|
|
|
@ -197,373 +197,373 @@ void Config_Postprocess() {
|
|
|
|
|
#define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
|
|
|
|
|
#define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* M500 - Store Configuration
|
|
|
|
|
*/
|
|
|
|
|
void Config_StoreSettings() {
|
|
|
|
|
float dummy = 0.0f;
|
|
|
|
|
char ver[4] = "000";
|
|
|
|
|
|
|
|
|
|
EEPROM_START();
|
|
|
|
|
|
|
|
|
|
EEPROM_WRITE(ver); // invalidate data first
|
|
|
|
|
EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
|
|
|
|
|
|
|
|
|
|
eeprom_checksum = 0; // clear before first "real data"
|
|
|
|
|
|
|
|
|
|
EEPROM_WRITE(planner.axis_steps_per_mm);
|
|
|
|
|
EEPROM_WRITE(planner.max_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
|
|
|
|
|
EEPROM_WRITE(planner.acceleration);
|
|
|
|
|
EEPROM_WRITE(planner.retract_acceleration);
|
|
|
|
|
EEPROM_WRITE(planner.travel_acceleration);
|
|
|
|
|
EEPROM_WRITE(planner.min_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(planner.min_segment_time);
|
|
|
|
|
EEPROM_WRITE(planner.max_jerk);
|
|
|
|
|
EEPROM_WRITE(home_offset);
|
|
|
|
|
|
|
|
|
|
#if HOTENDS > 1
|
|
|
|
|
// Skip hotend 0 which must be 0
|
|
|
|
|
for (uint8_t e = 1; e < HOTENDS; e++)
|
|
|
|
|
LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
|
// Compile time test that sizeof(mbl.z_values) is as expected
|
|
|
|
|
typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
|
|
|
|
|
uint8_t mesh_num_x = MESH_NUM_X_POINTS,
|
|
|
|
|
mesh_num_y = MESH_NUM_Y_POINTS,
|
|
|
|
|
dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
|
|
|
|
|
EEPROM_WRITE(dummy_uint8);
|
|
|
|
|
EEPROM_WRITE(mbl.z_offset);
|
|
|
|
|
EEPROM_WRITE(mesh_num_x);
|
|
|
|
|
EEPROM_WRITE(mesh_num_y);
|
|
|
|
|
EEPROM_WRITE(mbl.z_values);
|
|
|
|
|
#else
|
|
|
|
|
// For disabled MBL write a default mesh
|
|
|
|
|
uint8_t mesh_num_x = 3,
|
|
|
|
|
mesh_num_y = 3,
|
|
|
|
|
dummy_uint8 = 0;
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
EEPROM_WRITE(dummy_uint8);
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
EEPROM_WRITE(mesh_num_x);
|
|
|
|
|
EEPROM_WRITE(mesh_num_y);
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE(dummy);
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
#if !HAS_BED_PROBE
|
|
|
|
|
float zprobe_zoffset = 0;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_WRITE(zprobe_zoffset);
|
|
|
|
|
|
|
|
|
|
// 9 floats for DELTA / Z_DUAL_ENDSTOPS
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
EEPROM_WRITE(endstop_adj); // 3 floats
|
|
|
|
|
EEPROM_WRITE(delta_radius); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_segments_per_second); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
|
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
|
EEPROM_WRITE(z_endstop_adj); // 1 float
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
|
|
|
|
|
#else
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if DISABLED(ULTIPANEL)
|
|
|
|
|
int preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND, preheatBedTemp1 = PREHEAT_1_TEMP_BED, preheatFanSpeed1 = PREHEAT_1_FAN_SPEED,
|
|
|
|
|
preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND, preheatBedTemp2 = PREHEAT_2_TEMP_BED, preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
|
|
|
|
|
#endif // !ULTIPANEL
|
|
|
|
|
|
|
|
|
|
EEPROM_WRITE(preheatHotendTemp1);
|
|
|
|
|
EEPROM_WRITE(preheatBedTemp1);
|
|
|
|
|
EEPROM_WRITE(preheatFanSpeed1);
|
|
|
|
|
EEPROM_WRITE(preheatHotendTemp2);
|
|
|
|
|
EEPROM_WRITE(preheatBedTemp2);
|
|
|
|
|
EEPROM_WRITE(preheatFanSpeed2);
|
|
|
|
|
|
|
|
|
|
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
|
if (e < HOTENDS) {
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Kp, e));
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Ki, e));
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Kd, e));
|
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Kc, e));
|
|
|
|
|
#else
|
|
|
|
|
dummy = 1.0f; // 1.0 = default kc
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
#endif // !PIDTEMP
|
|
|
|
|
{
|
|
|
|
|
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
|
|
|
|
|
EEPROM_WRITE(dummy); // Kp
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // Hotends Loop
|
|
|
|
|
|
|
|
|
|
#if DISABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
int lpq_len = 20;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_WRITE(lpq_len);
|
|
|
|
|
|
|
|
|
|
#if DISABLED(PIDTEMPBED)
|
|
|
|
|
dummy = DUMMY_PID_VALUE;
|
|
|
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_WRITE(thermalManager.bedKp);
|
|
|
|
|
EEPROM_WRITE(thermalManager.bedKi);
|
|
|
|
|
EEPROM_WRITE(thermalManager.bedKd);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if !HAS_LCD_CONTRAST
|
|
|
|
|
const int lcd_contrast = 32;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_WRITE(lcd_contrast);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
|
EEPROM_WRITE(autoretract_enabled);
|
|
|
|
|
EEPROM_WRITE(retract_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
EEPROM_WRITE(retract_length_swap);
|
|
|
|
|
#else
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_WRITE(retract_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(retract_zlift);
|
|
|
|
|
EEPROM_WRITE(retract_recover_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
EEPROM_WRITE(retract_recover_length_swap);
|
|
|
|
|
#else
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_WRITE(retract_recover_feedrate_mm_s);
|
|
|
|
|
#endif // FWRETRACT
|
|
|
|
|
|
|
|
|
|
EEPROM_WRITE(volumetric_enabled);
|
|
|
|
|
|
|
|
|
|
// Save filament sizes
|
|
|
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
|
|
|
if (q < COUNT(filament_size)) dummy = filament_size[q];
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
uint16_t final_checksum = eeprom_checksum,
|
|
|
|
|
eeprom_size = eeprom_index;
|
|
|
|
|
|
|
|
|
|
eeprom_index = EEPROM_OFFSET;
|
|
|
|
|
EEPROM_WRITE(version);
|
|
|
|
|
EEPROM_WRITE(final_checksum);
|
|
|
|
|
|
|
|
|
|
// Report storage size
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
|
|
|
|
|
SERIAL_ECHOLNPGM(" bytes)");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* M501 - Retrieve Configuration
|
|
|
|
|
*/
|
|
|
|
|
void Config_RetrieveSettings() {
|
|
|
|
|
|
|
|
|
|
EEPROM_START();
|
|
|
|
|
|
|
|
|
|
char stored_ver[4];
|
|
|
|
|
EEPROM_READ(stored_ver);
|
|
|
|
|
|
|
|
|
|
uint16_t stored_checksum;
|
|
|
|
|
EEPROM_READ(stored_checksum);
|
|
|
|
|
|
|
|
|
|
// SERIAL_ECHOPAIR("Version: [", ver);
|
|
|
|
|
// SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
|
|
|
|
|
// SERIAL_CHAR(']');
|
|
|
|
|
// SERIAL_EOL;
|
|
|
|
|
/**
|
|
|
|
|
* M500 - Store Configuration
|
|
|
|
|
*/
|
|
|
|
|
void Config_StoreSettings() {
|
|
|
|
|
float dummy = 0.0f;
|
|
|
|
|
char ver[4] = "000";
|
|
|
|
|
|
|
|
|
|
if (strncmp(version, stored_ver, 3) != 0) {
|
|
|
|
|
Config_ResetDefault();
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
float dummy = 0;
|
|
|
|
|
EEPROM_START();
|
|
|
|
|
|
|
|
|
|
eeprom_checksum = 0; // clear before reading first "real data"
|
|
|
|
|
EEPROM_WRITE(ver); // invalidate data first
|
|
|
|
|
EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
|
|
|
|
|
|
|
|
|
|
// version number match
|
|
|
|
|
EEPROM_READ(planner.axis_steps_per_mm);
|
|
|
|
|
EEPROM_READ(planner.max_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(planner.max_acceleration_mm_per_s2);
|
|
|
|
|
eeprom_checksum = 0; // clear before first "real data"
|
|
|
|
|
|
|
|
|
|
EEPROM_READ(planner.acceleration);
|
|
|
|
|
EEPROM_READ(planner.retract_acceleration);
|
|
|
|
|
EEPROM_READ(planner.travel_acceleration);
|
|
|
|
|
EEPROM_READ(planner.min_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(planner.min_travel_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(planner.min_segment_time);
|
|
|
|
|
EEPROM_READ(planner.max_jerk);
|
|
|
|
|
EEPROM_READ(home_offset);
|
|
|
|
|
EEPROM_WRITE(planner.axis_steps_per_mm);
|
|
|
|
|
EEPROM_WRITE(planner.max_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
|
|
|
|
|
EEPROM_WRITE(planner.acceleration);
|
|
|
|
|
EEPROM_WRITE(planner.retract_acceleration);
|
|
|
|
|
EEPROM_WRITE(planner.travel_acceleration);
|
|
|
|
|
EEPROM_WRITE(planner.min_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(planner.min_segment_time);
|
|
|
|
|
EEPROM_WRITE(planner.max_jerk);
|
|
|
|
|
EEPROM_WRITE(home_offset);
|
|
|
|
|
|
|
|
|
|
#if HOTENDS > 1
|
|
|
|
|
// Skip hotend 0 which must be 0
|
|
|
|
|
for (uint8_t e = 1; e < HOTENDS; e++)
|
|
|
|
|
LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
|
|
|
|
|
LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
|
|
|
|
|
EEPROM_READ(dummy_uint8);
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
EEPROM_READ(mesh_num_x);
|
|
|
|
|
EEPROM_READ(mesh_num_y);
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
|
mbl.status = dummy_uint8;
|
|
|
|
|
mbl.z_offset = dummy;
|
|
|
|
|
if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
|
|
|
|
|
// EEPROM data fits the current mesh
|
|
|
|
|
EEPROM_READ(mbl.z_values);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// EEPROM data is stale
|
|
|
|
|
mbl.reset();
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
|
|
|
|
|
}
|
|
|
|
|
// Compile time test that sizeof(mbl.z_values) is as expected
|
|
|
|
|
typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
|
|
|
|
|
uint8_t mesh_num_x = MESH_NUM_X_POINTS,
|
|
|
|
|
mesh_num_y = MESH_NUM_Y_POINTS,
|
|
|
|
|
dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
|
|
|
|
|
EEPROM_WRITE(dummy_uint8);
|
|
|
|
|
EEPROM_WRITE(mbl.z_offset);
|
|
|
|
|
EEPROM_WRITE(mesh_num_x);
|
|
|
|
|
EEPROM_WRITE(mesh_num_y);
|
|
|
|
|
EEPROM_WRITE(mbl.z_values);
|
|
|
|
|
#else
|
|
|
|
|
// MBL is disabled - skip the stored data
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
|
|
|
|
|
// For disabled MBL write a default mesh
|
|
|
|
|
uint8_t mesh_num_x = 3,
|
|
|
|
|
mesh_num_y = 3,
|
|
|
|
|
dummy_uint8 = 0;
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
EEPROM_WRITE(dummy_uint8);
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
EEPROM_WRITE(mesh_num_x);
|
|
|
|
|
EEPROM_WRITE(mesh_num_y);
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE(dummy);
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
#if !HAS_BED_PROBE
|
|
|
|
|
float zprobe_zoffset = 0;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(zprobe_zoffset);
|
|
|
|
|
EEPROM_WRITE(zprobe_zoffset);
|
|
|
|
|
|
|
|
|
|
// 9 floats for DELTA / Z_DUAL_ENDSTOPS
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
EEPROM_READ(endstop_adj); // 3 floats
|
|
|
|
|
EEPROM_READ(delta_radius); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod); // 1 float
|
|
|
|
|
EEPROM_READ(delta_segments_per_second); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
|
|
|
|
|
EEPROM_WRITE(endstop_adj); // 3 floats
|
|
|
|
|
EEPROM_WRITE(delta_radius); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_segments_per_second); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
|
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
|
EEPROM_READ(z_endstop_adj);
|
|
|
|
|
EEPROM_WRITE(z_endstop_adj); // 1 float
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q=8; q--;) EEPROM_READ(dummy);
|
|
|
|
|
for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
|
|
|
|
|
#else
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q=9; q--;) EEPROM_READ(dummy);
|
|
|
|
|
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if DISABLED(ULTIPANEL)
|
|
|
|
|
int preheatHotendTemp1, preheatBedTemp1, preheatFanSpeed1,
|
|
|
|
|
preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
EEPROM_READ(preheatHotendTemp1);
|
|
|
|
|
EEPROM_READ(preheatBedTemp1);
|
|
|
|
|
EEPROM_READ(preheatFanSpeed1);
|
|
|
|
|
EEPROM_READ(preheatHotendTemp2);
|
|
|
|
|
EEPROM_READ(preheatBedTemp2);
|
|
|
|
|
EEPROM_READ(preheatFanSpeed2);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
|
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
|
|
|
|
|
EEPROM_READ(dummy); // Kp
|
|
|
|
|
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
|
|
|
|
|
// do not need to scale PID values as the values in EEPROM are already scaled
|
|
|
|
|
PID_PARAM(Kp, e) = dummy;
|
|
|
|
|
EEPROM_READ(PID_PARAM(Ki, e));
|
|
|
|
|
EEPROM_READ(PID_PARAM(Kd, e));
|
|
|
|
|
int preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND, preheatBedTemp1 = PREHEAT_1_TEMP_BED, preheatFanSpeed1 = PREHEAT_1_FAN_SPEED,
|
|
|
|
|
preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND, preheatBedTemp2 = PREHEAT_2_TEMP_BED, preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
|
|
|
|
|
#endif // !ULTIPANEL
|
|
|
|
|
|
|
|
|
|
EEPROM_WRITE(preheatHotendTemp1);
|
|
|
|
|
EEPROM_WRITE(preheatBedTemp1);
|
|
|
|
|
EEPROM_WRITE(preheatFanSpeed1);
|
|
|
|
|
EEPROM_WRITE(preheatHotendTemp2);
|
|
|
|
|
EEPROM_WRITE(preheatBedTemp2);
|
|
|
|
|
EEPROM_WRITE(preheatFanSpeed2);
|
|
|
|
|
|
|
|
|
|
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
|
if (e < HOTENDS) {
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Kp, e));
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Ki, e));
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Kd, e));
|
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
EEPROM_READ(PID_PARAM(Kc, e));
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Kc, e));
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
dummy = 1.0f; // 1.0 = default kc
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
|
|
|
|
|
else
|
|
|
|
|
#endif // !PIDTEMP
|
|
|
|
|
{
|
|
|
|
|
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
|
|
|
|
|
EEPROM_WRITE(dummy); // Kp
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#else // !PIDTEMP
|
|
|
|
|
// 4 x 4 = 16 slots for PID parameters
|
|
|
|
|
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
|
|
|
|
|
#endif // !PIDTEMP
|
|
|
|
|
|
|
|
|
|
} // Hotends Loop
|
|
|
|
|
|
|
|
|
|
#if DISABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
int lpq_len;
|
|
|
|
|
int lpq_len = 20;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(lpq_len);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
|
EEPROM_READ(dummy); // bedKp
|
|
|
|
|
if (dummy != DUMMY_PID_VALUE) {
|
|
|
|
|
thermalManager.bedKp = dummy;
|
|
|
|
|
EEPROM_READ(thermalManager.bedKi);
|
|
|
|
|
EEPROM_READ(thermalManager.bedKd);
|
|
|
|
|
}
|
|
|
|
|
EEPROM_WRITE(lpq_len);
|
|
|
|
|
|
|
|
|
|
#if DISABLED(PIDTEMPBED)
|
|
|
|
|
dummy = DUMMY_PID_VALUE;
|
|
|
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
|
|
|
|
|
#else
|
|
|
|
|
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
|
|
|
|
|
EEPROM_WRITE(thermalManager.bedKp);
|
|
|
|
|
EEPROM_WRITE(thermalManager.bedKi);
|
|
|
|
|
EEPROM_WRITE(thermalManager.bedKd);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if !HAS_LCD_CONTRAST
|
|
|
|
|
int lcd_contrast;
|
|
|
|
|
const int lcd_contrast = 32;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(lcd_contrast);
|
|
|
|
|
EEPROM_WRITE(lcd_contrast);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
|
EEPROM_READ(autoretract_enabled);
|
|
|
|
|
EEPROM_READ(retract_length);
|
|
|
|
|
EEPROM_WRITE(autoretract_enabled);
|
|
|
|
|
EEPROM_WRITE(retract_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
EEPROM_READ(retract_length_swap);
|
|
|
|
|
EEPROM_WRITE(retract_length_swap);
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(retract_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(retract_zlift);
|
|
|
|
|
EEPROM_READ(retract_recover_length);
|
|
|
|
|
EEPROM_WRITE(retract_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(retract_zlift);
|
|
|
|
|
EEPROM_WRITE(retract_recover_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
EEPROM_READ(retract_recover_length_swap);
|
|
|
|
|
EEPROM_WRITE(retract_recover_length_swap);
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(retract_recover_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(retract_recover_feedrate_mm_s);
|
|
|
|
|
#endif // FWRETRACT
|
|
|
|
|
|
|
|
|
|
EEPROM_READ(volumetric_enabled);
|
|
|
|
|
EEPROM_WRITE(volumetric_enabled);
|
|
|
|
|
|
|
|
|
|
// Save filament sizes
|
|
|
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
if (q < COUNT(filament_size)) filament_size[q] = dummy;
|
|
|
|
|
if (q < COUNT(filament_size)) dummy = filament_size[q];
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (eeprom_checksum == stored_checksum) {
|
|
|
|
|
Config_Postprocess();
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHO(version);
|
|
|
|
|
SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index);
|
|
|
|
|
SERIAL_ECHOLNPGM(" bytes)");
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
|
SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
|
|
|
|
|
uint16_t final_checksum = eeprom_checksum,
|
|
|
|
|
eeprom_size = eeprom_index;
|
|
|
|
|
|
|
|
|
|
eeprom_index = EEPROM_OFFSET;
|
|
|
|
|
EEPROM_WRITE(version);
|
|
|
|
|
EEPROM_WRITE(final_checksum);
|
|
|
|
|
|
|
|
|
|
// Report storage size
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
|
|
|
|
|
SERIAL_ECHOLNPGM(" bytes)");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* M501 - Retrieve Configuration
|
|
|
|
|
*/
|
|
|
|
|
void Config_RetrieveSettings() {
|
|
|
|
|
|
|
|
|
|
EEPROM_START();
|
|
|
|
|
|
|
|
|
|
char stored_ver[4];
|
|
|
|
|
EEPROM_READ(stored_ver);
|
|
|
|
|
|
|
|
|
|
uint16_t stored_checksum;
|
|
|
|
|
EEPROM_READ(stored_checksum);
|
|
|
|
|
|
|
|
|
|
// SERIAL_ECHOPAIR("Version: [", ver);
|
|
|
|
|
// SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
|
|
|
|
|
// SERIAL_CHAR(']');
|
|
|
|
|
// SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
if (strncmp(version, stored_ver, 3) != 0) {
|
|
|
|
|
Config_ResetDefault();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
float dummy = 0;
|
|
|
|
|
|
|
|
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
|
|
Config_PrintSettings();
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
eeprom_checksum = 0; // clear before reading first "real data"
|
|
|
|
|
|
|
|
|
|
// version number match
|
|
|
|
|
EEPROM_READ(planner.axis_steps_per_mm);
|
|
|
|
|
EEPROM_READ(planner.max_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(planner.max_acceleration_mm_per_s2);
|
|
|
|
|
|
|
|
|
|
EEPROM_READ(planner.acceleration);
|
|
|
|
|
EEPROM_READ(planner.retract_acceleration);
|
|
|
|
|
EEPROM_READ(planner.travel_acceleration);
|
|
|
|
|
EEPROM_READ(planner.min_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(planner.min_travel_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(planner.min_segment_time);
|
|
|
|
|
EEPROM_READ(planner.max_jerk);
|
|
|
|
|
EEPROM_READ(home_offset);
|
|
|
|
|
|
|
|
|
|
#if HOTENDS > 1
|
|
|
|
|
// Skip hotend 0 which must be 0
|
|
|
|
|
for (uint8_t e = 1; e < HOTENDS; e++)
|
|
|
|
|
LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
|
|
|
|
|
EEPROM_READ(dummy_uint8);
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
EEPROM_READ(mesh_num_x);
|
|
|
|
|
EEPROM_READ(mesh_num_y);
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
|
mbl.status = dummy_uint8;
|
|
|
|
|
mbl.z_offset = dummy;
|
|
|
|
|
if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
|
|
|
|
|
// EEPROM data fits the current mesh
|
|
|
|
|
EEPROM_READ(mbl.z_values);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// EEPROM data is stale
|
|
|
|
|
mbl.reset();
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
|
|
|
|
|
}
|
|
|
|
|
#else
|
|
|
|
|
// MBL is disabled - skip the stored data
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
#if !HAS_BED_PROBE
|
|
|
|
|
float zprobe_zoffset = 0;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(zprobe_zoffset);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
EEPROM_READ(endstop_adj); // 3 floats
|
|
|
|
|
EEPROM_READ(delta_radius); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod); // 1 float
|
|
|
|
|
EEPROM_READ(delta_segments_per_second); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
|
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
|
EEPROM_READ(z_endstop_adj);
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q=8; q--;) EEPROM_READ(dummy);
|
|
|
|
|
#else
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q=9; q--;) EEPROM_READ(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if DISABLED(ULTIPANEL)
|
|
|
|
|
int preheatHotendTemp1, preheatBedTemp1, preheatFanSpeed1,
|
|
|
|
|
preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
EEPROM_READ(preheatHotendTemp1);
|
|
|
|
|
EEPROM_READ(preheatBedTemp1);
|
|
|
|
|
EEPROM_READ(preheatFanSpeed1);
|
|
|
|
|
EEPROM_READ(preheatHotendTemp2);
|
|
|
|
|
EEPROM_READ(preheatBedTemp2);
|
|
|
|
|
EEPROM_READ(preheatFanSpeed2);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
|
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
|
|
|
|
|
EEPROM_READ(dummy); // Kp
|
|
|
|
|
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
|
|
|
|
|
// do not need to scale PID values as the values in EEPROM are already scaled
|
|
|
|
|
PID_PARAM(Kp, e) = dummy;
|
|
|
|
|
EEPROM_READ(PID_PARAM(Ki, e));
|
|
|
|
|
EEPROM_READ(PID_PARAM(Kd, e));
|
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
EEPROM_READ(PID_PARAM(Kc, e));
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#else // !PIDTEMP
|
|
|
|
|
// 4 x 4 = 16 slots for PID parameters
|
|
|
|
|
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
|
|
|
|
|
#endif // !PIDTEMP
|
|
|
|
|
|
|
|
|
|
#if DISABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
int lpq_len;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(lpq_len);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
|
EEPROM_READ(dummy); // bedKp
|
|
|
|
|
if (dummy != DUMMY_PID_VALUE) {
|
|
|
|
|
thermalManager.bedKp = dummy;
|
|
|
|
|
EEPROM_READ(thermalManager.bedKi);
|
|
|
|
|
EEPROM_READ(thermalManager.bedKd);
|
|
|
|
|
}
|
|
|
|
|
#else
|
|
|
|
|
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if !HAS_LCD_CONTRAST
|
|
|
|
|
int lcd_contrast;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(lcd_contrast);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
|
EEPROM_READ(autoretract_enabled);
|
|
|
|
|
EEPROM_READ(retract_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
EEPROM_READ(retract_length_swap);
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(retract_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(retract_zlift);
|
|
|
|
|
EEPROM_READ(retract_recover_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
EEPROM_READ(retract_recover_length_swap);
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(retract_recover_feedrate_mm_s);
|
|
|
|
|
#endif // FWRETRACT
|
|
|
|
|
|
|
|
|
|
EEPROM_READ(volumetric_enabled);
|
|
|
|
|
|
|
|
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
if (q < COUNT(filament_size)) filament_size[q] = dummy;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (eeprom_checksum == stored_checksum) {
|
|
|
|
|
Config_Postprocess();
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHO(version);
|
|
|
|
|
SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index);
|
|
|
|
|
SERIAL_ECHOLNPGM(" bytes)");
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
|
SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
|
|
|
|
|
Config_ResetDefault();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
|
|
Config_PrintSettings();
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#else // !EEPROM_SETTINGS
|
|
|
|
|
|
|
|
|
@ -711,310 +711,310 @@ void Config_ResetDefault() {
|
|
|
|
|
|
|
|
|
|
#if DISABLED(DISABLE_M503)
|
|
|
|
|
|
|
|
|
|
#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
|
|
|
|
|
#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* M503 - Print Configuration
|
|
|
|
|
*/
|
|
|
|
|
void Config_PrintSettings(bool forReplay) {
|
|
|
|
|
// Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
/**
|
|
|
|
|
* M503 - Print Configuration
|
|
|
|
|
*/
|
|
|
|
|
void Config_PrintSettings(bool forReplay) {
|
|
|
|
|
// Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
|
|
|
|
|
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Steps per unit:");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
|
|
|
|
|
SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
|
|
|
|
|
SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
|
|
|
|
|
SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
|
|
|
|
|
SERIAL_ECHOPAIR(" B", planner.min_segment_time);
|
|
|
|
|
SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Home offset (mm)");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
#if HOTENDS > 1
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Hotend offsets (mm)");
|
|
|
|
|
SERIAL_ECHOLNPGM("Steps per unit:");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
for (uint8_t e = 1; e < HOTENDS; e++) {
|
|
|
|
|
SERIAL_ECHOPAIR(" M218 T", (int)e);
|
|
|
|
|
SERIAL_ECHOPAIR(" X", hotend_offset[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", hotend_offset[Y_AXIS]);
|
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", hotend_offset[Z_AXIS]);
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Mesh bed leveling:");
|
|
|
|
|
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
|
|
|
|
|
SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
|
|
|
|
|
SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
|
|
|
|
|
for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" G29 S3 X", (int)px);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", (int)py);
|
|
|
|
|
SERIAL_ECHOPGM(" Z");
|
|
|
|
|
SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
|
|
|
|
|
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
|
|
|
|
|
SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
|
|
|
|
|
SERIAL_ECHOPAIR(" R", delta_radius);
|
|
|
|
|
SERIAL_ECHOPAIR(" S", delta_segments_per_second);
|
|
|
|
|
SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
|
|
|
|
|
SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
|
|
|
|
|
SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
|
|
|
|
|
SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
|
|
|
|
|
SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
|
|
|
|
|
SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
|
|
|
|
|
SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
|
|
|
|
|
SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
|
|
|
|
|
SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
|
|
|
|
|
SERIAL_ECHOPAIR(" B", planner.min_segment_time);
|
|
|
|
|
SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif // DELTA
|
|
|
|
|
|
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Material heatup parameters:");
|
|
|
|
|
SERIAL_ECHOLNPGM("Home offset (mm)");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M145 S0 H", preheatHotendTemp1);
|
|
|
|
|
SERIAL_ECHOPAIR(" B", preheatBedTemp1);
|
|
|
|
|
SERIAL_ECHOPAIR(" F", preheatFanSpeed1);
|
|
|
|
|
SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M145 S1 H", preheatHotendTemp2);
|
|
|
|
|
SERIAL_ECHOPAIR(" B", preheatBedTemp2);
|
|
|
|
|
SERIAL_ECHOPAIR(" F", preheatFanSpeed2);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif // ULTIPANEL
|
|
|
|
|
|
|
|
|
|
#if HAS_PID_HEATING
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("PID settings:");
|
|
|
|
|
}
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
|
#if HOTENDS > 1
|
|
|
|
|
if (forReplay) {
|
|
|
|
|
HOTEND_LOOP() {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M301 E", e);
|
|
|
|
|
SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
|
|
|
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
|
|
|
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
|
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
|
|
|
|
|
if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
#endif // HOTENDS > 1
|
|
|
|
|
// !forReplay || HOTENDS == 1
|
|
|
|
|
{
|
|
|
|
|
#if HOTENDS > 1
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Hotend offsets (mm)");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
|
|
|
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
|
|
|
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
|
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
|
|
|
|
|
SERIAL_ECHOPAIR(" L", lpq_len);
|
|
|
|
|
}
|
|
|
|
|
for (uint8_t e = 1; e < HOTENDS; e++) {
|
|
|
|
|
SERIAL_ECHOPAIR(" M218 T", (int)e);
|
|
|
|
|
SERIAL_ECHOPAIR(" X", hotend_offset[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", hotend_offset[Y_AXIS]);
|
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", hotend_offset[Z_AXIS]);
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
#endif // PIDTEMP
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
|
|
|
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
|
|
|
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Mesh bed leveling:");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
|
|
|
|
|
SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
|
|
|
|
|
for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" G29 S3 X", (int)px);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", (int)py);
|
|
|
|
|
SERIAL_ECHOPGM(" Z");
|
|
|
|
|
SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#endif // PIDTEMP || PIDTEMPBED
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
|
|
|
|
|
SERIAL_ECHOPAIR(" R", delta_radius);
|
|
|
|
|
SERIAL_ECHOPAIR(" S", delta_segments_per_second);
|
|
|
|
|
SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
|
|
|
|
|
SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
|
|
|
|
|
SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif // DELTA
|
|
|
|
|
|
|
|
|
|
#if HAS_LCD_CONTRAST
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("LCD Contrast:");
|
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Material heatup parameters:");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M145 S0 H", preheatHotendTemp1);
|
|
|
|
|
SERIAL_ECHOPAIR(" B", preheatBedTemp1);
|
|
|
|
|
SERIAL_ECHOPAIR(" F", preheatFanSpeed1);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M145 S1 H", preheatHotendTemp2);
|
|
|
|
|
SERIAL_ECHOPAIR(" B", preheatBedTemp2);
|
|
|
|
|
SERIAL_ECHOPAIR(" F", preheatFanSpeed2);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif // ULTIPANEL
|
|
|
|
|
|
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
|
#if HAS_PID_HEATING
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M207 S", retract_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
SERIAL_ECHOPAIR(" W", retract_length_swap);
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", retract_zlift);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("PID settings:");
|
|
|
|
|
}
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
|
#if HOTENDS > 1
|
|
|
|
|
if (forReplay) {
|
|
|
|
|
HOTEND_LOOP() {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M301 E", e);
|
|
|
|
|
SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
|
|
|
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
|
|
|
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
|
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
|
|
|
|
|
if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
#endif // HOTENDS > 1
|
|
|
|
|
// !forReplay || HOTENDS == 1
|
|
|
|
|
{
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
|
|
|
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
|
|
|
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
|
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
|
|
|
|
|
SERIAL_ECHOPAIR(" L", lpq_len);
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
#endif // PIDTEMP
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
|
|
|
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
|
|
|
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#endif // PIDTEMP || PIDTEMPBED
|
|
|
|
|
|
|
|
|
|
#if HAS_LCD_CONTRAST
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("LCD Contrast:");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
#endif // FWRETRACT
|
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Volumetric extrusion M200
|
|
|
|
|
*/
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPGM("Filament settings:");
|
|
|
|
|
if (volumetric_enabled)
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M207 S", retract_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
SERIAL_ECHOPAIR(" W", retract_length_swap);
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", retract_zlift);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
else
|
|
|
|
|
SERIAL_ECHOLNPGM(" Disabled");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
#endif // FWRETRACT
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Volumetric extrusion M200
|
|
|
|
|
*/
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPGM("Filament settings:");
|
|
|
|
|
if (volumetric_enabled)
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
else
|
|
|
|
|
SERIAL_ECHOLNPGM(" Disabled");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
|
|
|
|
|
SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#if EXTRUDERS > 2
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
|
|
|
|
|
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#if EXTRUDERS > 3
|
|
|
|
|
#if EXTRUDERS > 2
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
|
|
|
|
|
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#if EXTRUDERS > 3
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
if (!volumetric_enabled) {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOLNPGM(" M200 D0");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Auto Bed Leveling
|
|
|
|
|
*/
|
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
if (!volumetric_enabled) {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
|
|
|
|
|
SERIAL_ECHOLNPGM(" M200 D0");
|
|
|
|
|
}
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Auto Bed Leveling
|
|
|
|
|
*/
|
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
|
|
|
|
|
}
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // !DISABLE_M503
|
|
|
|
|