diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp
index bb1e84be1..93bd8225a 100644
--- a/Marlin/planner.cpp
+++ b/Marlin/planner.cpp
@@ -1,56 +1,56 @@
/*
planner.c - buffers movement commands and manages the acceleration profile plan
- Part of Grbl
-
- Copyright (c) 2009-2011 Simen Svale Skogsrud
-
- Grbl is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- Grbl is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with Grbl. If not, see .
-*/
+ Part of Grbl
+
+ Copyright (c) 2009-2011 Simen Svale Skogsrud
+
+ Grbl is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ Grbl is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Grbl. If not, see .
+ */
/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
/*
- Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
-
- s == speed, a == acceleration, t == time, d == distance
-
- Basic definitions:
-
- Speed[s_, a_, t_] := s + (a*t)
- Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
-
- Distance to reach a specific speed with a constant acceleration:
-
- Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
- d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
-
- Speed after a given distance of travel with constant acceleration:
-
- Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
- m -> Sqrt[2 a d + s^2]
-
- DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
-
- When to start braking (di) to reach a specified destionation speed (s2) after accelerating
- from initial speed s1 without ever stopping at a plateau:
-
- Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
- di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
+ Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
+
+ s == speed, a == acceleration, t == time, d == distance
+
+ Basic definitions:
+
+ Speed[s_, a_, t_] := s + (a*t)
+ Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
+
+ Distance to reach a specific speed with a constant acceleration:
+
+ Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
+ d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
+
+ Speed after a given distance of travel with constant acceleration:
+
+ Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
+ m -> Sqrt[2 a d + s^2]
+
+ DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
+
+ When to start braking (di) to reach a specified destionation speed (s2) after accelerating
+ from initial speed s1 without ever stopping at a plateau:
+
+ Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
+ di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
+
+ IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
+ */
- IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
-*/
-
#include "Marlin.h"
#include "planner.h"
#include "stepper.h"
@@ -83,10 +83,10 @@ static float previous_nominal_speed; // Nominal speed of previous path line segm
extern volatile int extrudemultiply; // Sets extrude multiply factor (in percent)
#ifdef AUTOTEMP
- float autotemp_max=250;
- float autotemp_min=210;
- float autotemp_factor=0.1;
- bool autotemp_enabled=false;
+float autotemp_max=250;
+float autotemp_min=210;
+float autotemp_factor=0.1;
+bool autotemp_enabled=false;
#endif
//===========================================================================
@@ -100,27 +100,33 @@ volatile unsigned char block_buffer_tail; // Index of the block to pro
//=============================private variables ============================
//===========================================================================
#ifdef PREVENT_DANGEROUS_EXTRUDE
- bool allow_cold_extrude=false;
+bool allow_cold_extrude=false;
#endif
#ifdef XY_FREQUENCY_LIMIT
- // Used for the frequency limit
- static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
- static long x_segment_time[3]={0,0,0}; // Segment times (in us). Used for speed calculations
- static long y_segment_time[3]={0,0,0};
+// Used for the frequency limit
+static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
+static long x_segment_time[3]={
+ 0,0,0}; // Segment times (in us). Used for speed calculations
+static long y_segment_time[3]={
+ 0,0,0};
#endif
// Returns the index of the next block in the ring buffer
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
static int8_t next_block_index(int8_t block_index) {
block_index++;
- if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
+ if (block_index == BLOCK_BUFFER_SIZE) {
+ block_index = 0;
+ }
return(block_index);
}
// Returns the index of the previous block in the ring buffer
static int8_t prev_block_index(int8_t block_index) {
- if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
+ if (block_index == 0) {
+ block_index = BLOCK_BUFFER_SIZE;
+ }
block_index--;
return(block_index);
}
@@ -134,8 +140,8 @@ static int8_t prev_block_index(int8_t block_index) {
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
{
if (acceleration!=0) {
- return((target_rate*target_rate-initial_rate*initial_rate)/
- (2.0*acceleration));
+ return((target_rate*target_rate-initial_rate*initial_rate)/
+ (2.0*acceleration));
}
else {
return 0.0; // acceleration was 0, set acceleration distance to 0
@@ -149,9 +155,9 @@ FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float targ
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
{
- if (acceleration!=0) {
- return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
- (4.0*acceleration) );
+ if (acceleration!=0) {
+ return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
+ (4.0*acceleration) );
}
else {
return 0.0; // acceleration was 0, set intersection distance to 0
@@ -165,46 +171,50 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
// Limit minimal step rate (Otherwise the timer will overflow.)
- if(initial_rate <120) {initial_rate=120; }
- if(final_rate < 120) {final_rate=120; }
-
+ if(initial_rate <120) {
+ initial_rate=120;
+ }
+ if(final_rate < 120) {
+ final_rate=120;
+ }
+
long acceleration = block->acceleration_st;
int32_t accelerate_steps =
ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
int32_t decelerate_steps =
floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
-
+
// Calculate the size of Plateau of Nominal Rate.
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
-
+
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
// have to use intersection_distance() to calculate when to abort acceleration and start braking
// in order to reach the final_rate exactly at the end of this block.
if (plateau_steps < 0) {
accelerate_steps = ceil(
- intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
+ intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
accelerate_steps = min(accelerate_steps,block->step_event_count);
plateau_steps = 0;
}
- #ifdef ADVANCE
- volatile long initial_advance = block->advance*entry_factor*entry_factor;
- volatile long final_advance = block->advance*exit_factor*exit_factor;
- #endif // ADVANCE
-
- // block->accelerate_until = accelerate_steps;
- // block->decelerate_after = accelerate_steps+plateau_steps;
+#ifdef ADVANCE
+ volatile long initial_advance = block->advance*entry_factor*entry_factor;
+ volatile long final_advance = block->advance*exit_factor*exit_factor;
+#endif // ADVANCE
+
+ // block->accelerate_until = accelerate_steps;
+ // block->decelerate_after = accelerate_steps+plateau_steps;
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
if(block->busy == false) { // Don't update variables if block is busy.
block->accelerate_until = accelerate_steps;
block->decelerate_after = accelerate_steps+plateau_steps;
block->initial_rate = initial_rate;
block->final_rate = final_rate;
- #ifdef ADVANCE
- block->initial_advance = initial_advance;
- block->final_advance = final_advance;
- #endif //ADVANCE
+#ifdef ADVANCE
+ block->initial_advance = initial_advance;
+ block->final_advance = final_advance;
+#endif //ADVANCE
}
CRITICAL_SECTION_END;
}
@@ -226,24 +236,27 @@ FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
- if(!current) { return; }
-
- if (next) {
+ if(!current) {
+ return;
+ }
+
+ if (next) {
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
if (current->entry_speed != current->max_entry_speed) {
-
+
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
// for max allowable speed if block is decelerating and nominal length is false.
if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
current->entry_speed = min( current->max_entry_speed,
- max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
- } else {
+ max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
+ }
+ else {
current->entry_speed = current->max_entry_speed;
}
current->recalculate_flag = true;
-
+
}
} // Skip last block. Already initialized and set for recalculation.
}
@@ -252,10 +265,17 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n
// implements the reverse pass.
void planner_reverse_pass() {
uint8_t block_index = block_buffer_head;
- if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
+
+ //Make a local copy of block_buffer_tail, because the interrupt can alter it
+ CRITICAL_SECTION_START;
+ unsigned char tail = block_buffer_tail;
+ CRITICAL_SECTION_END
+
+ if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
- block_t *block[3] = { NULL, NULL, NULL };
- while(block_index != block_buffer_tail) {
+ block_t *block[3] = {
+ NULL, NULL, NULL };
+ while(block_index != tail) {
block_index = prev_block_index(block_index);
block[2]= block[1];
block[1]= block[0];
@@ -267,8 +287,10 @@ void planner_reverse_pass() {
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
- if(!previous) { return; }
-
+ if(!previous) {
+ return;
+ }
+
// If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
// speeds have already been reset, maximized, and reverse planned by reverse planner.
@@ -276,7 +298,7 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n
if (!previous->nominal_length_flag) {
if (previous->entry_speed < current->entry_speed) {
double entry_speed = min( current->entry_speed,
- max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
+ max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
// Check for junction speed change
if (current->entry_speed != entry_speed) {
@@ -291,7 +313,8 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n
// implements the forward pass.
void planner_forward_pass() {
uint8_t block_index = block_buffer_tail;
- block_t *block[3] = { NULL, NULL, NULL };
+ block_t *block[3] = {
+ NULL, NULL, NULL };
while(block_index != block_buffer_head) {
block[0] = block[1];
@@ -310,7 +333,7 @@ void planner_recalculate_trapezoids() {
int8_t block_index = block_buffer_tail;
block_t *current;
block_t *next = NULL;
-
+
while(block_index != block_buffer_head) {
current = next;
next = &block_buffer[block_index];
@@ -319,7 +342,7 @@ void planner_recalculate_trapezoids() {
if (current->recalculate_flag || next->recalculate_flag) {
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
- next->entry_speed/current->nominal_speed);
+ next->entry_speed/current->nominal_speed);
current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
}
}
@@ -328,7 +351,7 @@ void planner_recalculate_trapezoids() {
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
if(next != NULL) {
calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
- MINIMUM_PLANNER_SPEED/next->nominal_speed);
+ MINIMUM_PLANNER_SPEED/next->nominal_speed);
next->recalculate_flag = false;
}
}
@@ -380,14 +403,14 @@ void getHighESpeed()
if(degTargetHotend0()+2high)
@@ -397,7 +420,7 @@ void getHighESpeed()
}
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
}
-
+
float g=autotemp_min+high*autotemp_factor;
float t=g;
if(t -1
- if (FanSpeed != 0){
- analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed
- }
- #endif
+#if FAN_PIN > -1
+ if (FanSpeed != 0){
+ analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed
+ }
+#endif
}
if((DISABLE_X) && (x_active == 0)) disable_x();
if((DISABLE_Y) && (y_active == 0)) disable_y();
if((DISABLE_Z) && (z_active == 0)) disable_z();
- if((DISABLE_E) && (e_active == 0)) { disable_e0();disable_e1();disable_e2(); }
- #if FAN_PIN > -1
+ if((DISABLE_E) && (e_active == 0)) {
+ disable_e0();
+ disable_e1();
+ disable_e2();
+ }
+#if FAN_PIN > -1
if((FanSpeed == 0) && (fan_speed ==0)) {
analogWrite(FAN_PIN, 0);
}
@@ -454,10 +481,10 @@ void check_axes_activity() {
if (FanSpeed != 0 && tail_fan_speed !=0) {
analogWrite(FAN_PIN,tail_fan_speed);
}
- #endif
- #ifdef AUTOTEMP
- getHighESpeed();
- #endif
+#endif
+#ifdef AUTOTEMP
+ getHighESpeed();
+#endif
}
@@ -477,7 +504,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
manage_inactivity(1);
LCD_STATUS;
}
-
+
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
@@ -486,28 +513,28 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
-
- #ifdef PREVENT_DANGEROUS_EXTRUDE
- if(target[E_AXIS]!=position[E_AXIS])
+
+#ifdef PREVENT_DANGEROUS_EXTRUDE
+ if(target[E_AXIS]!=position[E_AXIS])
if(degHotend(active_extruder)axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
- {
- position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
- SERIAL_ECHO_START;
- SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
- }
- #endif
- #endif
-
+#ifdef PREVENT_LENGTHY_EXTRUDE
+ if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
+ {
+ position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
+ SERIAL_ECHO_START;
+ SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
+ }
+#endif
+#endif
+
// Prepare to set up new block
block_t *block = &block_buffer[block_buffer_head];
-
+
// Mark block as not busy (Not executed by the stepper interrupt)
block->busy = false;
@@ -521,36 +548,50 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
// Bail if this is a zero-length block
- if (block->step_event_count <= dropsegments) { return; };
+ if (block->step_event_count <= dropsegments) {
+ return;
+ };
block->fan_speed = FanSpeed;
-
+
// Compute direction bits for this block
block->direction_bits = 0;
- if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<active_extruder = extruder;
-
+
//enable active axes
if(block->steps_x != 0) enable_x();
if(block->steps_y != 0) enable_y();
- #ifndef Z_LATE_ENABLE
- if(block->steps_z != 0) enable_z();
- #endif
+#ifndef Z_LATE_ENABLE
+ if(block->steps_z != 0) enable_z();
+#endif
// Enable all
- if(block->steps_e != 0) { enable_e0();enable_e1();enable_e2(); }
+ if(block->steps_e != 0) {
+ enable_e0();
+ enable_e1();
+ enable_e2();
+ }
if (block->steps_e == 0) {
- if(feed_ratesteps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) {
block->millimeters = fabs(delta_mm[E_AXIS]);
- } else {
+ }
+ else {
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
}
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
-
- // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
+
+ // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
float inverse_second = feed_rate * inverse_millimeters;
-
+
int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
-
+
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
- #ifdef OLD_SLOWDOWN
- if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
- #endif
+#ifdef OLD_SLOWDOWN
+ if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
+#endif
- #ifdef SLOWDOWN
+#ifdef SLOWDOWN
// segment time im micro seconds
unsigned long segment_time = lround(1000000.0/inverse_second);
if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) {
if (segment_time < minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
- inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
+ inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
}
}
- #endif
+#endif
// END OF SLOW DOWN SECTION
-
+
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
- // Calculate and limit speed in mm/sec for each axis
+ // Calculate and limit speed in mm/sec for each axis
float current_speed[4];
float speed_factor = 1.0; //factor <=1 do decrease speed
for(int i=0; i < 4; i++) {
@@ -597,7 +639,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
}
-// Max segement time in us.
+ // Max segement time in us.
#ifdef XY_FREQUENCY_LIMIT
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
@@ -606,7 +648,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
old_direction_bits = block->direction_bits;
if((direction_change & (1<acceleration = block->acceleration_st / steps_per_mm;
block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
-
+
#if 0 // Use old jerk for now
// Compute path unit vector
double unit_vec[3];
@@ -663,7 +705,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
-
+
// Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
// Let a circle be tangent to both previous and current path line segments, where the junction
// deviation is defined as the distance from the junction to the closest edge of the circle,
@@ -680,9 +722,9 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
- - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
-
+ - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
+ - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
+
// Skip and use default max junction speed for 0 degree acute junction.
if (cos_theta < 0.95) {
vmax_junction = min(previous_nominal_speed,block->nominal_speed);
@@ -691,36 +733,39 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// Compute maximum junction velocity based on maximum acceleration and junction deviation
double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
vmax_junction = min(vmax_junction,
- sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
+ sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
}
}
}
#endif
// Start with a safe speed
- float vmax_junction = max_xy_jerk/2;
+ float vmax_junction = max_xy_jerk/2;
+ float vmax_junction_factor = 1.0;
if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
- vmax_junction = max_z_jerk/2;
- vmax_junction = min(vmax_junction, block->nominal_speed);
+ vmax_junction = min(vmax_junction, max_z_jerk/2);
if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)
vmax_junction = min(vmax_junction, max_e_jerk/2);
-
+ vmax_junction = min(vmax_junction, block->nominal_speed);
+ float safe_speed = vmax_junction;
+
if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
- if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
- vmax_junction = block->nominal_speed;
- }
+ // if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
+ vmax_junction = block->nominal_speed;
+ // }
if (jerk > max_xy_jerk) {
- vmax_junction *= (max_xy_jerk/jerk);
+ vmax_junction_factor = (max_xy_jerk/jerk);
}
if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
- vmax_junction *= (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]));
+ vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
}
if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
- vmax_junction *= (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]));
+ vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
}
+ vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
}
block->max_entry_speed = vmax_junction;
-
+
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
block->entry_speed = min(vmax_junction, v_allowable);
@@ -733,48 +778,52 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
// the reverse and forward planners, the corresponding block junction speed will always be at the
// the maximum junction speed and may always be ignored for any speed reduction checks.
- if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
- else { block->nominal_length_flag = false; }
+ if (block->nominal_speed <= v_allowable) {
+ block->nominal_length_flag = true;
+ }
+ else {
+ block->nominal_length_flag = false;
+ }
block->recalculate_flag = true; // Always calculate trapezoid for new block
-
+
// Update previous path unit_vector and nominal speed
memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
previous_nominal_speed = block->nominal_speed;
-
- #ifdef ADVANCE
- // Calculate advance rate
- if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
+
+#ifdef ADVANCE
+ // Calculate advance rate
+ if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
+ block->advance_rate = 0;
+ block->advance = 0;
+ }
+ else {
+ long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
+ float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
+ (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
+ block->advance = advance;
+ if(acc_dist == 0) {
block->advance_rate = 0;
- block->advance = 0;
- }
+ }
else {
- long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
- float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
- (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
- block->advance = advance;
- if(acc_dist == 0) {
- block->advance_rate = 0;
- }
- else {
- block->advance_rate = advance / (float)acc_dist;
- }
+ block->advance_rate = advance / (float)acc_dist;
}
- /*
+ }
+ /*
SERIAL_ECHO_START;
- SERIAL_ECHOPGM("advance :");
- SERIAL_ECHO(block->advance/256.0);
- SERIAL_ECHOPGM("advance rate :");
- SERIAL_ECHOLN(block->advance_rate/256.0);
- */
- #endif // ADVANCE
+ SERIAL_ECHOPGM("advance :");
+ SERIAL_ECHO(block->advance/256.0);
+ SERIAL_ECHOPGM("advance rate :");
+ SERIAL_ECHOLN(block->advance_rate/256.0);
+ */
+#endif // ADVANCE
calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
- MINIMUM_PLANNER_SPEED/block->nominal_speed);
-
+ safe_speed/block->nominal_speed);
+
// Move buffer head
block_buffer_head = next_buffer_head;
-
+
// Update position
memcpy(position, target, sizeof(target)); // position[] = target[]
@@ -805,12 +854,13 @@ void plan_set_e_position(const float &e)
uint8_t movesplanned()
{
- return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
+ return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
}
void allow_cold_extrudes(bool allow)
{
- #ifdef PREVENT_DANGEROUS_EXTRUDE
- allow_cold_extrude=allow;
- #endif
+#ifdef PREVENT_DANGEROUS_EXTRUDE
+ allow_cold_extrude=allow;
+#endif
}
+
diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp
index bb53e069b..08ed8edd9 100644
--- a/Marlin/stepper.cpp
+++ b/Marlin/stepper.cpp
@@ -261,12 +261,10 @@ FORCE_INLINE void trapezoid_generator_reset() {
#endif
deceleration_time = 0;
// step_rate to timer interval
+ OCR1A_nominal = calc_timer(current_block->nominal_rate);
acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time;
- OCR1A_nominal = calc_timer(current_block->nominal_rate);
-
-
// SERIAL_ECHO_START;
// SERIAL_ECHOPGM("advance :");
diff --git a/Marlin/ultralcd.pde b/Marlin/ultralcd.pde
index 1b9390298..7c495cae2 100644
--- a/Marlin/ultralcd.pde
+++ b/Marlin/ultralcd.pde
@@ -957,7 +957,7 @@ enum {
#if EXTRUDERS > 2
ItemCT_nozzle2,
#endif
-#if defined BED_USES_THERMISTOR || BED_USES_AD595
+#if defined BED_USES_THERMISTOR || defined BED_USES_AD595
ItemCT_bed,
#endif
ItemCT_fan,
@@ -1212,7 +1212,7 @@ void MainMenu::showControlTemp()
}break;
#endif //autotemp
- #if defined BED_USES_THERMISTOR || BED_USES_AD595
+ #if defined BED_USES_THERMISTOR || defined BED_USES_AD595
case ItemCT_bed:
{
if(force_lcd_update)