Merge pull request #4980 from thinkyhead/rc_lin_update

LIN_ADVANCE bug fix and optimization
master
Scott Lahteine 8 years ago committed by GitHub
commit bbeaca5839

@ -4899,8 +4899,8 @@ inline void gcode_M42() {
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j]; for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
mean = sum / (n + 1); mean = sum / (n + 1);
if(sample_set[n] < min) min = sample_set[n]; NOMORE(min, sample_set[n]);
if(sample_set[n] > max) max = sample_set[n]; NOLESS(max, sample_set[n]);
/** /**
* Now, use that mean to calculate the standard deviation for the * Now, use that mean to calculate the standard deviation for the
@ -4956,7 +4956,6 @@ inline void gcode_M42() {
SERIAL_PROTOCOLPGM("Standard Deviation: "); SERIAL_PROTOCOLPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6); SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_EOL; SERIAL_EOL;
SERIAL_EOL; SERIAL_EOL;
clean_up_after_endstop_or_probe_move(); clean_up_after_endstop_or_probe_move();

@ -95,7 +95,7 @@ volatile uint32_t Stepper::step_events_completed = 0; // The number of step even
volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
volatile long Stepper::e_steps[E_STEPPERS]; volatile int Stepper::e_steps[E_STEPPERS];
int Stepper::extruder_advance_k = LIN_ADVANCE_K, int Stepper::extruder_advance_k = LIN_ADVANCE_K,
Stepper::final_estep_rate, Stepper::final_estep_rate,
Stepper::current_estep_rate[E_STEPPERS], Stepper::current_estep_rate[E_STEPPERS],
@ -311,8 +311,20 @@ void Stepper::set_directions() {
#endif // !ADVANCE && !LIN_ADVANCE #endif // !ADVANCE && !LIN_ADVANCE
} }
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. /**
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. * Stepper Driver Interrupt
*
* Directly pulses the stepper motors at high frequency.
* Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
*
* OCR1A Frequency
* 1 2 MHz
* 50 40 KHz
* 100 20 KHz - capped max rate
* 200 10 KHz - nominal max rate
* 2000 1 KHz - sleep rate
* 4000 500 Hz - init rate
*/
ISR(TIMER1_COMPA_vect) { Stepper::isr(); } ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
void Stepper::isr() { void Stepper::isr() {
@ -323,7 +335,7 @@ void Stepper::isr() {
if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND)); if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
#endif #endif
cleaning_buffer_counter--; cleaning_buffer_counter--;
OCR1A = 200; OCR1A = 200; // Run at max speed - 10 KHz
return; return;
} }
@ -348,7 +360,7 @@ void Stepper::isr() {
#if ENABLED(Z_LATE_ENABLE) #if ENABLED(Z_LATE_ENABLE)
if (current_block->steps[Z_AXIS] > 0) { if (current_block->steps[Z_AXIS] > 0) {
enable_z(); enable_z();
OCR1A = 2000; //1ms wait OCR1A = 2000; // Run at slow speed - 1 KHz
return; return;
} }
#endif #endif
@ -358,7 +370,7 @@ void Stepper::isr() {
// #endif // #endif
} }
else { else {
OCR1A = 2000; // 1kHz. OCR1A = 2000; // Run at slow speed - 1 KHz
return; return;
} }
} }
@ -391,7 +403,7 @@ void Stepper::isr() {
#if ENABLED(MIXING_EXTRUDER) #if ENABLED(MIXING_EXTRUDER)
// Step mixing steppers proportionally // Step mixing steppers proportionally
bool dir = motor_direction(E_AXIS); const bool dir = motor_direction(E_AXIS);
MIXING_STEPPERS_LOOP(j) { MIXING_STEPPERS_LOOP(j) {
counter_m[j] += current_block->steps[E_AXIS]; counter_m[j] += current_block->steps[E_AXIS];
if (counter_m[j] > 0) { if (counter_m[j] > 0) {
@ -401,22 +413,6 @@ void Stepper::isr() {
} }
#endif #endif
if (current_block->use_advance_lead) {
int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
#if ENABLED(MIXING_EXTRUDER)
// Mixing extruders apply advance lead proportionally
MIXING_STEPPERS_LOOP(j) {
int steps = delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
e_steps[j] += steps;
current_adv_steps[j] += steps;
}
#else
// For most extruders, advance the single E stepper
e_steps[TOOL_E_INDEX] += delta_adv_steps;
current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
#endif
}
#elif ENABLED(ADVANCE) #elif ENABLED(ADVANCE)
// Always count the unified E axis // Always count the unified E axis
@ -432,7 +428,7 @@ void Stepper::isr() {
#if ENABLED(MIXING_EXTRUDER) #if ENABLED(MIXING_EXTRUDER)
// Step mixing steppers proportionally // Step mixing steppers proportionally
bool dir = motor_direction(E_AXIS); const bool dir = motor_direction(E_AXIS);
MIXING_STEPPERS_LOOP(j) { MIXING_STEPPERS_LOOP(j) {
counter_m[j] += current_block->steps[E_AXIS]; counter_m[j] += current_block->steps[E_AXIS];
if (counter_m[j] > 0) { if (counter_m[j] > 0) {
@ -536,6 +532,21 @@ void Stepper::isr() {
} }
} }
#if ENABLED(LIN_ADVANCE)
if (current_block->use_advance_lead) {
int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
#if ENABLED(MIXING_EXTRUDER)
// Mixing extruders apply advance lead proportionally
MIXING_STEPPERS_LOOP(j)
e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
#else
// For most extruders, advance the single E stepper
e_steps[TOOL_E_INDEX] += delta_adv_steps;
#endif
}
#endif
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
// If we have esteps to execute, fire the next advance_isr "now" // If we have esteps to execute, fire the next advance_isr "now"
if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2; if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
@ -593,7 +604,7 @@ void Stepper::isr() {
#endif // ADVANCE or LIN_ADVANCE #endif // ADVANCE or LIN_ADVANCE
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]); eISR_Rate = (timer >> 3) * step_loops / abs(e_steps[TOOL_E_INDEX]); //>> 3 is divide by 8. Reason: Timer 0 runs at 16/8=2MHz, Timer 1 at 16/64=0.25MHz. ==> 2/0.25=8.
#endif #endif
} }
else if (step_events_completed > (uint32_t)current_block->decelerate_after) { else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
@ -643,7 +654,7 @@ void Stepper::isr() {
#endif // ADVANCE or LIN_ADVANCE #endif // ADVANCE or LIN_ADVANCE
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]); eISR_Rate = (timer >> 3) * step_loops / abs(e_steps[TOOL_E_INDEX]);
#endif #endif
} }
else { else {
@ -653,7 +664,7 @@ void Stepper::isr() {
if (current_block->use_advance_lead) if (current_block->use_advance_lead)
current_estep_rate[TOOL_E_INDEX] = final_estep_rate; current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
eISR_Rate = (OCR1A_nominal >> 2) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]); eISR_Rate = (OCR1A_nominal >> 3) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
#endif #endif
@ -904,6 +915,7 @@ void Stepper::init() {
// output mode = 00 (disconnected) // output mode = 00 (disconnected)
TCCR1A &= ~(3 << COM1A0); TCCR1A &= ~(3 << COM1A0);
TCCR1A &= ~(3 << COM1B0); TCCR1A &= ~(3 << COM1B0);
// Set the timer pre-scaler // Set the timer pre-scaler
// Generally we use a divider of 8, resulting in a 2MHz timer // Generally we use a divider of 8, resulting in a 2MHz timer
// frequency on a 16MHz MCU. If you are going to change this, be // frequency on a 16MHz MCU. If you are going to change this, be
@ -911,6 +923,7 @@ void Stepper::init() {
// create_speed_lookuptable.py // create_speed_lookuptable.py
TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10); TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
// Init Stepper ISR to 122 Hz for quick starting
OCR1A = 0x4000; OCR1A = 0x4000;
TCNT1 = 0; TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT();

@ -108,7 +108,7 @@ class Stepper {
static unsigned char old_OCR0A; static unsigned char old_OCR0A;
static volatile unsigned char eISR_Rate; static volatile unsigned char eISR_Rate;
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
static volatile long e_steps[E_STEPPERS]; static volatile int e_steps[E_STEPPERS];
static int extruder_advance_k; static int extruder_advance_k;
static int final_estep_rate; static int final_estep_rate;
static int current_estep_rate[E_STEPPERS]; // Actual extruder speed [steps/s] static int current_estep_rate[E_STEPPERS]; // Actual extruder speed [steps/s]

@ -1371,7 +1371,7 @@ void Temperature::set_current_temp_raw() {
* Timer 0 is shared with millies so don't change the prescaler. * Timer 0 is shared with millies so don't change the prescaler.
* *
* This ISR uses the compare method so it runs at the base * This ISR uses the compare method so it runs at the base
* frequency (16 MHz / 256 = 62500 Hz), but at the TCNT0 set * frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
* in OCR0B above (128 or halfway between OVFs). * in OCR0B above (128 or halfway between OVFs).
* *
* - Manage PWM to all the heaters and fan * - Manage PWM to all the heaters and fan
@ -1485,9 +1485,16 @@ void Temperature::isr() {
#endif #endif
#endif #endif
// 488.28 Hz (or 1:976.56, 2:1953.12, 3:3906.25, 4:7812.5, 5:7812.5 6:15625, 6:15625 7:31250) // SOFT_PWM_SCALE to frequency:
//
// 0: 16000000/64/256/128 = 7.6294 Hz
// 1: / 64 = 15.2588 Hz
// 2: / 32 = 30.5176 Hz
// 3: / 16 = 61.0352 Hz
// 4: / 8 = 122.0703 Hz
// 5: / 4 = 244.1406 Hz
pwm_count += _BV(SOFT_PWM_SCALE); pwm_count += _BV(SOFT_PWM_SCALE);
pwm_count &= 0x7f; pwm_count &= 0x7F;
#else // SLOW_PWM_HEATERS #else // SLOW_PWM_HEATERS
@ -1586,10 +1593,18 @@ void Temperature::isr() {
#endif #endif
#endif //FAN_SOFT_PWM #endif //FAN_SOFT_PWM
// SOFT_PWM_SCALE to frequency:
//
// 0: 16000000/64/256/128 = 7.6294 Hz
// 1: / 64 = 15.2588 Hz
// 2: / 32 = 30.5176 Hz
// 3: / 16 = 61.0352 Hz
// 4: / 8 = 122.0703 Hz
// 5: / 4 = 244.1406 Hz
pwm_count += _BV(SOFT_PWM_SCALE); pwm_count += _BV(SOFT_PWM_SCALE);
pwm_count &= 0x7f; pwm_count &= 0x7F;
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms // increment slow_pwm_count only every 64 pwm_count (e.g., every 8s)
if ((pwm_count % 64) == 0) { if ((pwm_count % 64) == 0) {
slow_pwm_count++; slow_pwm_count++;
slow_pwm_count &= 0x7f; slow_pwm_count &= 0x7f;

@ -223,7 +223,7 @@ uint8_t lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; // Set when the LCD needs to
static int8_t _countedItems = 0; \ static int8_t _countedItems = 0; \
int8_t encoderLine = encoderPosition / ENCODER_STEPS_PER_MENU_ITEM; \ int8_t encoderLine = encoderPosition / ENCODER_STEPS_PER_MENU_ITEM; \
if (_countedItems > 0 && encoderLine >= _countedItems - LIMIT) { \ if (_countedItems > 0 && encoderLine >= _countedItems - LIMIT) { \
encoderLine = _countedItems - LIMIT; \ encoderLine = max(0, _countedItems - LIMIT); \
encoderPosition = encoderLine * (ENCODER_STEPS_PER_MENU_ITEM); \ encoderPosition = encoderLine * (ENCODER_STEPS_PER_MENU_ITEM); \
} }

Loading…
Cancel
Save