diff --git a/.travis.yml b/.travis.yml index 9935453f0..951e98527 100644 --- a/.travis.yml +++ b/.travis.yml @@ -120,7 +120,7 @@ script: # Test a simple build of AUTO_BED_LEVELING_UBL # - restore_configs - - opt_enable AUTO_BED_LEVELING_UBL FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL + - opt_enable AUTO_BED_LEVELING_UBL UBL_G26_MESH_EDITING FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL - build_marlin # # Test a Sled Z Probe diff --git a/Marlin/Configuration.h b/Marlin/Configuration.h index 3facece4b..23cb90137 100644 --- a/Marlin/Configuration.h +++ b/Marlin/Configuration.h @@ -862,7 +862,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/G26_Mesh_Validation_Tool.cpp b/Marlin/G26_Mesh_Validation_Tool.cpp index 80db49b7f..bd17b9d02 100644 --- a/Marlin/G26_Mesh_Validation_Tool.cpp +++ b/Marlin/G26_Mesh_Validation_Tool.cpp @@ -26,7 +26,7 @@ #include "MarlinConfig.h" -#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED) +#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING) #include "Marlin.h" #include "Configuration.h" @@ -38,7 +38,7 @@ #define EXTRUSION_MULTIPLIER 1.0 // This is too much clutter for the main Configuration.h file But #define RETRACTION_MULTIPLIER 1.0 // some user have expressed an interest in being able to customize - #define NOZZLE 0.3 // these numbers for thier printer so they don't need to type all + #define NOZZLE 0.3 // these numbers for their printer so they don't need to type all #define FILAMENT 1.75 // the options every time they do a Mesh Validation Print. #define LAYER_HEIGHT 0.2 #define PRIME_LENGTH 10.0 // So, we put these number in an easy to find and change place. @@ -113,9 +113,7 @@ * Y # Y coordinate Specify the starting location of the drawing activity. */ - extern bool ubl_has_control_of_lcd_panel; extern float feedrate; - //extern bool relative_mode; extern Planner planner; //#if ENABLED(ULTRA_LCD) extern char lcd_status_message[]; @@ -171,8 +169,7 @@ int8_t prime_flag = 0; - bool keep_heaters_on = false, - g26_debug_flag = false; + bool keep_heaters_on = false; /** * G26: Mesh Validation Pattern generation. @@ -181,15 +178,13 @@ * nozzle in a problem area and doing a G29 P4 R command. */ void gcode_G26() { - float circle_x, circle_y, x, y, xe, ye, tmp, - start_angle, end_angle; - int i, xi, yi, lcd_init_counter = 0; + float tmp, start_angle, end_angle; + int i, xi, yi; mesh_index_pair location; - if (axis_unhomed_error(true, true, true)) // Don't allow Mesh Validation without homing first - gcode_G28(); - - if (parse_G26_parameters()) return; // If the paramter parsing did not go OK, we abort the command + // Don't allow Mesh Validation without homing first + // If the paramter parsing did not go OK, we abort the command + if (axis_unhomed_error(true, true, true) || parse_G26_parameters()) return; if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) { do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); @@ -197,17 +192,12 @@ set_current_to_destination(); } - ubl_has_control_of_lcd_panel = true; // Take control of the LCD Panel! - if (turn_on_heaters()) // Turn on the heaters, leave the command if anything - goto LEAVE; // has gone wrong. + if (turn_on_heaters()) goto LEAVE; - axis_relative_modes[E_AXIS] = false; // Get things setup so we can take control of the - //relative_mode = false; // planner and stepper motors! current_position[E_AXIS] = 0.0; sync_plan_position_e(); - if (prime_flag && prime_nozzle()) // if prime_nozzle() returns an error, we just bail out. - goto LEAVE; + if (prime_flag && prime_nozzle()) goto LEAVE; /** * Bed is preheated @@ -219,20 +209,17 @@ * It's "Show Time" !!! */ - // Clear all of the flags we need ZERO(circle_flags); ZERO(horizontal_mesh_line_flags); ZERO(vertical_mesh_line_flags); - // // Move nozzle to the specified height for the first layer - // set_destination_to_current(); destination[Z_AXIS] = layer_height; move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount); - ubl_has_control_of_lcd_panel = true; // Take control of the LCD Panel! + ubl.has_control_of_lcd_panel++; //debug_current_and_destination((char*)"Starting G26 Mesh Validation Pattern."); /** @@ -264,14 +251,13 @@ goto LEAVE; } - if (continue_with_closest) - location = find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]); - else - location = find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now. + location = continue_with_closest + ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]) + : find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now. if (location.x_index >= 0 && location.y_index >= 0) { - circle_x = ubl.map_x_index_to_bed_location(location.x_index); - circle_y = ubl.map_y_index_to_bed_location(location.y_index); + const float circle_x = ubl.mesh_index_to_xpos[location.x_index], + circle_y = ubl.mesh_index_to_ypos[location.y_index]; // Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem #ifdef DELTA @@ -292,7 +278,7 @@ xi = location.x_index; // Just to shrink the next few lines and make them easier to understand yi = location.y_index; - if (g26_debug_flag) { + if (ubl.g26_debug_flag) { SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi); SERIAL_ECHOPAIR(", yi=", yi); SERIAL_CHAR(')'); @@ -329,24 +315,23 @@ for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) { int tmp_div_30 = tmp / 30.0; if (tmp_div_30 < 0) tmp_div_30 += 360 / 30; - - x = circle_x + cos_table[tmp_div_30]; // for speed, these are now a lookup table entry - y = circle_y + sin_table[tmp_div_30]; - if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30; - xe = circle_x + cos_table[tmp_div_30 + 1]; // for speed, these are now a lookup table entry - ye = circle_y + sin_table[tmp_div_30 + 1]; + + float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry + y = circle_y + sin_table[tmp_div_30], + xe = circle_x + cos_table[tmp_div_30 + 1], + ye = circle_y + sin_table[tmp_div_30 + 1]; #ifdef DELTA if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of continue; // the 'circle' is on the bed. If #else // not, we need to skip - x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops + x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1); xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1); ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1); #endif - //if (g26_debug_flag) { + //if (ubl.g26_debug_flag) { // char ccc, *cptr, seg_msg[50], seg_num[10]; // strcpy(seg_msg, " segment: "); // strcpy(seg_num, " \n"); @@ -357,15 +342,9 @@ // debug_current_and_destination(seg_msg); //} - print_line_from_here_to_there(x, y, layer_height, xe, ye, layer_height); + print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height); } - //lcd_init_counter++; - //if (lcd_init_counter > 10) { - // lcd_init_counter = 0; - // lcd_init(); // Some people's LCD Displays are locking up. This might help them - // ubl_has_control_of_lcd_panel = true; // Make sure UBL still is controlling the LCD Panel - //} //debug_current_and_destination((char*)"Looking for lines to connect."); look_for_lines_to_connect(); @@ -373,8 +352,8 @@ } //debug_current_and_destination((char*)"Done with current circle."); - } - while (location.x_index >= 0 && location.y_index >= 0); + + } while (location.x_index >= 0 && location.y_index >= 0); LEAVE: lcd_reset_alert_level(); @@ -394,7 +373,7 @@ move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position //debug_current_and_destination((char*)"done doing X/Y move."); - ubl_has_control_of_lcd_panel = false; // Give back control of the LCD Panel! + ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel! if (!keep_heaters_on) { #if HAS_TEMP_BED @@ -420,8 +399,8 @@ for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { if (!is_bit_set(circle_flags, i, j)) { - mx = ubl.map_x_index_to_bed_location(i); // We found a circle that needs to be printed - my = ubl.map_y_index_to_bed_location(j); + mx = ubl.mesh_index_to_xpos[i]; // We found a circle that needs to be printed + my = ubl.mesh_index_to_ypos[j]; dx = X - mx; // Get the distance to this intersection dy = Y - my; @@ -466,11 +445,11 @@ // We found two circles that need a horizontal line to connect them // Print it! // - sx = ubl.map_x_index_to_bed_location(i); + sx = ubl.mesh_index_to_xpos[i]; sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle - sy = ubl.map_y_index_to_bed_location(j); + sy = ubl.mesh_index_to_ypos[j]; - ex = ubl.map_x_index_to_bed_location(i + 1); + ex = ubl.mesh_index_to_xpos[i + 1]; ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle ey = sy; @@ -479,7 +458,7 @@ ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); - if (g26_debug_flag) { + if (ubl.g26_debug_flag) { SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx); SERIAL_ECHOPAIR(", sy=", sy); SERIAL_ECHOPAIR(") -> (ex=", ex); @@ -503,12 +482,12 @@ // We found two circles that need a vertical line to connect them // Print it! // - sx = ubl.map_x_index_to_bed_location(i); - sy = ubl.map_y_index_to_bed_location(j); + sx = ubl.mesh_index_to_xpos[i]; + sy = ubl.mesh_index_to_ypos[j]; sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle ex = sx; - ey = ubl.map_y_index_to_bed_location(j + 1); + ey = ubl.mesh_index_to_ypos[j + 1]; ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops @@ -516,7 +495,7 @@ ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); - if (g26_debug_flag) { + if (ubl.g26_debug_flag) { SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx); SERIAL_ECHOPAIR(", sy=", sy); SERIAL_ECHOPAIR(") -> (ex=", ex); @@ -541,10 +520,10 @@ bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement. - //if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() has_xy_component:", (int)has_xy_component); + //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() has_xy_component:", (int)has_xy_component); if (z != last_z) { - //if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() changing Z to ", (int)z); + //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() changing Z to ", (int)z); last_z = z; feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate @@ -559,24 +538,24 @@ stepper.synchronize(); set_destination_to_current(); - //if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() done with Z move"); + //if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() done with Z move"); } // Check if X or Y is involved in the movement. // Yes: a 'normal' movement. No: a retract() or un_retract() feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5; - if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value); + if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value); destination[X_AXIS] = x; destination[Y_AXIS] = y; destination[E_AXIS] += e_delta; - //if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() doing last move"); + //if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() doing last move"); ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0); - //if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() after last move"); + //if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() after last move"); stepper.synchronize(); set_destination_to_current(); @@ -586,9 +565,9 @@ void retract_filament() { if (!g26_retracted) { // Only retract if we are not already retracted! g26_retracted = true; - //if (g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract."); + //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract."); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * retraction_multiplier); - //if (g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done."); + //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done."); } } @@ -596,7 +575,7 @@ if (g26_retracted) { // Only un-retract if we are retracted. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * retraction_multiplier); g26_retracted = false; - //if (g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done."); + //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done."); } } @@ -633,7 +612,7 @@ // On very small lines we don't do the optimization because it just isn't worth it. // if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) { - //if (g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()"); + //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()"); print_line_from_here_to_there(ex, ey, ez, sx, sy, sz); return; } @@ -642,7 +621,7 @@ if (dist_start > 2.0) { retract_filament(); - //if (g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted."); + //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted."); } move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion @@ -650,7 +629,7 @@ un_retract_filament(); - //if (g26_debug_flag) { + //if (ubl.g26_debug_flag) { // SERIAL_ECHOLNPGM(" doing printing move."); // debug_current_and_destination((char*)"doing final move_to() inside print_line_from_here_to_there()"); //} @@ -810,7 +789,7 @@ lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99); lcd_quick_feedback(); #endif - ubl_has_control_of_lcd_panel = true; + ubl.has_control_of_lcd_panel++; thermalManager.setTargetBed(bed_temp); while (abs(thermalManager.degBed() - bed_temp) > 3) { if (ubl_lcd_clicked()) return exit_from_g26(); @@ -845,6 +824,9 @@ float Total_Prime = 0.0; if (prime_flag == -1) { // The user wants to control how much filament gets purged + + ubl.has_control_of_lcd_panel++; + lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99); chirp_at_user(); @@ -881,6 +863,9 @@ lcd_setstatuspgm(PSTR("Done Priming"), 99); lcd_quick_feedback(); #endif + + ubl.has_control_of_lcd_panel = false; + } else { #if ENABLED(ULTRA_LCD) @@ -901,4 +886,4 @@ return UBL_OK; } -#endif // AUTO_BED_LEVELING_UBL && UBL_MESH_EDIT_ENABLED +#endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING diff --git a/Marlin/M100_Free_Mem_Chk.cpp b/Marlin/M100_Free_Mem_Chk.cpp index 7b71df0b1..d0d0bf6bb 100644 --- a/Marlin/M100_Free_Mem_Chk.cpp +++ b/Marlin/M100_Free_Mem_Chk.cpp @@ -76,10 +76,10 @@ void gcode_M100() { // We want to start and end the dump on a nice 16 byte boundry even though // the values we are using are not 16 byte aligned. // - SERIAL_ECHOPAIR("\nbss_end : ", hex_word((uint16_t)ptr)); + SERIAL_ECHOPAIR("\nbss_end : 0x", hex_word((uint16_t)ptr)); ptr = (char*)((uint32_t)ptr & 0xfff0); sp = top_of_stack(); - SERIAL_ECHOLNPAIR("\nStack Pointer : ", hex_word((uint16_t)sp)); + SERIAL_ECHOLNPAIR("\nStack Pointer : 0x", hex_word((uint16_t)sp)); sp = (char*)((uint32_t)sp | 0x000f); n = sp - ptr; // diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h index bf951cec2..7254d345e 100644 --- a/Marlin/Marlin.h +++ b/Marlin/Marlin.h @@ -430,4 +430,8 @@ void do_blocking_move_to_x(const float &x, const float &fr_mm_s=0.0); void do_blocking_move_to_z(const float &z, const float &fr_mm_s=0.0); void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s=0.0); +#if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) + bool axis_unhomed_error(const bool x, const bool y, const bool z); +#endif + #endif //MARLIN_H diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index d77c1b645..f0ec84f20 100755 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -299,11 +299,11 @@ #if ENABLED(AUTO_BED_LEVELING_UBL) #include "UBL.h" unified_bed_leveling ubl; -#define UBL_MESH_VALID !( z_values[0][0] == z_values[0][1] && z_values[0][1] == z_values[0][2] \ - && z_values[1][0] == z_values[1][1] && z_values[1][1] == z_values[1][2] \ - && z_values[2][0] == z_values[2][1] && z_values[2][1] == z_values[2][2] \ - && z_values[0][0] == 0 && z_values[1][0] == 0 && z_values[2][0] == 0 \ - || isnan(z_values[0][0])) + #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \ + && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \ + && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \ + && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \ + || isnan(ubl.z_values[0][0])) #endif bool Running = true; @@ -3221,7 +3221,7 @@ inline void gcode_G4() { */ inline void gcode_G12() { // Don't allow nozzle cleaning without homing first - if (axis_unhomed_error(true, true, true)) { return; } + if (axis_unhomed_error(true, true, true)) return; const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0, strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES, @@ -5344,17 +5344,15 @@ inline void gcode_M42() { #endif // Z_MIN_PROBE_REPEATABILITY_TEST -#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED) +#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING) inline void gcode_M49() { + ubl.g26_debug_flag = !ubl.g26_debug_flag; SERIAL_PROTOCOLPGM("UBL Debug Flag turned "); - if ((g26_debug_flag = !g26_debug_flag)) - SERIAL_PROTOCOLLNPGM("on."); - else - SERIAL_PROTOCOLLNPGM("off."); + serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off.")); } -#endif // AUTO_BED_LEVELING_UBL && UBL_MESH_EDIT_ENABLED +#endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING /** * M75: Start print timer @@ -7210,13 +7208,59 @@ void quickstop_stepper() { /** * M420: Enable/Disable Bed Leveling and/or set the Z fade height. * - * S[bool] Turns leveling on or off - * Z[height] Sets the Z fade height (0 or none to disable) - * V[bool] Verbose - Print the leveling grid + * S[bool] Turns leveling on or off + * Z[height] Sets the Z fade height (0 or none to disable) + * V[bool] Verbose - Print the leveling grid + * + * With AUTO_BED_LEVELING_UBL only: + * + * L[index] Load UBL mesh from index (0 is default) */ inline void gcode_M420() { - bool to_enable = false; + #if ENABLED(AUTO_BED_LEVELING_UBL) + // L to load a mesh from the EEPROM + if (code_seen('L')) { + const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot; + const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values); + if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) { + SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); + return; + } + + ubl.load_mesh(storage_slot); + if (storage_slot != ubl.state.eeprom_storage_slot) ubl.store_state(); + ubl.state.eeprom_storage_slot = storage_slot; + ubl.display_map(0); // Right now, we only support one type of map + SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID); + SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot); + } + #endif // AUTO_BED_LEVELING_UBL + + // V to print the matrix or mesh + if (code_seen('V')) { + #if ABL_PLANAR + planner.bed_level_matrix.debug("Bed Level Correction Matrix:"); + #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) + if (bilinear_grid_spacing[X_AXIS]) { + print_bilinear_leveling_grid(); + #if ENABLED(ABL_BILINEAR_SUBDIVISION) + bed_level_virt_print(); + #endif + } + #elif ENABLED(AUTO_BED_LEVELING_UBL) + ubl.display_map(0); // Currently only supports one map type + SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID); + SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot); + #elif ENABLED(MESH_BED_LEVELING) + if (mbl.has_mesh()) { + SERIAL_ECHOLNPGM("Mesh Bed Level data:"); + mbl_mesh_report(); + } + #endif + } + + bool to_enable = false; if (code_seen('S')) { to_enable = code_value_bool(); set_bed_leveling_enabled(to_enable); @@ -7243,28 +7287,6 @@ void quickstop_stepper() { SERIAL_ECHO_START; SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF); - - // V to print the matrix or mesh - if (code_seen('V')) { - #if ABL_PLANAR - planner.bed_level_matrix.debug("Bed Level Correction Matrix:"); - #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) - if (bilinear_grid_spacing[X_AXIS]) { - print_bilinear_leveling_grid(); - #if ENABLED(ABL_BILINEAR_SUBDIVISION) - bed_level_virt_print(); - #endif - } - #elif ENABLED(AUTO_BED_LEVELING_UBL) - ubl.display_map(0); // Right now, we only support one type of map - #elif ENABLED(MESH_BED_LEVELING) - if (mbl.has_mesh()) { - SERIAL_ECHOLNPGM("Mesh Bed Level data:"); - mbl_mesh_report(); - } - #endif - } - } #endif @@ -8579,7 +8601,7 @@ void process_next_command() { break; #endif // INCH_MODE_SUPPORT - #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED) + #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING) case 26: // G26: Mesh Validation Pattern generation gcode_G26(); break; @@ -8595,7 +8617,7 @@ void process_next_command() { gcode_G28(); break; - #if PLANNER_LEVELING + #if PLANNER_LEVELING && !ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING) case 29: // G29 Detailed Z probe, probes the bed at 3 or more points, // or provides access to the UBL System if enabled. gcode_G29(); @@ -8711,11 +8733,11 @@ void process_next_command() { break; #endif // Z_MIN_PROBE_REPEATABILITY_TEST - #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED) - case 49: // M49: Turn on or off g26_debug_flag for verbose output + #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING) + case 49: // M49: Turn on or off G26 debug flag for verbose output gcode_M49(); break; - #endif // AUTO_BED_LEVELING_UBL && UBL_MESH_EDIT_ENABLED + #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING case 75: // M75: Start print timer gcode_M75(); break; diff --git a/Marlin/UBL.h b/Marlin/UBL.h index 51f58e235..1d3a91b30 100644 --- a/Marlin/UBL.h +++ b/Marlin/UBL.h @@ -39,7 +39,6 @@ enum MeshPointType { INVALID, REAL, SET_IN_BITMAP }; - bool axis_unhomed_error(bool, bool, bool); void dump(char * const str, const float &f); bool ubl_lcd_clicked(); void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool); @@ -78,271 +77,279 @@ enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 }; - #define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0)) - #define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0)) + #define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(UBL_MESH_NUM_X_POINTS - 1)) + #define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(UBL_MESH_NUM_Y_POINTS - 1)) - #if ENABLED(UBL_MESH_EDIT_ENABLED) - extern bool g26_debug_flag; - #else - constexpr bool g26_debug_flag = false; - #endif - extern float last_specified_z; - extern float fade_scaling_factor_for_current_height; - extern float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS]; - extern float mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the - extern float mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell + typedef struct { + bool active = false; + float z_offset = 0.0; + int8_t eeprom_storage_slot = -1, + n_x = UBL_MESH_NUM_X_POINTS, + n_y = UBL_MESH_NUM_Y_POINTS; + + float mesh_x_min = UBL_MESH_MIN_X, + mesh_y_min = UBL_MESH_MIN_Y, + mesh_x_max = UBL_MESH_MAX_X, + mesh_y_max = UBL_MESH_MAX_Y, + mesh_x_dist = MESH_X_DIST, + mesh_y_dist = MESH_Y_DIST; + + #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) + float g29_correction_fade_height = 10.0, + g29_fade_height_multiplier = 1.0 / 10.0; // It's cheaper to do a floating point multiply than divide, + // so keep this value and its reciprocal. + #else + const float g29_correction_fade_height = 10.0, + g29_fade_height_multiplier = 1.0 / 10.0; + #endif + + // If you change this struct, adjust TOTAL_STRUCT_SIZE + + #define TOTAL_STRUCT_SIZE 40 // Total size of the above fields + + // padding provides space to add state variables without + // changing the location of data structures in the EEPROM. + // This is for compatibility with future versions to keep + // users from having to regenerate their mesh data. + unsigned char padding[64 - TOTAL_STRUCT_SIZE]; + + } ubl_state; class unified_bed_leveling { + private: + + static float last_specified_z, + fade_scaling_factor_for_current_height; + public: - struct ubl_state { - bool active = false; - float z_offset = 0.0; - int eeprom_storage_slot = -1, - n_x = UBL_MESH_NUM_X_POINTS, - n_y = UBL_MESH_NUM_Y_POINTS; - float mesh_x_min = UBL_MESH_MIN_X, - mesh_y_min = UBL_MESH_MIN_Y, - mesh_x_max = UBL_MESH_MAX_X, - mesh_y_max = UBL_MESH_MAX_Y, - mesh_x_dist = MESH_X_DIST, - mesh_y_dist = MESH_Y_DIST; - #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) - float g29_correction_fade_height = 10.0, - g29_fade_height_multiplier = 1.0 / 10.0; // It is cheaper to do a floating point multiply than a floating - // point divide. So, we keep this number in both forms. The first - // is for the user. The second one is the one that is actually used - // again and again and again during the correction calculations. - #endif + static ubl_state state, pre_initialized; - unsigned char padding[24]; // This is just to allow room to add state variables without - // changing the location of data structures in the EEPROM. - // This is for compatability with future versions to keep - // people from having to regenerate thier mesh data. - // - // If you change the contents of this struct, please adjust - // the padding[] to keep the size the same! - } state, pre_initialized; - - unified_bed_leveling(); - // ~unified_bed_leveling(); // No destructor because this object never goes away! - - void display_map(const int); - - void reset(); - void invalidate(); - - void store_state(); - void load_state(); - void store_mesh(const int16_t); - void load_mesh(const int16_t); - - bool sanity_check(); - - FORCE_INLINE static float map_x_index_to_bed_location(const int8_t i) { return ((float) UBL_MESH_MIN_X) + (((float) MESH_X_DIST) * (float) i); }; - FORCE_INLINE static float map_y_index_to_bed_location(const int8_t i) { return ((float) UBL_MESH_MIN_Y) + (((float) MESH_Y_DIST) * (float) i); }; - - FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } - - static int8_t get_cell_index_x(const float &x) { - const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST)); - return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX - } // position. But with this defined this way, it is possible - // to extrapolate off of this point even further out. Probably - // that is OK because something else should be keeping that from - // happening and should not be worried about at this level. - static int8_t get_cell_index_y(const float &y) { - const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST)); - return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX - } // position. But with this defined this way, it is possible - // to extrapolate off of this point even further out. Probably - // that is OK because something else should be keeping that from - // happening and should not be worried about at this level. - - static int8_t find_closest_x_index(const float &x) { - const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST)); - return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1; - } - - static int8_t find_closest_y_index(const float &y) { - const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST)); - return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1; - } - - /** - * z2 --| - * z0 | | - * | | + (z2-z1) - * z1 | | | - * ---+-------------+--------+-- --| - * a1 a0 a2 - * |<---delta_a---------->| - * - * calc_z0 is the basis for all the Mesh Based correction. It is used to - * find the expected Z Height at a position between two known Z-Height locations. - * - * It is fairly expensive with its 4 floating point additions and 2 floating point - * multiplications. - */ - static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { - const float delta_z = (z2 - z1), - delta_a = (a0 - a1) / (a2 - a1); - return z1 + delta_a * delta_z; - } - - /** - * get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes - * three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory - * we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling - * the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have - * the X index of the x0 intersection available and we don't want to perform any extra floating - * point operations. - */ - inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) { - if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) { - SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0); - SERIAL_ECHOPAIR(",x1_i=", x1_i); - SERIAL_ECHOPAIR(",yi=", yi); - SERIAL_CHAR(')'); - SERIAL_EOL; - return NAN; + static float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS], + mesh_index_to_xpos[UBL_MESH_NUM_X_POINTS + 1], // +1 safety margin for now, until determinism prevails + mesh_index_to_ypos[UBL_MESH_NUM_Y_POINTS + 1]; + + static bool g26_debug_flag, + has_control_of_lcd_panel; + + static int8_t eeprom_start; + + static volatile int encoder_diff; // Volatile because it's changed at interrupt time. + + unified_bed_leveling(); + + static void display_map(const int); + + static void reset(); + static void invalidate(); + + static void store_state(); + static void load_state(); + static void store_mesh(const int16_t); + static void load_mesh(const int16_t); + + static bool sanity_check(); + + static FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } + + static int8_t get_cell_index_x(const float &x) { + const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST)); + return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX + } // position. But with this defined this way, it is possible + // to extrapolate off of this point even further out. Probably + // that is OK because something else should be keeping that from + // happening and should not be worried about at this level. + static int8_t get_cell_index_y(const float &y) { + const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST)); + return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX + } // position. But with this defined this way, it is possible + // to extrapolate off of this point even further out. Probably + // that is OK because something else should be keeping that from + // happening and should not be worried about at this level. + + static int8_t find_closest_x_index(const float &x) { + const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST)); + return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1; } - const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_x_location[x1_i]) * (1.0 / (MESH_X_DIST)), - z1 = z_values[x1_i][yi], - z2 = z_values[x1_i + 1][yi], - dz = (z2 - z1); - - return z1 + xratio * dz; - } - - // - // See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X - // - inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) { - if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) { - SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0); - SERIAL_ECHOPAIR(", x1_i=", xi); - SERIAL_ECHOPAIR(", yi=", y1_i); - SERIAL_CHAR(')'); - SERIAL_EOL; - return NAN; + static int8_t find_closest_y_index(const float &y) { + const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST)); + return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1; } - const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_y_location[y1_i]) * (1.0 / (MESH_Y_DIST)), - z1 = z_values[xi][y1_i], - z2 = z_values[xi][y1_i + 1], - dz = (z2 - z1); - - return z1 + yratio * dz; - } - - /** - * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first - * does a linear interpolation along both of the bounding X-Mesh-Lines to find the - * Z-Height at both ends. Then it does a linear interpolation of these heights based - * on the Y position within the cell. - */ - float get_z_correction(const float &x0, const float &y0) const { - const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)), - cy = get_cell_index_y(RAW_Y_POSITION(y0)); - - if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) { - - SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0); - SERIAL_ECHOPAIR(", y0=", y0); - SERIAL_CHAR(')'); - SERIAL_EOL; - - #if ENABLED(ULTRA_LCD) - strcpy(lcd_status_message, "get_z_correction() indexes out of range."); - lcd_quick_feedback(); - #endif - return 0.0; // this used to return state.z_offset + /** + * z2 --| + * z0 | | + * | | + (z2-z1) + * z1 | | | + * ---+-------------+--------+-- --| + * a1 a0 a2 + * |<---delta_a---------->| + * + * calc_z0 is the basis for all the Mesh Based correction. It is used to + * find the expected Z Height at a position between two known Z-Height locations. + * + * It is fairly expensive with its 4 floating point additions and 2 floating point + * multiplications. + */ + static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { + const float delta_z = (z2 - z1), + delta_a = (a0 - a1) / (a2 - a1); + return z1 + delta_a * delta_z; } - const float z1 = calc_z0(RAW_X_POSITION(x0), - map_x_index_to_bed_location(cx), z_values[cx][cy], - map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy]), - z2 = calc_z0(RAW_X_POSITION(x0), - map_x_index_to_bed_location(cx), z_values[cx][cy + 1], - map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy + 1]); - float z0 = calc_z0(RAW_Y_POSITION(y0), - map_y_index_to_bed_location(cy), z1, - map_y_index_to_bed_location(cy + 1), z2); - - #if ENABLED(DEBUG_LEVELING_FEATURE) - if (DEBUGGING(MESH_ADJUST)) { - SERIAL_ECHOPAIR(" raw get_z_correction(", x0); - SERIAL_ECHOPAIR(",", y0); - SERIAL_ECHOPGM(")="); - SERIAL_ECHO_F(z0, 6); + /** + * get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes + * three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory + * we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling + * the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have + * the X index of the x0 intersection available and we don't want to perform any extra floating + * point operations. + */ + static inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) { + if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) { + SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0); + SERIAL_ECHOPAIR(",x1_i=", x1_i); + SERIAL_ECHOPAIR(",yi=", yi); + SERIAL_CHAR(')'); + SERIAL_EOL; + return NAN; } - #endif - #if ENABLED(DEBUG_LEVELING_FEATURE) - if (DEBUGGING(MESH_ADJUST)) { - SERIAL_ECHOPGM(" >>>---> "); - SERIAL_ECHO_F(z0, 6); + const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)), + z1 = z_values[x1_i][yi], + z2 = z_values[x1_i + 1][yi], + dz = (z2 - z1); + + return z1 + xratio * dz; + } + + // + // See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X + // + static inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) { + if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) { + SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0); + SERIAL_ECHOPAIR(", x1_i=", xi); + SERIAL_ECHOPAIR(", yi=", y1_i); + SERIAL_CHAR(')'); SERIAL_EOL; + return NAN; } - #endif - if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN - z0 = 0.0; // in ubl.z_values[][] and propagate through the - // calculations. If our correction is NAN, we throw it out - // because part of the Mesh is undefined and we don't have the - // information we need to complete the height correction. + const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)), + z1 = z_values[xi][y1_i], + z2 = z_values[xi][y1_i + 1], + dz = (z2 - z1); + + return z1 + yratio * dz; + } + + /** + * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first + * does a linear interpolation along both of the bounding X-Mesh-Lines to find the + * Z-Height at both ends. Then it does a linear interpolation of these heights based + * on the Y position within the cell. + */ + static float get_z_correction(const float &x0, const float &y0) { + const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)), + cy = get_cell_index_y(RAW_Y_POSITION(y0)); + + if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) { + + SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0); + SERIAL_ECHOPAIR(", y0=", y0); + SERIAL_CHAR(')'); + SERIAL_EOL; + + #if ENABLED(ULTRA_LCD) + strcpy(lcd_status_message, "get_z_correction() indexes out of range."); + lcd_quick_feedback(); + #endif + return 0.0; // this used to return state.z_offset + } + + const float z1 = calc_z0(RAW_X_POSITION(x0), + mesh_index_to_xpos[cx], z_values[cx][cy], + mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]), + z2 = calc_z0(RAW_X_POSITION(x0), + mesh_index_to_xpos[cx], z_values[cx][cy + 1], + mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]); + float z0 = calc_z0(RAW_Y_POSITION(y0), + mesh_index_to_ypos[cy], z1, + mesh_index_to_ypos[cy + 1], z2); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(MESH_ADJUST)) { - SERIAL_ECHOPGM("??? Yikes! NAN in get_z_correction( "); - SERIAL_ECHO(x0); - SERIAL_ECHOPGM(", "); + SERIAL_ECHOPAIR(" raw get_z_correction(", x0); + SERIAL_CHAR(',') SERIAL_ECHO(y0); - SERIAL_ECHOLNPGM(" )"); + SERIAL_ECHOPGM(") = "); + SERIAL_ECHO_F(z0, 6); } #endif - } - return z0; // there used to be a +state.z_offset on this line - } - - /** - * This routine is used to scale the Z correction depending upon the current nozzle height. It is - * optimized for speed. It avoids floating point operations by checking if the requested scaling - * factor is going to be the same as the last time the function calculated a value. If so, it just - * returns it. - * - * It returns a scaling factor of 1.0 if UBL is inactive. - * It returns a scaling factor of 0.0 if Z is past the specified 'Fade Height' - */ - #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) - FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) const { - const float rz = RAW_Z_POSITION(lz); - if (last_specified_z != rz) { - last_specified_z = rz; - fade_scaling_factor_for_current_height = - state.active && rz < state.g29_correction_fade_height - ? 1.0 - (rz * state.g29_fade_height_multiplier) - : 0.0; + #if ENABLED(DEBUG_LEVELING_FEATURE) + if (DEBUGGING(MESH_ADJUST)) { + SERIAL_ECHOPGM(" >>>---> "); + SERIAL_ECHO_F(z0, 6); + SERIAL_EOL; + } + #endif + + if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN + z0 = 0.0; // in ubl.z_values[][] and propagate through the + // calculations. If our correction is NAN, we throw it out + // because part of the Mesh is undefined and we don't have the + // information we need to complete the height correction. + + #if ENABLED(DEBUG_LEVELING_FEATURE) + if (DEBUGGING(MESH_ADJUST)) { + SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", x0); + SERIAL_CHAR(','); + SERIAL_ECHO(y0); + SERIAL_CHAR(')'); + SERIAL_EOL; + } + #endif } - return fade_scaling_factor_for_current_height; + return z0; // there used to be a +state.z_offset on this line } - #else + /** + * This routine is used to scale the Z correction depending upon the current nozzle height. It is + * optimized for speed. It avoids floating point operations by checking if the requested scaling + * factor is going to be the same as the last time the function calculated a value. If so, it just + * returns it. + * + * It returns a scaling factor of 1.0 if UBL is inactive. + * It returns a scaling factor of 0.0 if Z is past the specified 'Fade Height' + */ + #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) - static constexpr float fade_scaling_factor_for_z(const float &lz) { UNUSED(lz); return 1.0; } + FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) { + const float rz = RAW_Z_POSITION(lz); + if (last_specified_z != rz) { + last_specified_z = rz; + fade_scaling_factor_for_current_height = + state.active && rz < state.g29_correction_fade_height + ? 1.0 - (rz * state.g29_fade_height_multiplier) + : 0.0; + } + return fade_scaling_factor_for_current_height; + } - #endif + #else + + static constexpr float fade_scaling_factor_for_z(const float &lz) { UNUSED(lz); return 1.0; } + + #endif }; // class unified_bed_leveling extern unified_bed_leveling ubl; - extern int ubl_eeprom_start; #define UBL_LAST_EEPROM_INDEX (E2END - sizeof(unified_bed_leveling::state)) #endif // AUTO_BED_LEVELING_UBL - #endif // UNIFIED_BED_LEVELING_H diff --git a/Marlin/UBL_Bed_Leveling.cpp b/Marlin/UBL_Bed_Leveling.cpp index 5538c3346..a81a16bc0 100644 --- a/Marlin/UBL_Bed_Leveling.cpp +++ b/Marlin/UBL_Bed_Leveling.cpp @@ -57,26 +57,26 @@ } } - /** - * These variables used to be declared inside the unified_bed_leveling class. We are going to - * still declare them within the .cpp file for bed leveling. But there is only one instance of - * the bed leveling object and we can get rid of a level of inderection by not making them - * 'member data'. So, in the interest of speed, we do it this way. On a 32-bit CPU they can be - * moved back inside the bed leveling class. - */ - float last_specified_z, - fade_scaling_factor_for_current_height, - z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS], - mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1], // +1 just because of paranoia that we might end up on the - mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell + ubl_state unified_bed_leveling::state, unified_bed_leveling::pre_initialized; - unified_bed_leveling::unified_bed_leveling() { - for (uint8_t i = 0; i <= UBL_MESH_NUM_X_POINTS; i++) // We go one past what we expect to ever need for safety - mesh_index_to_x_location[i] = double(UBL_MESH_MIN_X) + double(MESH_X_DIST) * double(i); + float unified_bed_leveling::z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS], + unified_bed_leveling::last_specified_z, + unified_bed_leveling::fade_scaling_factor_for_current_height, + unified_bed_leveling::mesh_index_to_xpos[UBL_MESH_NUM_X_POINTS + 1], // +1 safety margin for now, until determinism prevails + unified_bed_leveling::mesh_index_to_ypos[UBL_MESH_NUM_Y_POINTS + 1]; + + bool unified_bed_leveling::g26_debug_flag = false, + unified_bed_leveling::has_control_of_lcd_panel = false; - for (uint8_t i = 0; i <= UBL_MESH_NUM_Y_POINTS; i++) // We go one past what we expect to ever need for safety - mesh_index_to_y_location[i] = double(UBL_MESH_MIN_Y) + double(MESH_Y_DIST) * double(i); + int8_t unified_bed_leveling::eeprom_start = -1; + volatile int unified_bed_leveling::encoder_diff; + + unified_bed_leveling::unified_bed_leveling() { + for (uint8_t i = 0; i < COUNT(mesh_index_to_xpos); i++) + mesh_index_to_xpos[i] = UBL_MESH_MIN_X + i * (MESH_X_DIST); + for (uint8_t i = 0; i < COUNT(mesh_index_to_ypos); i++) + mesh_index_to_ypos[i] = UBL_MESH_MIN_Y + i * (MESH_Y_DIST); reset(); } @@ -95,7 +95,7 @@ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) /** * These lines can go away in a few weeks. They are just - * to make sure people updating thier firmware won't be using + * to make sure people updating their firmware won't be using * an incomplete Bed_Leveling.state structure. For speed * we now multiply by the inverse of the Fade Height instead of * dividing by it. Soon... all of the old structures will be @@ -110,7 +110,7 @@ } void unified_bed_leveling::load_mesh(const int16_t m) { - int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); + int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values); if (m == -1) { SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n"); @@ -118,7 +118,7 @@ return; } - if (m < 0 || m >= j || ubl_eeprom_start <= 0) { + if (m < 0 || m >= j || eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n"); return; } @@ -131,9 +131,9 @@ } void unified_bed_leveling::store_mesh(const int16_t m) { - int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); + int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values); - if (m < 0 || m >= j || ubl_eeprom_start <= 0) { + if (m < 0 || m >= j || eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n"); SERIAL_PROTOCOL(m); SERIAL_PROTOCOLLNPGM(" mesh slots available.\n"); @@ -164,9 +164,6 @@ } void unified_bed_leveling::invalidate() { - print_hex_word((uint16_t)this); - SERIAL_EOL; - state.active = false; state.z_offset = 0; for (int x = 0; x < UBL_MESH_NUM_X_POINTS; x++) @@ -201,9 +198,8 @@ for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { const bool is_current = i == current_xi && j == current_yi; - // is the nozzle here? if so, mark the number - if (map0) - SERIAL_CHAR(is_current ? '[' : ' '); + // is the nozzle here? then mark the number + if (map0) SERIAL_CHAR(is_current ? '[' : ' '); const float f = z_values[i][j]; if (isnan(f)) { @@ -211,12 +207,11 @@ } else { // if we don't do this, the columns won't line up nicely - if (f >= 0.0 && map0) SERIAL_CHAR(' '); + if (map0 && f >= 0.0) SERIAL_CHAR(' '); SERIAL_PROTOCOL_F(f, 3); idle(); } - if (!map0 && i < UBL_MESH_NUM_X_POINTS - 1) - SERIAL_CHAR(','); + if (!map0 && i < UBL_MESH_NUM_X_POINTS - 1) SERIAL_CHAR(','); #if TX_BUFFER_SIZE > 0 MYSERIAL.flushTX(); @@ -251,47 +246,40 @@ bool unified_bed_leveling::sanity_check() { uint8_t error_flag = 0; - if (state.n_x != UBL_MESH_NUM_X_POINTS) { + if (state.n_x != UBL_MESH_NUM_X_POINTS) { SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_X_POINTS set wrong\n"); error_flag++; } - - if (state.n_y != UBL_MESH_NUM_Y_POINTS) { + if (state.n_y != UBL_MESH_NUM_Y_POINTS) { SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_Y_POINTS set wrong\n"); error_flag++; } - - if (state.mesh_x_min != UBL_MESH_MIN_X) { + if (state.mesh_x_min != UBL_MESH_MIN_X) { SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_X set wrong\n"); error_flag++; } - - if (state.mesh_y_min != UBL_MESH_MIN_Y) { + if (state.mesh_y_min != UBL_MESH_MIN_Y) { SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_Y set wrong\n"); error_flag++; } - - if (state.mesh_x_max != UBL_MESH_MAX_X) { + if (state.mesh_x_max != UBL_MESH_MAX_X) { SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_X set wrong\n"); error_flag++; } - - if (state.mesh_y_max != UBL_MESH_MAX_Y) { + if (state.mesh_y_max != UBL_MESH_MAX_Y) { SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_Y set wrong\n"); error_flag++; } - - if (state.mesh_x_dist != MESH_X_DIST) { + if (state.mesh_x_dist != MESH_X_DIST) { SERIAL_PROTOCOLLNPGM("?MESH_X_DIST set wrong\n"); error_flag++; } - - if (state.mesh_y_dist != MESH_Y_DIST) { + if (state.mesh_y_dist != MESH_Y_DIST) { SERIAL_PROTOCOLLNPGM("?MESH_Y_DIST set wrong\n"); error_flag++; } - const int j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); + const int j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values); if (j < 1) { SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n"); error_flag++; diff --git a/Marlin/UBL_G29.cpp b/Marlin/UBL_G29.cpp index 4feca1b50..e1835e74c 100644 --- a/Marlin/UBL_G29.cpp +++ b/Marlin/UBL_G29.cpp @@ -22,7 +22,7 @@ #include "MarlinConfig.h" -#if ENABLED(AUTO_BED_LEVELING_UBL) +#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING) //#include "vector_3.h" //#include "qr_solve.h" @@ -39,7 +39,10 @@ void lcd_return_to_status(); bool lcd_clicked(); void lcd_implementation_clear(); - + void lcd_mesh_edit_setup(float initial); + float lcd_mesh_edit(); + void lcd_z_offset_edit_setup(float); + float lcd_z_offset_edit(); extern float meshedit_done; extern long babysteps_done; extern float code_value_float(); @@ -141,7 +144,7 @@ * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation * was turned on. Setting the entire Mesh to Zero is a special case that allows - * a subsequent G or T leveling operation for backward compatability. + * a subsequent G or T leveling operation for backward compatibility. * * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and @@ -294,14 +297,10 @@ * this is going to be helpful to the users!) * * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big - * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining thier contributions + * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions * we now have the functionality and features of all three systems combined. */ - int ubl_eeprom_start = -1; - bool ubl_has_control_of_lcd_panel = false; - volatile int8_t ubl_encoderDiff = 0; // Volatile because it's changed by Temperature ISR button update - // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine. static int g29_verbose_level, phase_value = -1, repetition_cnt, storage_slot = 0, map_type; //unlevel_value = -1; @@ -313,8 +312,8 @@ #endif void gcode_G29() { - SERIAL_PROTOCOLLNPAIR("ubl_eeprom_start=", ubl_eeprom_start); - if (ubl_eeprom_start < 0) { + SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=", ubl.eeprom_start); + if (ubl.eeprom_start < 0) { SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it"); SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n"); return; @@ -335,7 +334,7 @@ SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n"); break; // No more invalid Mesh Points to populate } - z_values[location.x_index][location.y_index] = NAN; + ubl.z_values[location.x_index][location.y_index] = NAN; } SERIAL_PROTOCOLLNPGM("Locations invalidated.\n"); } @@ -354,21 +353,21 @@ for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // a poorly calibrated Delta. const float p1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x, p2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y; - z_values[x][y] += 2.0 * HYPOT(p1, p2); + ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2); } } break; case 1: for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a diagonal line several Mesh cells thick that is raised - z_values[x][x] += 9.999; - z_values[x][x + (x < UBL_MESH_NUM_Y_POINTS - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick + ubl.z_values[x][x] += 9.999; + ubl.z_values[x][x + (x < UBL_MESH_NUM_Y_POINTS - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick } break; case 2: // Allow the user to specify the height because 10mm is a little extreme in some cases. for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++) // Create a rectangular raised area in for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed - z_values[x][y] += code_seen('C') ? ubl_constant : 9.99; + ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99; break; } } @@ -390,17 +389,18 @@ return; } switch (phase_value) { - // - // Zero Mesh Data - // case 0: + // + // Zero Mesh Data + // ubl.reset(); SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n"); break; - // - // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe - // + case 1: + // + // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe + // if (!code_seen('C') ) { ubl.invalidate(); SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n"); @@ -414,10 +414,11 @@ probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U')); break; - // - // Manually Probe Mesh in areas that can't be reached by the probe - // + case 2: { + // + // Manually Probe Mesh in areas that can't be reached by the probe + // SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n"); do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); if (!x_flag && !y_flag) { // use a good default location for the path @@ -450,24 +451,24 @@ } break; - // - // Populate invalid Mesh areas with a constant - // case 3: { + // + // Populate invalid Mesh areas with a constant + // const float height = code_seen('C') ? ubl_constant : 0.0; // If no repetition is specified, do the whole Mesh if (!repeat_flag) repetition_cnt = 9999; while (repetition_cnt--) { const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position if (location.x_index < 0) break; // No more invalid Mesh Points to populate - z_values[location.x_index][location.y_index] = height; + ubl.z_values[location.x_index][location.y_index] = height; } } break; - // - // Fine Tune (Or Edit) the Mesh - // case 4: + // + // Fine Tune (i.e., Edit) the Mesh + // fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M')); break; case 5: @@ -482,16 +483,16 @@ SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:"); KEEPALIVE_STATE(PAUSED_FOR_USER); - ubl_has_control_of_lcd_panel++; + ubl.has_control_of_lcd_panel++; while (!ubl_lcd_clicked()) { safe_delay(250); - if (ubl_encoderDiff) { - SERIAL_ECHOLN((int)ubl_encoderDiff); - ubl_encoderDiff = 0; + if (ubl.encoder_diff) { + SERIAL_ECHOLN((int)ubl.encoder_diff); + ubl.encoder_diff = 0; } } SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel."); - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; KEEPALIVE_STATE(IN_HANDLER); break; @@ -503,9 +504,9 @@ wait_for_user = true; while (wait_for_user) { safe_delay(250); - if (ubl_encoderDiff) { - SERIAL_ECHOLN((int)ubl_encoderDiff); - ubl_encoderDiff = 0; + if (ubl.encoder_diff) { + SERIAL_ECHOLN((int)ubl.encoder_diff); + ubl.encoder_diff = 0; } } SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel."); @@ -557,9 +558,9 @@ if (code_seen('L')) { // Load Current Mesh Data storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot; - const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); + const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values); - if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) { + if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); return; } @@ -581,19 +582,19 @@ SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) - if (!isnan(z_values[x][y])) { + if (!isnan(ubl.z_values[x][y])) { SERIAL_ECHOPAIR("M421 I ", x); SERIAL_ECHOPAIR(" J ", y); SERIAL_ECHOPGM(" Z "); - SERIAL_ECHO_F(z_values[x][y], 6); + SERIAL_ECHO_F(ubl.z_values[x][y], 6); SERIAL_EOL; } return; } - const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); + const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values); - if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) { + if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1); goto LEAVE; @@ -617,7 +618,7 @@ save_ubl_active_state_and_disable(); //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level); - ubl_has_control_of_lcd_panel++; // Grab the LCD Hardware + ubl.has_control_of_lcd_panel++; // Grab the LCD Hardware measured_z = 1.5; do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything // The user is not going to be locking in a new Z-Offset very often so @@ -633,7 +634,7 @@ do_blocking_move_to_z(measured_z); } while (!ubl_lcd_clicked()); - ubl_has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked. + ubl.has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) // or here. So, until we are done looking for a long Encoder Wheel Press, // we need to take control of the panel @@ -653,7 +654,7 @@ goto LEAVE; } } - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; safe_delay(20); // We don't want any switch noise. ubl.state.z_offset = measured_z; @@ -670,7 +671,7 @@ lcd_quick_feedback(); #endif - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; } void find_mean_mesh_height() { @@ -682,8 +683,8 @@ n = 0; for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) - if (!isnan(z_values[x][y])) { - sum += z_values[x][y]; + if (!isnan(ubl.z_values[x][y])) { + sum += ubl.z_values[x][y]; n++; } @@ -694,8 +695,8 @@ // for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) - if (!isnan(z_values[x][y])) { - difference = (z_values[x][y] - mean); + if (!isnan(ubl.z_values[x][y])) { + difference = (ubl.z_values[x][y] - mean); sum_of_diff_squared += difference * difference; } @@ -712,15 +713,15 @@ if (c_flag) for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) - if (!isnan(z_values[x][y])) - z_values[x][y] -= mean + ubl_constant; + if (!isnan(ubl.z_values[x][y])) + ubl.z_values[x][y] -= mean + ubl_constant; } void shift_mesh_height() { for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) - if (!isnan(z_values[x][y])) - z_values[x][y] += ubl_constant; + if (!isnan(ubl.z_values[x][y])) + ubl.z_values[x][y] += ubl_constant; } /** @@ -730,7 +731,7 @@ void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) { mesh_index_pair location; - ubl_has_control_of_lcd_panel++; + ubl.has_control_of_lcd_panel++; save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe DEPLOY_PROBE(); @@ -740,7 +741,7 @@ lcd_quick_feedback(); STOW_PROBE(); while (ubl_lcd_clicked()) idle(); - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; restore_ubl_active_state_and_leave(); safe_delay(50); // Debounce the Encoder wheel return; @@ -749,18 +750,18 @@ location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest ); // the '1' says we want the location to be relative to the probe if (location.x_index >= 0 && location.y_index >= 0) { - const float rawx = ubl.map_x_index_to_bed_location(location.x_index), - rawy = ubl.map_y_index_to_bed_location(location.y_index); + const float rawx = ubl.mesh_index_to_xpos[location.x_index], + rawy = ubl.mesh_index_to_ypos[location.y_index]; // TODO: Change to use `position_is_reachable` (for SCARA-compatibility) if (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Attempt to probe off the bed."); - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; goto LEAVE; } const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level); - z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset; + ubl.z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset; } if (do_ubl_mesh_map) ubl.display_map(map_type); @@ -837,7 +838,7 @@ for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { c = -((normal.x * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.y * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d); - z_values[i][j] += c; + ubl.z_values[i][j] += c; } } return normal; @@ -847,9 +848,9 @@ KEEPALIVE_STATE(PAUSED_FOR_USER); while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! idle(); - if (ubl_encoderDiff) { - do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl_encoderDiff)); - ubl_encoderDiff = 0; + if (ubl.encoder_diff) { + do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff)); + ubl.encoder_diff = 0; } } KEEPALIVE_STATE(IN_HANDLER); @@ -858,7 +859,7 @@ float measure_business_card_thickness(const float &in_height) { - ubl_has_control_of_lcd_panel++; + ubl.has_control_of_lcd_panel++; save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement."); @@ -868,7 +869,7 @@ const float z1 = use_encoder_wheel_to_measure_point(); do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height."); const float z2 = use_encoder_wheel_to_measure_point(); @@ -885,7 +886,7 @@ void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) { - ubl_has_control_of_lcd_panel++; + ubl.has_control_of_lcd_panel++; save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe do_blocking_move_to_z(z_clearance); do_blocking_move_to_xy(lx, ly); @@ -899,14 +900,14 @@ // It doesn't matter if the probe can't reach the NAN location. This is a manual probe. if (location.x_index < 0 && location.y_index < 0) continue; - const float rawx = ubl.map_x_index_to_bed_location(location.x_index), - rawy = ubl.map_y_index_to_bed_location(location.y_index); + const float rawx = ubl.mesh_index_to_xpos[location.x_index], + rawy = ubl.mesh_index_to_ypos[location.y_index]; // TODO: Change to use `position_is_reachable` (for SCARA-compatibility) if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Attempt to probe off the bed."); - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; goto LEAVE; } @@ -926,13 +927,13 @@ last_y = yProbe; KEEPALIVE_STATE(PAUSED_FOR_USER); - ubl_has_control_of_lcd_panel = true; + ubl.has_control_of_lcd_panel = true; while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! idle(); - if (ubl_encoderDiff) { - do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl_encoderDiff) / 100.0); - ubl_encoderDiff = 0; + if (ubl.encoder_diff) { + do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0); + ubl.encoder_diff = 0; } } @@ -944,17 +945,17 @@ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); lcd_quick_feedback(); while (ubl_lcd_clicked()) idle(); - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; KEEPALIVE_STATE(IN_HANDLER); restore_ubl_active_state_and_leave(); return; } } - z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness; + ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness; if (g29_verbose_level > 2) { SERIAL_PROTOCOLPGM("Mesh Point Measured at: "); - SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6); + SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6); SERIAL_EOL; } } while (location.x_index >= 0 && location.y_index >= 0); @@ -1105,7 +1106,7 @@ * good to have the extra information. Soon... we prune this to just a few items */ void g29_what_command() { - const uint16_t k = E2END - ubl_eeprom_start; + const uint16_t k = E2END - ubl.eeprom_start; SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version 1.00 "); if (ubl.state.active) @@ -1136,7 +1137,7 @@ SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: "); for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { - SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.map_x_index_to_bed_location(i)), 1); + SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[i]), 1); SERIAL_PROTOCOLPGM(" "); safe_delay(50); } @@ -1144,7 +1145,7 @@ SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: "); for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) { - SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.map_y_index_to_bed_location(i)), 1); + SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[i]), 1); SERIAL_PROTOCOLPGM(" "); safe_delay(50); } @@ -1162,21 +1163,21 @@ SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk); SERIAL_EOL; safe_delay(50); - SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl_eeprom_start)); + SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl.eeprom_start)); - SERIAL_PROTOCOLLNPAIR("end of EEPROM : ", hex_word(E2END)); + SERIAL_PROTOCOLLNPAIR("end of EEPROM : 0x", hex_word(E2END)); safe_delay(50); SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl)); SERIAL_EOL; - SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values)); + SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(ubl.z_values)); SERIAL_EOL; safe_delay(50); SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: 0x", hex_word(k)); safe_delay(50); - SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(z_values)); + SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(ubl.z_values)); SERIAL_PROTOCOLLNPGM(" meshes.\n"); safe_delay(50); @@ -1240,9 +1241,9 @@ } storage_slot = code_value_int(); - int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(tmp_z_values); + int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values); - if (storage_slot < 0 || storage_slot > j || ubl_eeprom_start <= 0) { + if (storage_slot < 0 || storage_slot > j || ubl.eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); return; } @@ -1251,12 +1252,12 @@ eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values)); SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot); - SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_word(j)); // Soon, we can remove the extra clutter of printing + SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address 0x", hex_word(j)); // Soon, we can remove the extra clutter of printing // the address in the EEPROM where the Mesh is stored. for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) - z_values[x][y] = z_values[x][y] - tmp_z_values[x][y]; + ubl.z_values[x][y] -= tmp_z_values[x][y]; } mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) { @@ -1275,15 +1276,15 @@ for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { - if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing - || (type == REAL && !isnan(z_values[i][j])) + if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing + || (type == REAL && !isnan(ubl.z_values[i][j])) || (type == SET_IN_BITMAP && is_bit_set(bits, i, j)) ) { // We only get here if we found a Mesh Point of the specified type - const float rawx = ubl.map_x_index_to_bed_location(i), // Check if we can probe this mesh location - rawy = ubl.map_y_index_to_bed_location(j); + const float rawx = ubl.mesh_index_to_xpos[i], // Check if we can probe this mesh location + rawy = ubl.mesh_index_to_ypos[j]; // If using the probe as the reference there are some unreachable locations. // Prune them from the list and ignore them till the next Phase (manual nozzle probing). @@ -1303,7 +1304,7 @@ if (far_flag) { // If doing the far_flag action, we want to be as far as possible for (uint8_t k = 0; k < UBL_MESH_NUM_X_POINTS; k++) { // from the starting point and from any other probed points. We for (uint8_t l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) { // want the next point spread out and filling in any blank spaces - if (!isnan(z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed + if (!isnan(ubl.z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed distance += sq(i - k) * (MESH_X_DIST) * .05 // point we can find. + sq(j - l) * (MESH_Y_DIST) * .05; } @@ -1349,26 +1350,26 @@ bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a // different location the next time through the loop - const float rawx = ubl.map_x_index_to_bed_location(location.x_index), - rawy = ubl.map_y_index_to_bed_location(location.y_index); + const float rawx = ubl.mesh_index_to_xpos[location.x_index], + rawy = ubl.mesh_index_to_ypos[location.y_index]; // TODO: Change to use `position_is_reachable` (for SCARA-compatibility) if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { // In theory, we don't need this check. SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; goto FINE_TUNE_EXIT; } do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy)); - float new_z = z_values[location.x_index][location.y_index]; + float new_z = ubl.z_values[location.x_index][location.y_index]; round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the new_z = float(round_off) / 1000.0; KEEPALIVE_STATE(PAUSED_FOR_USER); - ubl_has_control_of_lcd_panel = true; + ubl.has_control_of_lcd_panel = true; lcd_implementation_clear(); lcd_mesh_edit_setup(new_z); @@ -1380,7 +1381,7 @@ lcd_return_to_status(); - ubl_has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked. + ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) // or here. @@ -1401,7 +1402,7 @@ safe_delay(20); // We don't want any switch noise. - z_values[location.x_index][location.y_index] = new_z; + ubl.z_values[location.x_index][location.y_index] = new_z; lcd_implementation_clear(); @@ -1409,7 +1410,7 @@ FINE_TUNE_EXIT: - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; KEEPALIVE_STATE(IN_HANDLER); if (do_ubl_mesh_map) ubl.display_map(map_type); diff --git a/Marlin/UBL_line_to_destination.cpp b/Marlin/UBL_line_to_destination.cpp index 91bf3e351..7c5e9f4b8 100644 --- a/Marlin/UBL_line_to_destination.cpp +++ b/Marlin/UBL_line_to_destination.cpp @@ -31,12 +31,12 @@ extern float destination[XYZE]; extern void set_current_to_destination(); - + extern float destination[]; void debug_current_and_destination(char *title) { // if the title message starts with a '!' it is so important, we are going to // ignore the status of the g26_debug_flag - if (*title != '!' && !g26_debug_flag) return; + if (*title != '!' && !ubl.g26_debug_flag) return; const float de = destination[E_AXIS] - current_position[E_AXIS]; @@ -121,7 +121,7 @@ cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_end)), cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_end)); - if (g26_debug_flag) { + if (ubl.g26_debug_flag) { SERIAL_ECHOPGM(" ubl_line_to_destination(xe="); SERIAL_ECHO(x_end); SERIAL_ECHOPGM(", ye="); @@ -150,7 +150,7 @@ planner.buffer_line(x_end, y_end, z_end + ubl.state.z_offset, e_end, feed_rate, extruder); set_current_to_destination(); - if (g26_debug_flag) + if (ubl.g26_debug_flag) debug_current_and_destination((char*)"out of bounds in ubl_line_to_destination()"); return; @@ -167,16 +167,16 @@ * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide. */ - const float xratio = (RAW_X_POSITION(x_end) - mesh_index_to_x_location[cell_dest_xi]) * (1.0 / (MESH_X_DIST)), - z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio * - (z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]), - z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio * - (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]); + const float xratio = (RAW_X_POSITION(x_end) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)), + z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio * + (ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]), + z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio * + (ubl.z_values[cell_dest_xi + 1][cell_dest_yi + 1] - ubl.z_values[cell_dest_xi][cell_dest_yi + 1]); // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we // are going to apply the Y-Distance into the cell to interpolate the final Z correction. - const float yratio = (RAW_Y_POSITION(y_end) - mesh_index_to_y_location[cell_dest_yi]) * (1.0 / (MESH_Y_DIST)); + const float yratio = (RAW_Y_POSITION(y_end) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST)); float z0 = z1 + (z2 - z1) * yratio; @@ -212,7 +212,7 @@ planner.buffer_line(x_end, y_end, z_end + z0 + ubl.state.z_offset, e_end, feed_rate, extruder); - if (g26_debug_flag) + if (ubl.g26_debug_flag) debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()"); set_current_to_destination(); @@ -274,7 +274,7 @@ current_yi += down_flag; // Line is heading down, we just want to go to the bottom while (current_yi != cell_dest_yi + down_flag) { current_yi += dyi; - const float next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi]); + const float next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]); /** * inf_m_flag? the slope of the line is infinite, we won't do the calculations @@ -314,9 +314,9 @@ * because part of the Mesh is undefined and we don't have the * information we need to complete the height correction. */ - if (isnan(z0)) z0 = 0.0; + if (isnan(z0)) z0 = 0.0; - const float y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi]); + const float y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]); /** * Without this check, it is possible for the algorithm to generate a zero length move in the case @@ -339,7 +339,7 @@ } //else printf("FIRST MOVE PRUNED "); } - if (g26_debug_flag) + if (ubl.g26_debug_flag) debug_current_and_destination((char*)"vertical move done in ubl_line_to_destination()"); // @@ -365,7 +365,7 @@ // edge of this cell for the first move. while (current_xi != cell_dest_xi + left_flag) { current_xi += dxi; - const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi]), + const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]), y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi); @@ -401,7 +401,7 @@ */ if (isnan(z0)) z0 = 0.0; - const float x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi]); + const float x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]); /** * Without this check, it is possible for the algorithm to generate a zero length move in the case @@ -424,7 +424,7 @@ } //else printf("FIRST MOVE PRUNED "); } - if (g26_debug_flag) + if (ubl.g26_debug_flag) debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()"); if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) @@ -451,8 +451,8 @@ while (xi_cnt > 0 || yi_cnt > 0) { - const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi + dxi]), - next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi + dyi]), + const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi + dxi]), + next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi + dyi]), y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line (we don't have to worry // about m being equal to 0.0 If this was the case, we would have @@ -563,7 +563,7 @@ } } - if (g26_debug_flag) + if (ubl.g26_debug_flag) debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()"); if (current_position[0] != x_end || current_position[1] != y_end) diff --git a/Marlin/configuration_store.cpp b/Marlin/configuration_store.cpp index 34e014d59..dab1acd88 100644 --- a/Marlin/configuration_store.cpp +++ b/Marlin/configuration_store.cpp @@ -846,7 +846,7 @@ void Config_Postprocess() { } #if ENABLED(AUTO_BED_LEVELING_UBL) - ubl_eeprom_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it + ubl.eeprom_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it // can float up or down a little bit without // disrupting the Unified Bed Leveling data ubl.load_state(); @@ -1232,7 +1232,7 @@ void Config_ResetDefault() { SERIAL_ECHO_F(ubl.state.z_offset, 6); SERIAL_EOL; - SERIAL_ECHOPAIR("EEPROM can hold ", (int)((UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values))); + SERIAL_ECHOPAIR("EEPROM can hold ", (int)((UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values))); SERIAL_ECHOLNPGM(" meshes.\n"); SERIAL_ECHOLNPGM("UBL_MESH_NUM_X_POINTS " STRINGIFY(UBL_MESH_NUM_X_POINTS)); diff --git a/Marlin/example_configurations/Cartesio/Configuration.h b/Marlin/example_configurations/Cartesio/Configuration.h index 60660e994..2f69eb3ae 100644 --- a/Marlin/example_configurations/Cartesio/Configuration.h +++ b/Marlin/example_configurations/Cartesio/Configuration.h @@ -863,7 +863,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/Felix/Configuration.h b/Marlin/example_configurations/Felix/Configuration.h index db44e598e..2eb24e2f7 100644 --- a/Marlin/example_configurations/Felix/Configuration.h +++ b/Marlin/example_configurations/Felix/Configuration.h @@ -846,7 +846,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/Felix/DUAL/Configuration.h b/Marlin/example_configurations/Felix/DUAL/Configuration.h index 041fd1d33..7dd421790 100644 --- a/Marlin/example_configurations/Felix/DUAL/Configuration.h +++ b/Marlin/example_configurations/Felix/DUAL/Configuration.h @@ -846,7 +846,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/Hephestos/Configuration.h b/Marlin/example_configurations/Hephestos/Configuration.h index e4524fca5..adeb2fd91 100644 --- a/Marlin/example_configurations/Hephestos/Configuration.h +++ b/Marlin/example_configurations/Hephestos/Configuration.h @@ -855,7 +855,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/Hephestos_2/Configuration.h b/Marlin/example_configurations/Hephestos_2/Configuration.h index eca7f99e9..9fd44d1e5 100644 --- a/Marlin/example_configurations/Hephestos_2/Configuration.h +++ b/Marlin/example_configurations/Hephestos_2/Configuration.h @@ -857,7 +857,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/K8200/Configuration.h b/Marlin/example_configurations/K8200/Configuration.h index 1b0088526..ef8bb062e 100644 --- a/Marlin/example_configurations/K8200/Configuration.h +++ b/Marlin/example_configurations/K8200/Configuration.h @@ -892,7 +892,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/K8400/Configuration.h b/Marlin/example_configurations/K8400/Configuration.h index ec5b974ea..196363c23 100644 --- a/Marlin/example_configurations/K8400/Configuration.h +++ b/Marlin/example_configurations/K8400/Configuration.h @@ -863,7 +863,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/K8400/Dual-head/Configuration.h b/Marlin/example_configurations/K8400/Dual-head/Configuration.h index 19e2f5b8c..65b1977ec 100644 --- a/Marlin/example_configurations/K8400/Dual-head/Configuration.h +++ b/Marlin/example_configurations/K8400/Dual-head/Configuration.h @@ -863,7 +863,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/RepRapWorld/Megatronics/Configuration.h b/Marlin/example_configurations/RepRapWorld/Megatronics/Configuration.h index e3962233d..0aff84c28 100644 --- a/Marlin/example_configurations/RepRapWorld/Megatronics/Configuration.h +++ b/Marlin/example_configurations/RepRapWorld/Megatronics/Configuration.h @@ -863,7 +863,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/RigidBot/Configuration.h b/Marlin/example_configurations/RigidBot/Configuration.h index 70ce33caf..105804f3f 100644 --- a/Marlin/example_configurations/RigidBot/Configuration.h +++ b/Marlin/example_configurations/RigidBot/Configuration.h @@ -862,7 +862,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/SCARA/Configuration.h b/Marlin/example_configurations/SCARA/Configuration.h index 73f0b04fe..7aa55d77e 100644 --- a/Marlin/example_configurations/SCARA/Configuration.h +++ b/Marlin/example_configurations/SCARA/Configuration.h @@ -878,7 +878,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/TAZ4/Configuration.h b/Marlin/example_configurations/TAZ4/Configuration.h index 63d2cedef..6da6446fb 100644 --- a/Marlin/example_configurations/TAZ4/Configuration.h +++ b/Marlin/example_configurations/TAZ4/Configuration.h @@ -884,7 +884,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/WITBOX/Configuration.h b/Marlin/example_configurations/WITBOX/Configuration.h index a45467179..f609354e4 100644 --- a/Marlin/example_configurations/WITBOX/Configuration.h +++ b/Marlin/example_configurations/WITBOX/Configuration.h @@ -855,7 +855,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/adafruit/ST7565/Configuration.h b/Marlin/example_configurations/adafruit/ST7565/Configuration.h index c5b47196a..9e6f5c240 100644 --- a/Marlin/example_configurations/adafruit/ST7565/Configuration.h +++ b/Marlin/example_configurations/adafruit/ST7565/Configuration.h @@ -863,7 +863,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/delta/flsun_kossel_mini/Configuration.h b/Marlin/example_configurations/delta/flsun_kossel_mini/Configuration.h index 4a0f3f35c..d5a63387e 100644 --- a/Marlin/example_configurations/delta/flsun_kossel_mini/Configuration.h +++ b/Marlin/example_configurations/delta/flsun_kossel_mini/Configuration.h @@ -968,7 +968,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/delta/generic/Configuration.h b/Marlin/example_configurations/delta/generic/Configuration.h index 01997b614..21ee6e3a8 100644 --- a/Marlin/example_configurations/delta/generic/Configuration.h +++ b/Marlin/example_configurations/delta/generic/Configuration.h @@ -954,7 +954,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/delta/kossel_mini/Configuration.h b/Marlin/example_configurations/delta/kossel_mini/Configuration.h index d7713f952..8f1a5e1d0 100644 --- a/Marlin/example_configurations/delta/kossel_mini/Configuration.h +++ b/Marlin/example_configurations/delta/kossel_mini/Configuration.h @@ -958,7 +958,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/delta/kossel_pro/Configuration.h b/Marlin/example_configurations/delta/kossel_pro/Configuration.h index 4814fa8f3..52940b222 100644 --- a/Marlin/example_configurations/delta/kossel_pro/Configuration.h +++ b/Marlin/example_configurations/delta/kossel_pro/Configuration.h @@ -957,7 +957,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/delta/kossel_xl/Configuration.h b/Marlin/example_configurations/delta/kossel_xl/Configuration.h index b71e12acc..46c0b938e 100644 --- a/Marlin/example_configurations/delta/kossel_xl/Configuration.h +++ b/Marlin/example_configurations/delta/kossel_xl/Configuration.h @@ -967,7 +967,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/makibox/Configuration.h b/Marlin/example_configurations/makibox/Configuration.h index 0d701d43b..8aa1c39a2 100644 --- a/Marlin/example_configurations/makibox/Configuration.h +++ b/Marlin/example_configurations/makibox/Configuration.h @@ -866,7 +866,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/example_configurations/tvrrug/Round2/Configuration.h b/Marlin/example_configurations/tvrrug/Round2/Configuration.h index 11d15e2f9..7259a59ec 100644 --- a/Marlin/example_configurations/tvrrug/Round2/Configuration.h +++ b/Marlin/example_configurations/tvrrug/Round2/Configuration.h @@ -859,7 +859,7 @@ #define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_Y 20 - #define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing + //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing #elif ENABLED(MESH_BED_LEVELING) diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp index 02cb3e239..a7ab03243 100755 --- a/Marlin/ultralcd.cpp +++ b/Marlin/ultralcd.cpp @@ -124,8 +124,7 @@ uint16_t max_display_update_time = 0; int32_t lastEncoderMovementMillis; #if ENABLED(AUTO_BED_LEVELING_UBL) - extern bool ubl_has_control_of_lcd_panel; - extern int8_t ubl_encoderDiff; + #include "UBL.h" #endif #if HAS_POWER_SWITCH @@ -860,9 +859,9 @@ void kill_screen(const char* lcd_msg) { static void _lcd_mesh_fine_tune(const char* msg) { defer_return_to_status = true; - if (ubl_encoderDiff) { - ubl_encoderPosition = (ubl_encoderDiff > 0) ? 1 : -1; - ubl_encoderDiff = 0; + if (ubl.encoder_diff) { + ubl_encoderPosition = (ubl.encoder_diff > 0) ? 1 : -1; + ubl.encoder_diff = 0; mesh_edit_accumulator += float(ubl_encoderPosition) * 0.005 / 2.0; mesh_edit_value = mesh_edit_accumulator; @@ -3206,7 +3205,7 @@ void lcd_update() { lcd_buttons_update(); #if ENABLED(AUTO_BED_LEVELING_UBL) - const bool UBL_CONDITION = !ubl_has_control_of_lcd_panel; + const bool UBL_CONDITION = !ubl.has_control_of_lcd_panel; #else constexpr bool UBL_CONDITION = true; #endif @@ -3622,8 +3621,8 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; } case encrot3: ENCODER_SPIN(encrot2, encrot0); break; } #if ENABLED(AUTO_BED_LEVELING_UBL) - if (ubl_has_control_of_lcd_panel) { - ubl_encoderDiff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor + if (ubl.has_control_of_lcd_panel) { + ubl.encoder_diff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor encoderDiff = 0; // We are going to lie to the LCD Panel and claim the encoder // wheel has not turned. }