)
MENU_ITEM(gcode, MSG_DELTA_AUTO_CALIBRATE, PSTR("G33 C"));
MENU_ITEM(gcode, MSG_DELTA_HEIGHT_CALIBRATE, PSTR("G33 C1"));
#endif
MENU_ITEM(submenu, MSG_AUTO_HOME, _lcd_delta_calibrate_home);
if (axis_homed[Z_AXIS]) {
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE_X, _goto_tower_x);

Loading…
Cancel
Save