diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index c4be1a686..f9b706204 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -2386,7 +2386,7 @@ static void clean_up_after_endstop_or_probe_move() { } #endif - return current_position[Z_AXIS] + zprobe_zoffset; + return current_position[Z_AXIS]; } /** @@ -2398,7 +2398,7 @@ static void clean_up_after_endstop_or_probe_move() { * - Raise to the BETWEEN height * - Return the probed Z position */ - float probe_pt(const float &rx, const float &ry, const bool stow, const uint8_t verbose_level, const bool printable=true) { + float probe_pt(const float &rx, const float &ry, const bool stow, const uint8_t verbose_level, const bool probe_relative=true) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> probe_pt(", LOGICAL_X_POSITION(rx)); @@ -2409,13 +2409,15 @@ static void clean_up_after_endstop_or_probe_move() { } #endif - const float nx = rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ry - (Y_PROBE_OFFSET_FROM_EXTRUDER); - - if (!printable - ? !position_is_reachable(nx, ny) - : !position_is_reachable_by_probe(rx, ry) - ) return NAN; - + // TODO: Adapt for SCARA, where the offset rotates + float nx = rx, ny = ry; + if (probe_relative) { + if (!position_is_reachable_by_probe(rx, ry)) return NAN; // The given position is in terms of the probe + nx -= (X_PROBE_OFFSET_FROM_EXTRUDER); // Get the nozzle position + ny -= (Y_PROBE_OFFSET_FROM_EXTRUDER); + } + else if (!position_is_reachable(nx, ny)) return NAN; // The given position is in terms of the nozzle + const float nz = #if ENABLED(DELTA) // Move below clip height or xy move will be aborted by do_blocking_move_to @@ -2433,7 +2435,7 @@ static void clean_up_after_endstop_or_probe_move() { float measured_z = NAN; if (!DEPLOY_PROBE()) { - measured_z = run_z_probe(); + measured_z = run_z_probe() + zprobe_zoffset; if (!stow) do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST)); @@ -5541,6 +5543,16 @@ void home_all_axes() { gcode_G28(true); } #endif } + inline float calibration_probe(const float nx, const float ny, const bool stow) { + return + #if HAS_BED_PROBE + probe_pt(nx, ny, stow, 0, false) + #else + lcd_probe_pt(nx, ny) + #endif + ; + } + static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) { const bool _0p_calibration = probe_points == 0, _1p_calibration = probe_points == 1, @@ -5559,23 +5571,13 @@ void home_all_axes() { gcode_G28(true); } _7p_6_centre = probe_points >= 5 && probe_points <= 7, _7p_9_centre = probe_points >= 8; - #if HAS_BED_PROBE - const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER), - dy = (Y_PROBE_OFFSET_FROM_EXTRUDER); - #endif - LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0; if (!_0p_calibration) { if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center - z_at_pt[CEN] += - #if HAS_BED_PROBE - probe_pt(dx, dy, stow_after_each, 1, false) - #else - lcd_probe_pt(0, 0) - #endif - ; + z_at_pt[CEN] += calibration_probe(0, 0, stow_after_each); + if (isnan(z_at_pt[CEN])) return NAN; } if (_7p_calibration) { // probe extra center points @@ -5584,14 +5586,9 @@ void home_all_axes() { gcode_G28(true); } I_LOOP_CAL_PT(axis, start, steps) { const float a = RADIANS(210 + (360 / NPP) * (axis - 1)), r = delta_calibration_radius * 0.1; - z_at_pt[CEN] += - #if HAS_BED_PROBE - probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false) - #else - lcd_probe_pt(cos(a) * r, sin(a) * r) - #endif - ; - } + z_at_pt[CEN] += calibration_probe(cos(a) * r, sin(a) * r, stow_after_each); + if (isnan(z_at_pt[CEN])) return NAN; + } z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points); } @@ -5613,22 +5610,17 @@ void home_all_axes() { gcode_G28(true); } const float a = RADIANS(210 + (360 / NPP) * (axis - 1)), r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)), interpol = fmod(axis, 1); - const float z_temp = - #if HAS_BED_PROBE - probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false) - #else - lcd_probe_pt(cos(a) * r, sin(a) * r) - #endif - ; + const float z_temp = calibration_probe(cos(a) * r, sin(a) * r, stow_after_each); + if (isnan(z_temp)) return NAN; // split probe point to neighbouring calibration points z_at_pt[uint8_t(round(axis - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90))); - z_at_pt[uint8_t(round(axis - interpol )) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90))); + z_at_pt[uint8_t(round(axis - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90))); } zig_zag = !zig_zag; } if (_7p_intermed_points) LOOP_CAL_RAD(axis) - z_at_pt[axis] /= _7P_STEP / steps; + z_at_pt[axis] /= _7P_STEP / steps; } float S1 = z_at_pt[CEN], @@ -5649,7 +5641,7 @@ void home_all_axes() { gcode_G28(true); } #if HAS_BED_PROBE - static void G33_auto_tune() { + static bool G33_auto_tune() { float z_at_pt[NPP + 1] = { 0.0 }, z_at_pt_base[NPP + 1] = { 0.0 }, z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8; @@ -5663,7 +5655,7 @@ void home_all_axes() { gcode_G28(true); } SERIAL_PROTOCOLPGM("AUTO TUNE baseline"); SERIAL_EOL(); - probe_G33_points(z_at_pt_base, 3, true, false); + if (isnan(probe_G33_points(z_at_pt_base, 3, true, false))) return false; print_G33_results(z_at_pt_base, true, true); LOOP_XYZ(axis) { @@ -5678,7 +5670,7 @@ void home_all_axes() { gcode_G28(true); } SERIAL_CHAR(tolower(axis_codes[axis])); SERIAL_EOL(); - probe_G33_points(z_at_pt, 3, true, false); + if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false; LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis]; print_G33_results(z_at_pt, true, true); delta_endstop_adj[axis] += 1.0; @@ -5709,7 +5701,7 @@ void home_all_axes() { gcode_G28(true); } SERIAL_PROTOCOLPGM("Tuning R"); SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+"); SERIAL_EOL(); - probe_G33_points(z_at_pt, 3, true, false); + if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false; LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis]; print_G33_results(z_at_pt, true, true); delta_radius -= 1.0 * zig_zag; @@ -5736,7 +5728,7 @@ void home_all_axes() { gcode_G28(true); } SERIAL_CHAR(tolower(axis_codes[axis])); SERIAL_EOL(); - probe_G33_points(z_at_pt, 3, true, false); + if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false; LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis]; print_G33_results(z_at_pt, true, true); @@ -5749,14 +5741,14 @@ void home_all_axes() { gcode_G28(true); } recalc_delta_settings(); switch (axis) { case A_AXIS : - a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle - break; + a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle + break; case B_AXIS : - a_fac += 4.0 / (-Z06(__A) +Z06(__C) -Z06(_BC) +Z06(_AB)); // Offset by beta tower angle - break; + a_fac += 4.0 / (-Z06(__A) +Z06(__C) -Z06(_BC) +Z06(_AB)); // Offset by beta tower angle + break; case C_AXIS : - a_fac += 4.0 / (Z06(__A) -Z06(__B) +Z06(_BC) -Z06(_CA) ); // Offset by gamma tower angle - break; + a_fac += 4.0 / (Z06(__A) -Z06(__B) +Z06(_BC) -Z06(_CA) ); // Offset by gamma tower angle + break; } } a_fac /= 3.0; @@ -5771,6 +5763,7 @@ void home_all_axes() { gcode_G28(true); } SERIAL_EOL(); SERIAL_PROTOCOLPGM("Copy these values to Configuration.h"); SERIAL_EOL(); + return true; } #endif // HAS_BED_PROBE @@ -5798,8 +5791,9 @@ void home_all_axes() { gcode_G28(true); } * * Vn Verbose level: * V0 Dry-run mode. Report settings and probe results. No calibration. - * V1 Report settings - * V2 Report settings and probe results + * V1 Report start and end settings only + * V2 Report settings at each iteration + * V3 Report settings and probe results * * E Engage the probe for each point */ @@ -5812,12 +5806,12 @@ void home_all_axes() { gcode_G28(true); } } const int8_t verbose_level = parser.byteval('V', 1); - if (!WITHIN(verbose_level, 0, 2)) { - SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2)."); + if (!WITHIN(verbose_level, 0, 3)) { + SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-3)."); return; } - const float calibration_precision = parser.floatval('C'); + const float calibration_precision = parser.floatval('C', 0.0); if (calibration_precision < 0) { SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0)."); return; @@ -5925,6 +5919,11 @@ void home_all_axes() { gcode_G28(true); } // Probe the points zero_std_dev = probe_G33_points(z_at_pt, probe_points, towers_set, stow_after_each); + if (isnan(zero_std_dev)) { + SERIAL_PROTOCOLPGM("Correct delta_radius with M665 R or end-stops with M666 X Y Z"); + SERIAL_EOL(); + return G33_CLEANUP(); + } // Solve matrices @@ -6038,7 +6037,7 @@ void home_all_axes() { gcode_G28(true); } // print report - if (verbose_level != 1) + if (verbose_level > 2) print_G33_results(z_at_pt, _tower_results, _opposite_results); if (verbose_level != 0) { // !dry run @@ -6078,7 +6077,8 @@ void home_all_axes() { gcode_G28(true); } SERIAL_PROTOCOL_F(zero_std_dev, 3); SERIAL_EOL(); lcd_setstatus(mess); - print_G33_settings(_endstop_results, _angle_results); + if (verbose_level > 1) + print_G33_settings(_endstop_results, _angle_results); } } else { // dry run @@ -8981,10 +8981,7 @@ inline void gcode_M205() { * Z = Rotate A and B by this angle */ inline void gcode_M665() { - if (parser.seen('H')) { - delta_height = parser.value_linear_units(); - update_software_endstops(Z_AXIS); - } + if (parser.seen('H')) delta_height = parser.value_linear_units(); if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units(); if (parser.seen('R')) delta_radius = parser.value_linear_units(); if (parser.seen('S')) delta_segments_per_second = parser.value_float();