@ -530,7 +530,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, Z_ENDSTOP_SERVO_NR and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
@ -780,7 +780,9 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
@ -530,7 +530,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, Z_ENDSTOP_SERVO_NR and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
@ -780,7 +780,9 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
@ -512,7 +512,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, Z_ENDSTOP_SERVO_NR and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
@ -763,7 +763,9 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
@ -449,9 +449,6 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
//If defined, the Probe servo will be turned on only during movement and then turned off to avoid jerk
//The value is the delay to turn the servo off after powered on - depends on the servo speed; 300ms is good value, but you can try lower it.
// You MUST HAVE the SERVO_ENDSTOPS defined to use here a value higher than zero otherwise your code will not compile.
// #define PROBE_SERVO_DEACTIVATION_DELAY 300
//If you have enabled the Bed Auto Leveling and are using the same Z Probe for Z Homing,
@ -476,7 +473,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, Z_ENDSTOP_SERVO_NR and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
@ -718,9 +715,23 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
@ -522,7 +522,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, Z_ENDSTOP_SERVO_NR and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
@ -772,7 +772,9 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
@ -518,7 +518,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, Z_ENDSTOP_SERVO_NR and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
@ -768,7 +768,9 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
@ -530,7 +530,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, Z_ENDSTOP_SERVO_NR and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
@ -780,7 +780,9 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
@ -510,7 +510,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, Z_ENDSTOP_SERVO_NR and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
@ -763,7 +763,9 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
@ -538,7 +538,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, Z_ENDSTOP_SERVO_NR and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
@ -788,7 +788,9 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
@ -522,7 +522,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, Z_ENDSTOP_SERVO_NR and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
@ -772,7 +772,9 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
@ -530,7 +530,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, Z_ENDSTOP_SERVO_NR and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
@ -780,7 +780,9 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
@ -650,7 +650,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, Z_ENDSTOP_SERVO_NR and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
@ -903,7 +903,9 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
@ -650,7 +650,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, Z_ENDSTOP_SERVO_NR and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
@ -907,7 +907,9 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
@ -654,7 +654,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, Z_ENDSTOP_SERVO_NR and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
@ -907,7 +907,9 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
@ -639,7 +639,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, Z_ENDSTOP_SERVO_NR and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
@ -902,7 +902,9 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
@ -533,7 +533,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, Z_ENDSTOP_SERVO_NR and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
@ -783,7 +783,9 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
@ -520,7 +520,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, Z_ENDSTOP_SERVO_NR and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
@ -774,7 +774,9 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1