diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp index 04f7fe575..4460a7b3b 100644 --- a/Marlin/planner.cpp +++ b/Marlin/planner.cpp @@ -542,6 +542,11 @@ float junction_deviation = 0.1; block->steps[A_AXIS] = labs(dx + dy); block->steps[B_AXIS] = labs(dx - dy); block->steps[Z_AXIS] = labs(dz); + #elif defined(COREXZ) + // corexz planning + block->steps[A_AXIS] = labs(dx + dz); + block->steps[Y_AXIS] = labs(dy); + block->steps[C_AXIS] = labs(dx - dz); #else // default non-h-bot planning block->steps[X_AXIS] = labs(dx); @@ -572,6 +577,12 @@ float junction_deviation = 0.1; if (dz < 0) db |= BIT(Z_AXIS); if (dx + dy < 0) db |= BIT(A_AXIS); // Motor A direction if (dx - dy < 0) db |= BIT(B_AXIS); // Motor B direction + #elif defined(COREXZ) + if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis + if (dy < 0) db |= BIT(Y_AXIS); + if (dz < 0) db |= BIT(Z_HEAD); // ...and Z + if (dx + dz < 0) db |= BIT(A_AXIS); // Motor A direction + if (dx - dz < 0) db |= BIT(C_AXIS); // Motor B direction #else if (dx < 0) db |= BIT(X_AXIS); if (dy < 0) db |= BIT(Y_AXIS); @@ -591,6 +602,11 @@ float junction_deviation = 0.1; #ifndef Z_LATE_ENABLE if (block->steps[Z_AXIS]) enable_z(); #endif + #elif defined(COREXZ) + if (block->steps[A_AXIS] || block->steps[C_AXIS]) { + enable_x(); + enable_z(); + } #else if (block->steps[X_AXIS]) enable_x(); if (block->steps[Y_AXIS]) enable_y(); @@ -683,6 +699,13 @@ float junction_deviation = 0.1; delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS]; delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS]; delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS]; + #elif defined(COREXZ) + float delta_mm[6]; + delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS]; + delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS]; + delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS]; + delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_unit[A_AXIS]; + delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_unit[C_AXIS]; #else float delta_mm[4]; delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS]; @@ -698,6 +721,8 @@ float junction_deviation = 0.1; block->millimeters = sqrt( #ifdef COREXY square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]) + #elif defined(COREXZ) + square(delta_mm[X_HEAD]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_HEAD]) #else square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]) #endif diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp index 4bf2e1d9e..f802bc1c5 100644 --- a/Marlin/stepper.cpp +++ b/Marlin/stepper.cpp @@ -342,34 +342,38 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { return timer; } -// set the stepper direction of each axis +/** + * Set the stepper direction of each axis + * + * X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY + * X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ + */ void set_stepper_direction() { - - // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY) - if (TEST(out_bits, X_AXIS)) { - X_APPLY_DIR(INVERT_X_DIR,0); + + if (TEST(out_bits, X_AXIS)) { // A_AXIS + X_APPLY_DIR(INVERT_X_DIR, 0); count_direction[X_AXIS] = -1; } else { - X_APPLY_DIR(!INVERT_X_DIR,0); + X_APPLY_DIR(!INVERT_X_DIR, 0); count_direction[X_AXIS] = 1; } - if (TEST(out_bits, Y_AXIS)) { - Y_APPLY_DIR(INVERT_Y_DIR,0); + if (TEST(out_bits, Y_AXIS)) { // B_AXIS + Y_APPLY_DIR(INVERT_Y_DIR, 0); count_direction[Y_AXIS] = -1; } else { - Y_APPLY_DIR(!INVERT_Y_DIR,0); + Y_APPLY_DIR(!INVERT_Y_DIR, 0); count_direction[Y_AXIS] = 1; } - if (TEST(out_bits, Z_AXIS)) { - Z_APPLY_DIR(INVERT_Z_DIR,0); + if (TEST(out_bits, Z_AXIS)) { // C_AXIS + Z_APPLY_DIR(INVERT_Z_DIR, 0); count_direction[Z_AXIS] = -1; } else { - Z_APPLY_DIR(!INVERT_Z_DIR,0); + Z_APPLY_DIR(!INVERT_Z_DIR, 0); count_direction[Z_AXIS] = 1; } @@ -503,6 +507,11 @@ ISR(TIMER1_COMPA_vect) { // If DeltaX == -DeltaY, the movement is only in Y axis if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) { if (TEST(out_bits, X_HEAD)) + #elif defined(COREXZ) + // Head direction in -X axis for CoreXZ bots. + // If DeltaX == -DeltaZ, the movement is only in Z axis + if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, C_AXIS))) { + if (TEST(out_bits, X_HEAD)) #else if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot) #endif @@ -528,8 +537,11 @@ ISR(TIMER1_COMPA_vect) { #endif } } - #ifdef COREXY + #if defined(COREXY) || defined(COREXZ) } + #endif + + #ifdef COREXY // Head direction in -Y axis for CoreXY bots. // If DeltaX == DeltaY, the movement is only in X axis if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) { @@ -547,82 +559,91 @@ ISR(TIMER1_COMPA_vect) { UPDATE_ENDSTOP(Y, MAX); #endif } - #ifdef COREXY + #if defined(COREXY) || defined(COREXZ) } #endif - if (TEST(out_bits, Z_AXIS)) { // z -direction - #if HAS_Z_MIN - - #ifdef Z_DUAL_ENDSTOPS - SET_ENDSTOP_BIT(Z, MIN); - #if HAS_Z2_MIN - SET_ENDSTOP_BIT(Z2, MIN); - #else - COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN); - #endif - - byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2 - - if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN - endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; - endstop_hit_bits |= BIT(Z_MIN); - if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing... - step_events_completed = current_block->step_event_count; - } - #else // !Z_DUAL_ENDSTOPS - - UPDATE_ENDSTOP(Z, MIN); - #endif // !Z_DUAL_ENDSTOPS - #endif // Z_MIN_PIN - - #ifdef Z_PROBE_ENDSTOP - UPDATE_ENDSTOP(Z, PROBE); - - if (TEST_ENDSTOP(Z_PROBE)) - { - endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; - endstop_hit_bits |= BIT(Z_PROBE); + + #ifdef COREXZ + // Head direction in -Z axis for CoreXZ bots. + // If DeltaX == DeltaZ, the movement is only in X axis + if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) { + if (TEST(out_bits, Z_HEAD)) + #else + if (TEST(out_bits, Z_AXIS)) + #endif + { // z -direction + #if HAS_Z_MIN + + #ifdef Z_DUAL_ENDSTOPS + SET_ENDSTOP_BIT(Z, MIN); + #if HAS_Z2_MIN + SET_ENDSTOP_BIT(Z2, MIN); + #else + COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN); + #endif + + byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2 + + if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN + endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; + endstop_hit_bits |= BIT(Z_MIN); + if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing... + step_events_completed = current_block->step_event_count; + } + #else // !Z_DUAL_ENDSTOPS + + UPDATE_ENDSTOP(Z, MIN); + #endif // !Z_DUAL_ENDSTOPS + #endif // Z_MIN_PIN + + #ifdef Z_PROBE_ENDSTOP + UPDATE_ENDSTOP(Z, PROBE); + + if (TEST_ENDSTOP(Z_PROBE)) + { + endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; + endstop_hit_bits |= BIT(Z_PROBE); + } + #endif } - #endif - } - else { // z +direction - #if HAS_Z_MAX - - #ifdef Z_DUAL_ENDSTOPS - - SET_ENDSTOP_BIT(Z, MAX); - #if HAS_Z2_MAX - SET_ENDSTOP_BIT(Z2, MAX); - #else - COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX) - #endif - - byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2 - - if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX - endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; - endstop_hit_bits |= BIT(Z_MIN); - if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing... - step_events_completed = current_block->step_event_count; - } - - #else // !Z_DUAL_ENDSTOPS - - UPDATE_ENDSTOP(Z, MAX); - - #endif // !Z_DUAL_ENDSTOPS - #endif // Z_MAX_PIN - - #ifdef Z_PROBE_ENDSTOP - UPDATE_ENDSTOP(Z, PROBE); - - if (TEST_ENDSTOP(Z_PROBE)) - { - endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; - endstop_hit_bits |= BIT(Z_PROBE); + else { // z +direction + #if HAS_Z_MAX + + #ifdef Z_DUAL_ENDSTOPS + + SET_ENDSTOP_BIT(Z, MAX); + #if HAS_Z2_MAX + SET_ENDSTOP_BIT(Z2, MAX); + #else + COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX) + #endif + + byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2 + + if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX + endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; + endstop_hit_bits |= BIT(Z_MIN); + if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing... + step_events_completed = current_block->step_event_count; + } + + #else // !Z_DUAL_ENDSTOPS + + UPDATE_ENDSTOP(Z, MAX); + + #endif // !Z_DUAL_ENDSTOPS + #endif // Z_MAX_PIN + + #ifdef Z_PROBE_ENDSTOP + UPDATE_ENDSTOP(Z, PROBE); + + if (TEST_ENDSTOP(Z_PROBE)) + { + endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; + endstop_hit_bits |= BIT(Z_PROBE); + } + #endif } - #endif - } old_endstop_bits = current_endstop_bits; }