From c54a2ea0425dd3289710328c37368d979767f542 Mon Sep 17 00:00:00 2001 From: Scott Lahteine Date: Sun, 17 May 2015 01:47:02 -0700 Subject: [PATCH] Adjust spacing in Marlin_main.cpp and stepper.* --- Marlin/Marlin_main.cpp | 330 +++++++++++++++++++++-------------------- Marlin/stepper.cpp | 5 +- Marlin/stepper.h | 6 +- 3 files changed, 171 insertions(+), 170 deletions(-) diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index 1a5bb6c12..4afb61290 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -561,9 +561,9 @@ void servo_init() { // Set position of Servo Endstops that are defined #ifdef SERVO_ENDSTOPS - for (int i = 0; i < 3; i++) - if (servo_endstops[i] >= 0) - servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]); + for (int i = 0; i < 3; i++) + if (servo_endstops[i] >= 0) + servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]); #endif #if SERVO_LEVELING @@ -1317,21 +1317,21 @@ static void setup_for_endstop_move() { st_synchronize(); - #ifdef Z_PROBE_ENDSTOP - bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING); - if (z_probe_endstop) - #else - bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); - if (z_min_endstop) - #endif - { - if (IsRunning()) { - SERIAL_ERROR_START; - SERIAL_ERRORLNPGM("Z-Probe failed to engage!"); - LCD_ALERTMESSAGEPGM("Err: ZPROBE"); + #ifdef Z_PROBE_ENDSTOP + bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING); + if (z_probe_endstop) + #else + bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); + if (z_min_endstop) + #endif + { + if (IsRunning()) { + SERIAL_ERROR_START; + SERIAL_ERRORLNPGM("Z-Probe failed to engage!"); + LCD_ALERTMESSAGEPGM("Err: ZPROBE"); + } + Stop(); } - Stop(); - } #endif // Z_PROBE_ALLEN_KEY @@ -1394,21 +1394,21 @@ static void setup_for_endstop_move() { st_synchronize(); - #ifdef Z_PROBE_ENDSTOP - bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING); - if (!z_probe_endstop) - #else - bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); - if (!z_min_endstop) - #endif - { - if (IsRunning()) { - SERIAL_ERROR_START; - SERIAL_ERRORLNPGM("Z-Probe failed to retract!"); - LCD_ALERTMESSAGEPGM("Err: ZPROBE"); + #ifdef Z_PROBE_ENDSTOP + bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING); + if (!z_probe_endstop) + #else + bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); + if (!z_min_endstop) + #endif + { + if (IsRunning()) { + SERIAL_ERROR_START; + SERIAL_ERRORLNPGM("Z-Probe failed to retract!"); + LCD_ALERTMESSAGEPGM("Err: ZPROBE"); + } + Stop(); } - Stop(); - } #endif @@ -6093,82 +6093,83 @@ void prepare_move() { #endif // HAS_CONTROLLERFAN #ifdef SCARA -void calculate_SCARA_forward_Transform(float f_scara[3]) -{ - // Perform forward kinematics, and place results in delta[3] - // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014 - - float x_sin, x_cos, y_sin, y_cos; - + + void calculate_SCARA_forward_Transform(float f_scara[3]) { + // Perform forward kinematics, and place results in delta[3] + // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014 + + float x_sin, x_cos, y_sin, y_cos; + //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]); //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]); - + x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1; x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1; y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2; y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2; - - // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin); - // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos); - // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin); - // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos); - + + //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin); + //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos); + //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin); + //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos); + delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]); //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]); -} + } -void calculate_delta(float cartesian[3]){ - //reverse kinematics. - // Perform reversed kinematics, and place results in delta[3] - // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014 - - float SCARA_pos[2]; - static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; - - SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y - SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor. - - #if (Linkage_1 == Linkage_2) - SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1; - #else - SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000; - #endif - - SCARA_S2 = sqrt( 1 - sq(SCARA_C2) ); - - SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2; - SCARA_K2 = Linkage_2 * SCARA_S2; - - SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1; - SCARA_psi = atan2(SCARA_S2,SCARA_C2); - - delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle - delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor) - delta[Z_AXIS] = cartesian[Z_AXIS]; - - /* - SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]); - SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]); - SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]); - - SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]); - SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]); - - SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]); - SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]); - SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]); - - SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2); - SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2); - SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta); - SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi); - SERIAL_ECHOLN(" ");*/ -} + void calculate_delta(float cartesian[3]){ + //reverse kinematics. + // Perform reversed kinematics, and place results in delta[3] + // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014 + + float SCARA_pos[2]; + static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; + + SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y + SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor. + + #if (Linkage_1 == Linkage_2) + SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1; + #else + SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000; + #endif + + SCARA_S2 = sqrt( 1 - sq(SCARA_C2) ); + + SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2; + SCARA_K2 = Linkage_2 * SCARA_S2; + + SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1; + SCARA_psi = atan2(SCARA_S2,SCARA_C2); + + delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle + delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor) + delta[Z_AXIS] = cartesian[Z_AXIS]; + + /* + SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]); + SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]); + SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]); + + SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]); + SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]); + + SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]); + SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]); + SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]); + + SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2); + SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2); + SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta); + SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi); + SERIAL_EOL; + */ + } -#endif +#endif // SCARA #ifdef TEMP_STAT_LEDS @@ -6399,88 +6400,89 @@ void kill() st_synchronize(); } } -#endif -void Stop() { - disable_all_heaters(); - if (IsRunning()) { - Running = false; - Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart - SERIAL_ERROR_START; - SERIAL_ERRORLNPGM(MSG_ERR_STOPPED); - LCD_MESSAGEPGM(MSG_STOPPED); - } -} +#endif // FILAMENT_RUNOUT_SENSOR #ifdef FAST_PWM_FAN -void setPwmFrequency(uint8_t pin, int val) -{ - val &= 0x07; - switch(digitalPinToTimer(pin)) - { - #if defined(TCCR0A) - case TIMER0A: - case TIMER0B: -// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02)); -// TCCR0B |= val; - break; - #endif + void setPwmFrequency(uint8_t pin, int val) { + val &= 0x07; + switch (digitalPinToTimer(pin)) { - #if defined(TCCR1A) - case TIMER1A: - case TIMER1B: -// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); -// TCCR1B |= val; - break; - #endif + #if defined(TCCR0A) + case TIMER0A: + case TIMER0B: + // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02)); + // TCCR0B |= val; + break; + #endif - #if defined(TCCR2) - case TIMER2: - case TIMER2: - TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); - TCCR2 |= val; - break; - #endif + #if defined(TCCR1A) + case TIMER1A: + case TIMER1B: + // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); + // TCCR1B |= val; + break; + #endif - #if defined(TCCR2A) - case TIMER2A: - case TIMER2B: - TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22)); - TCCR2B |= val; - break; - #endif + #if defined(TCCR2) + case TIMER2: + case TIMER2: + TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); + TCCR2 |= val; + break; + #endif - #if defined(TCCR3A) - case TIMER3A: - case TIMER3B: - case TIMER3C: - TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32)); - TCCR3B |= val; - break; - #endif + #if defined(TCCR2A) + case TIMER2A: + case TIMER2B: + TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22)); + TCCR2B |= val; + break; + #endif + + #if defined(TCCR3A) + case TIMER3A: + case TIMER3B: + case TIMER3C: + TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32)); + TCCR3B |= val; + break; + #endif + + #if defined(TCCR4A) + case TIMER4A: + case TIMER4B: + case TIMER4C: + TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42)); + TCCR4B |= val; + break; + #endif - #if defined(TCCR4A) - case TIMER4A: - case TIMER4B: - case TIMER4C: - TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42)); - TCCR4B |= val; - break; - #endif - - #if defined(TCCR5A) - case TIMER5A: - case TIMER5B: - case TIMER5C: - TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52)); - TCCR5B |= val; - break; - #endif + #if defined(TCCR5A) + case TIMER5A: + case TIMER5B: + case TIMER5C: + TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52)); + TCCR5B |= val; + break; + #endif + + } + } +#endif // FAST_PWM_FAN + +void Stop() { + disable_all_heaters(); + if (IsRunning()) { + Running = false; + Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart + SERIAL_ERROR_START; + SERIAL_ERRORLNPGM(MSG_ERR_STOPPED); + LCD_MESSAGEPGM(MSG_STOPPED); } } -#endif //FAST_PWM_FAN bool setTargetedHotend(int code){ target_extruder = active_extruder; diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp index 357f6fd65..7b00da34e 100644 --- a/Marlin/stepper.cpp +++ b/Marlin/stepper.cpp @@ -1110,9 +1110,8 @@ long st_get_position(uint8_t axis) { #ifdef ENABLE_AUTO_BED_LEVELING - float st_get_position_mm(uint8_t axis) { - float steper_position_in_steps = st_get_position(axis); - return steper_position_in_steps / axis_steps_per_unit[axis]; + float st_get_position_mm(AxisEnum axis) { + return st_get_position(axis) / axis_steps_per_unit[axis]; } #endif // ENABLE_AUTO_BED_LEVELING diff --git a/Marlin/stepper.h b/Marlin/stepper.h index d6c17d60f..15d814332 100644 --- a/Marlin/stepper.h +++ b/Marlin/stepper.h @@ -67,9 +67,9 @@ void st_set_e_position(const long &e); long st_get_position(uint8_t axis); #ifdef ENABLE_AUTO_BED_LEVELING -// Get current position in mm -float st_get_position_mm(uint8_t axis); -#endif //ENABLE_AUTO_BED_LEVELING + // Get current position in mm + float st_get_position_mm(AxisEnum axis); +#endif // The stepper subsystem goes to sleep when it runs out of things to execute. Call this // to notify the subsystem that it is time to go to work.