Merge pull request #1619 from epatel/manual-bed-leveling+mesh-bed-level

Manual bed leveling + mesh bed leveling
master
Scott Lahteine 10 years ago
commit 9b639b4135

@ -374,6 +374,23 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
//const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
//#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
//===========================================================================
//============================ Manual Bed Leveling ==========================
//===========================================================================
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
// #define MESH_BED_LEVELING // Enable mesh bed leveling
#if defined(MESH_BED_LEVELING)
#define MESH_MIN_X 10
#define MESH_MAX_X (X_MAX_POS - MESH_MIN_X)
#define MESH_MIN_Y 10
#define MESH_MAX_Y (Y_MAX_POS - MESH_MIN_Y)
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited
#define MESH_NUM_Y_POINTS 3
#define MESH_HOME_SEARCH_Z 4 // Z after Home, bed somewhere below but above 0.0
#endif // MESH_BED_LEVELING
//===========================================================================
//============================= Bed Auto Leveling ===========================
//===========================================================================

@ -20,6 +20,12 @@
* max_e_jerk
* add_homing (x3)
*
* Mesh bed leveling:
* active
* mesh_num_x
* mesh_num_y
* z_values[][]
*
* DELTA:
* endstop_adj (x3)
* delta_radius
@ -69,6 +75,10 @@
#include "ultralcd.h"
#include "ConfigurationStore.h"
#if defined(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#endif // MESH_BED_LEVELING
void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
uint8_t c;
while(size--) {
@ -105,7 +115,7 @@ void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
// wrong data being written to the variables.
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
#define EEPROM_VERSION "V16"
#define EEPROM_VERSION "V17"
#ifdef EEPROM_SETTINGS
@ -128,6 +138,28 @@ void Config_StoreSettings() {
EEPROM_WRITE_VAR(i, max_e_jerk);
EEPROM_WRITE_VAR(i, add_homing);
uint8_t mesh_num_x = 3;
uint8_t mesh_num_y = 3;
#if defined(MESH_BED_LEVELING)
// Compile time test that sizeof(mbl.z_values) is as expected
typedef char c_assert[(sizeof(mbl.z_values) == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS*sizeof(dummy)) ? 1 : -1];
mesh_num_x = MESH_NUM_X_POINTS;
mesh_num_y = MESH_NUM_Y_POINTS;
EEPROM_WRITE_VAR(i, mbl.active);
EEPROM_WRITE_VAR(i, mesh_num_x);
EEPROM_WRITE_VAR(i, mesh_num_y);
EEPROM_WRITE_VAR(i, mbl.z_values);
#else
uint8_t dummy_uint8 = 0;
EEPROM_WRITE_VAR(i, dummy_uint8);
EEPROM_WRITE_VAR(i, mesh_num_x);
EEPROM_WRITE_VAR(i, mesh_num_y);
dummy = 0.0f;
for (int q=0; q<mesh_num_x*mesh_num_y; q++) {
EEPROM_WRITE_VAR(i, dummy);
}
#endif // MESH_BED_LEVELING
#ifdef DELTA
EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats
EEPROM_WRITE_VAR(i, delta_radius); // 1 float
@ -250,7 +282,7 @@ void Config_RetrieveSettings() {
EEPROM_READ_VAR(i, max_feedrate);
EEPROM_READ_VAR(i, max_acceleration_units_per_sq_second);
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
reset_acceleration_rates();
EEPROM_READ_VAR(i, acceleration);
@ -264,6 +296,31 @@ void Config_RetrieveSettings() {
EEPROM_READ_VAR(i, max_e_jerk);
EEPROM_READ_VAR(i, add_homing);
uint8_t mesh_num_x = 0;
uint8_t mesh_num_y = 0;
#if defined(MESH_BED_LEVELING)
EEPROM_READ_VAR(i, mbl.active);
EEPROM_READ_VAR(i, mesh_num_x);
EEPROM_READ_VAR(i, mesh_num_y);
if (mesh_num_x != MESH_NUM_X_POINTS ||
mesh_num_y != MESH_NUM_Y_POINTS) {
mbl.reset();
for (int q=0; q<mesh_num_x*mesh_num_y; q++) {
EEPROM_READ_VAR(i, dummy);
}
} else {
EEPROM_READ_VAR(i, mbl.z_values);
}
#else
uint8_t dummy_uint8 = 0;
EEPROM_READ_VAR(i, dummy_uint8);
EEPROM_READ_VAR(i, mesh_num_x);
EEPROM_READ_VAR(i, mesh_num_y);
for (int q=0; q<mesh_num_x*mesh_num_y; q++) {
EEPROM_READ_VAR(i, dummy);
}
#endif // MESH_BED_LEVELING
#ifdef DELTA
EEPROM_READ_VAR(i, endstop_adj); // 3 floats
EEPROM_READ_VAR(i, delta_radius); // 1 float
@ -392,6 +449,10 @@ void Config_ResetDefault() {
max_e_jerk = DEFAULT_EJERK;
add_homing[X_AXIS] = add_homing[Y_AXIS] = add_homing[Z_AXIS] = 0;
#if defined(MESH_BED_LEVELING)
mbl.active = 0;
#endif // MESH_BED_LEVELING
#ifdef DELTA
endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
delta_radius = DELTA_RADIUS;

@ -41,6 +41,10 @@
#define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
#if defined(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#endif // MESH_BED_LEVELING
#include "ultralcd.h"
#include "planner.h"
#include "stepper.h"
@ -1737,6 +1741,11 @@ inline void gcode_G28() {
#endif
#endif
#if defined(MESH_BED_LEVELING)
uint8_t mbl_was_active = mbl.active;
mbl.active = 0;
#endif // MESH_BED_LEVELING
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
@ -1951,12 +1960,112 @@ inline void gcode_G28() {
enable_endstops(false);
#endif
#if defined(MESH_BED_LEVELING)
if (mbl_was_active) {
current_position[X_AXIS] = mbl.get_x(0);
current_position[Y_AXIS] = mbl.get_y(0);
destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS];
destination[Z_AXIS] = current_position[Z_AXIS];
destination[E_AXIS] = current_position[E_AXIS];
feedrate = homing_feedrate[X_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
mbl.active = 1;
}
#endif
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis();
endstops_hit_on_purpose();
}
#if defined(MESH_BED_LEVELING)
inline void gcode_G29() {
static int probe_point = -1;
int state = 0;
if (code_seen('S') || code_seen('s')) {
state = code_value_long();
if (state < 0 || state > 2) {
SERIAL_PROTOCOLPGM("S out of range (0-2).\n");
return;
}
}
if (state == 0) { // Dump mesh_bed_leveling
if (mbl.active) {
SERIAL_PROTOCOLPGM("Num X,Y: ");
SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
SERIAL_PROTOCOLPGM(",");
SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
SERIAL_PROTOCOLPGM("\nZ search height: ");
SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
SERIAL_PROTOCOLPGM("\nMeasured points:\n");
for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
for (int x=0; x<MESH_NUM_X_POINTS; x++) {
SERIAL_PROTOCOLPGM(" ");
SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
}
SERIAL_EOL;
}
} else {
SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
}
} else if (state == 1) { // Begin probing mesh points
mbl.reset();
probe_point = 0;
enquecommands_P(PSTR("G28"));
enquecommands_P(PSTR("G29 S2"));
} else if (state == 2) { // Goto next point
if (probe_point < 0) {
SERIAL_PROTOCOLPGM("Mesh probing not started.\n");
return;
}
int ix, iy;
if (probe_point == 0) {
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
} else {
ix = (probe_point-1) % MESH_NUM_X_POINTS;
iy = (probe_point-1) / MESH_NUM_X_POINTS;
if (iy&1) { // Zig zag
ix = (MESH_NUM_X_POINTS - 1) - ix;
}
mbl.set_z(ix, iy, current_position[Z_AXIS]);
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
st_synchronize();
}
if (probe_point == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS) {
SERIAL_PROTOCOLPGM("Mesh done.\n");
probe_point = -1;
mbl.active = 1;
enquecommands_P(PSTR("G28"));
return;
}
ix = probe_point % MESH_NUM_X_POINTS;
iy = probe_point / MESH_NUM_X_POINTS;
if (iy&1) { // Zig zag
ix = (MESH_NUM_X_POINTS - 1) - ix;
}
current_position[X_AXIS] = mbl.get_x(ix);
current_position[Y_AXIS] = mbl.get_y(iy);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
st_synchronize();
probe_point++;
}
}
#endif
#ifdef ENABLE_AUTO_BED_LEVELING
// Define the possible boundaries for probing based on set limits
@ -4661,6 +4770,12 @@ void process_commands() {
gcode_G28();
break;
#if defined(MESH_BED_LEVELING)
case 29: // G29 Handle mesh based leveling
gcode_G29();
break;
#endif
#ifdef ENABLE_AUTO_BED_LEVELING
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
@ -5280,6 +5395,81 @@ void prepare_move_raw()
}
#endif //DELTA
#if defined(MESH_BED_LEVELING)
#if !defined(MIN)
#define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
#endif // ! MIN
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
{
if (!mbl.active) {
plan_buffer_line(x, y, z, e, feed_rate, extruder);
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
return;
}
int pix = mbl.select_x_index(current_position[X_AXIS]);
int piy = mbl.select_y_index(current_position[Y_AXIS]);
int ix = mbl.select_x_index(x);
int iy = mbl.select_y_index(y);
pix = MIN(pix, MESH_NUM_X_POINTS-2);
piy = MIN(piy, MESH_NUM_Y_POINTS-2);
ix = MIN(ix, MESH_NUM_X_POINTS-2);
iy = MIN(iy, MESH_NUM_Y_POINTS-2);
if (pix == ix && piy == iy) {
// Start and end on same mesh square
plan_buffer_line(x, y, z, e, feed_rate, extruder);
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
return;
}
float nx, ny, ne, normalized_dist;
if (ix > pix && (x_splits) & BIT(ix)) {
nx = mbl.get_x(ix);
normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
x_splits ^= BIT(ix);
} else if (ix < pix && (x_splits) & BIT(pix)) {
nx = mbl.get_x(pix);
normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
x_splits ^= BIT(pix);
} else if (iy > piy && (y_splits) & BIT(iy)) {
ny = mbl.get_y(iy);
normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
y_splits ^= BIT(iy);
} else if (iy < piy && (y_splits) & BIT(piy)) {
ny = mbl.get_y(piy);
normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
y_splits ^= BIT(piy);
} else {
// Already split on a border
plan_buffer_line(x, y, z, e, feed_rate, extruder);
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
return;
}
// Do the split and look for more borders
destination[X_AXIS] = nx;
destination[Y_AXIS] = ny;
destination[E_AXIS] = ne;
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
destination[X_AXIS] = x;
destination[Y_AXIS] = y;
destination[E_AXIS] = e;
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
}
#endif // MESH_BED_LEVELING
void prepare_move()
{
clamp_to_software_endstops(destination);
@ -5395,10 +5585,14 @@ for (int s = 1; s <= steps; s++) {
#if ! (defined DELTA || defined SCARA)
// Do not use feedmultiply for E or Z only moves
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
}
else {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
} else {
#if defined(MESH_BED_LEVELING)
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
return;
#else
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
#endif // MESH_BED_LEVELING
}
#endif // !(DELTA || SCARA)

@ -95,6 +95,9 @@
#ifndef MSG_MOVE_AXIS
#define MSG_MOVE_AXIS "Move axis"
#endif
#ifndef MSG_LEVEL_BED
#define MSG_LEVEL_BED "Level bed"
#endif
#ifndef MSG_MOVE_X
#define MSG_MOVE_X "Move X"
#endif

@ -0,0 +1,20 @@
#include "mesh_bed_leveling.h"
#if defined(MESH_BED_LEVELING)
mesh_bed_leveling mbl;
mesh_bed_leveling::mesh_bed_leveling() {
reset();
}
void mesh_bed_leveling::reset() {
for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
for (int x=0; x<MESH_NUM_X_POINTS; x++) {
z_values[y][x] = 0;
}
}
active = 0;
}
#endif // MESH_BED_LEVELING

@ -0,0 +1,61 @@
#include "Marlin.h"
#if defined(MESH_BED_LEVELING)
#define MESH_X_DIST ((MESH_MAX_X - MESH_MIN_X)/(MESH_NUM_X_POINTS - 1))
#define MESH_Y_DIST ((MESH_MAX_Y - MESH_MIN_Y)/(MESH_NUM_Y_POINTS - 1))
class mesh_bed_leveling {
public:
uint8_t active;
float z_values[MESH_NUM_Y_POINTS][MESH_NUM_X_POINTS];
mesh_bed_leveling();
void reset();
float get_x(int i) { return MESH_MIN_X + MESH_X_DIST*i; }
float get_y(int i) { return MESH_MIN_Y + MESH_Y_DIST*i; }
void set_z(int ix, int iy, float z) { z_values[iy][ix] = z; }
int select_x_index(float x) {
int i = 1;
while (x > get_x(i) && i < MESH_NUM_X_POINTS-1) {
i++;
}
return i-1;
}
int select_y_index(float y) {
int i = 1;
while (y > get_y(i) && i < MESH_NUM_Y_POINTS-1) {
i++;
}
return i-1;
}
float calc_z0(float a0, float a1, float z1, float a2, float z2) {
float delta_z = (z2 - z1)/(a2 - a1);
float delta_a = a0 - a1;
return z1 + delta_a * delta_z;
}
float get_z(float x0, float y0) {
int x_index = select_x_index(x0);
int y_index = select_y_index(y0);
float z1 = calc_z0(x0,
get_x(x_index), z_values[y_index][x_index],
get_x(x_index+1), z_values[y_index][x_index+1]);
float z2 = calc_z0(x0,
get_x(x_index), z_values[y_index+1][x_index],
get_x(x_index+1), z_values[y_index+1][x_index+1]);
float z0 = calc_z0(y0,
get_y(y_index), z1,
get_y(y_index+1), z2);
return z0;
}
};
extern mesh_bed_leveling mbl;
#endif // MESH_BED_LEVELING

@ -58,6 +58,10 @@
#include "ultralcd.h"
#include "language.h"
#if defined(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#endif // MESH_BED_LEVELING
//===========================================================================
//============================= public variables ============================
//===========================================================================
@ -530,7 +534,7 @@ float junction_deviation = 0.1;
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters.
#ifdef ENABLE_AUTO_BED_LEVELING
#if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
#else
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
@ -548,6 +552,12 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
lcd_update();
}
#if defined(MESH_BED_LEVELING)
if (mbl.active) {
z += mbl.get_z(x, y);
}
#endif // MESH_BED_LEVELING
#ifdef ENABLE_AUTO_BED_LEVELING
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
#endif // ENABLE_AUTO_BED_LEVELING
@ -1078,14 +1088,19 @@ vector_3 plan_get_position() {
}
#endif // ENABLE_AUTO_BED_LEVELING
#ifdef ENABLE_AUTO_BED_LEVELING
#if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
void plan_set_position(float x, float y, float z, const float &e)
{
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
#else
void plan_set_position(const float &x, const float &y, const float &z, const float &e)
#endif // ENABLE_AUTO_BED_LEVELING || MESH_BED_LEVELING
{
#endif // ENABLE_AUTO_BED_LEVELING
#if defined(ENABLE_AUTO_BED_LEVELING)
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
#elif defined(MESH_BED_LEVELING)
if (mbl.active) {
z += mbl.get_z(x, y);
}
#endif // ENABLE_AUTO_BED_LEVELING
position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);

@ -82,23 +82,24 @@ void plan_init();
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
// millimaters. Feed rate specifies the speed of the motion.
#ifdef ENABLE_AUTO_BED_LEVELING
#if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);
#if defined(ENABLE_AUTO_BED_LEVELING)
#ifndef DELTA
// Get the position applying the bed level matrix if enabled
vector_3 plan_get_position();
#endif
#endif // ENABLE_AUTO_BED_LEVELING
#else
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);
#endif // ENABLE_AUTO_BED_LEVELING
#endif // ENABLE_AUTO_BED_LEVELING || MESH_BED_LEVELING
// Set position. Used for G92 instructions.
#ifdef ENABLE_AUTO_BED_LEVELING
#if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
void plan_set_position(float x, float y, float z, const float &e);
#else
void plan_set_position(const float &x, const float &y, const float &z, const float &e);
#endif // ENABLE_AUTO_BED_LEVELING
#endif // ENABLE_AUTO_BED_LEVELING || MESH_BED_LEVELING
void plan_set_e_position(const float &e);

@ -70,6 +70,13 @@ static void lcd_sdcard_menu();
static void lcd_delta_calibrate_menu();
#endif // DELTA_CALIBRATION_MENU
#if defined(MANUAL_BED_LEVELING)
#include "mesh_bed_leveling.h"
static void _lcd_level_bed();
static void _lcd_level_bed_homing();
static void lcd_level_bed();
#endif // MANUAL_BED_LEVELING
static void lcd_quick_feedback();//Cause an LCD refresh, and give the user visual or audible feedback that something has happened
/* Different types of actions that can be used in menu items. */
@ -630,6 +637,10 @@ static void lcd_prepare_menu() {
}
#endif
MENU_ITEM(submenu, MSG_MOVE_AXIS, lcd_move_menu);
#if defined(MANUAL_BED_LEVELING)
MENU_ITEM(submenu, MSG_LEVEL_BED, lcd_level_bed);
#endif
END_MENU();
}
@ -1341,7 +1352,12 @@ void lcd_update() {
#endif
#ifdef ULTIPANEL
if (currentMenu != lcd_status_screen && millis() > timeoutToStatus) {
if (currentMenu != lcd_status_screen &&
#if defined(MANUAL_BED_LEVELING)
currentMenu != _lcd_level_bed &&
currentMenu != _lcd_level_bed_homing &&
#endif // MANUAL_BED_LEVELING
millis() > timeoutToStatus) {
lcd_return_to_status();
lcdDrawUpdate = 2;
}
@ -1760,4 +1776,75 @@ char *ftostr52(const float &x)
return conv;
}
#if defined(MANUAL_BED_LEVELING)
static int _lcd_level_bed_position;
static void _lcd_level_bed()
{
if (encoderPosition != 0) {
refresh_cmd_timeout();
current_position[Z_AXIS] += float((int)encoderPosition) * 0.05;
if (min_software_endstops && current_position[Z_AXIS] < Z_MIN_POS) current_position[Z_AXIS] = Z_MIN_POS;
if (max_software_endstops && current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
encoderPosition = 0;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[Z_AXIS]/60, active_extruder);
lcdDrawUpdate = 1;
}
if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR("Z"), ftostr32(current_position[Z_AXIS]));
static bool debounce_click = false;
if (LCD_CLICKED) {
if (!debounce_click) {
debounce_click = true;
int ix = _lcd_level_bed_position % MESH_NUM_X_POINTS;
int iy = _lcd_level_bed_position / MESH_NUM_X_POINTS;
mbl.set_z(ix, iy, current_position[Z_AXIS]);
_lcd_level_bed_position++;
if (_lcd_level_bed_position == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS) {
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[X_AXIS]/60, active_extruder);
mbl.active = 1;
enquecommands_P(PSTR("G28"));
lcd_return_to_status();
} else {
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[X_AXIS]/60, active_extruder);
ix = _lcd_level_bed_position % MESH_NUM_X_POINTS;
iy = _lcd_level_bed_position / MESH_NUM_X_POINTS;
if (iy&1) { // Zig zag
ix = (MESH_NUM_X_POINTS - 1) - ix;
}
current_position[X_AXIS] = mbl.get_x(ix);
current_position[Y_AXIS] = mbl.get_y(iy);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[X_AXIS]/60, active_extruder);
lcdDrawUpdate = 1;
}
}
} else {
debounce_click = false;
}
}
static void _lcd_level_bed_homing()
{
if (axis_known_position[X_AXIS] &&
axis_known_position[Y_AXIS] &&
axis_known_position[Z_AXIS]) {
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
current_position[X_AXIS] = MESH_MIN_X;
current_position[Y_AXIS] = MESH_MIN_Y;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[X_AXIS]/60, active_extruder);
_lcd_level_bed_position = 0;
lcd_goto_menu(_lcd_level_bed);
}
}
static void lcd_level_bed()
{
axis_known_position[X_AXIS] = false;
axis_known_position[Y_AXIS] = false;
axis_known_position[Z_AXIS] = false;
mbl.reset();
enquecommands_P(PSTR("G28"));
lcd_goto_menu(_lcd_level_bed_homing);
}
#endif // MANUAL_BED_LEVELING
#endif //ULTRA_LCD

Loading…
Cancel
Save