Implement the "manual" option for ABL

master
Scott Lahteine 7 years ago
parent 9e22184936
commit fcadc7bb1a

@ -124,24 +124,17 @@ script:
- build_marlin
#
# Test a Sled Z Probe
#
- restore_configs
- opt_enable Z_PROBE_SLED
- build_marlin
#
# ...with AUTO_BED_LEVELING_LINEAR, DEBUG_LEVELING_FEATURE, EEPROM_SETTINGS, and EEPROM_CHITCHAT
#
- opt_enable AUTO_BED_LEVELING_LINEAR DEBUG_LEVELING_FEATURE EEPROM_SETTINGS EEPROM_CHITCHAT
- restore_configs
- opt_enable Z_PROBE_SLED AUTO_BED_LEVELING_LINEAR DEBUG_LEVELING_FEATURE EEPROM_SETTINGS EEPROM_CHITCHAT
- build_marlin
#
# Test a Servo Probe
# ...with AUTO_BED_LEVELING_3POINT, DEBUG_LEVELING_FEATURE, EEPROM_SETTINGS, EEPROM_CHITCHAT, EXTENDED_CAPABILITIES_REPORT, and AUTO_REPORT_TEMPERATURES
#
- restore_configs
- opt_enable NUM_SERVOS Z_ENDSTOP_SERVO_NR Z_SERVO_ANGLES DEACTIVATE_SERVOS_AFTER_MOVE
- build_marlin
#
# ...with AUTO_BED_LEVELING_3POINT, DEBUG_LEVELING_FEATURE, EEPROM_SETTINGS, EEPROM_CHITCHAT, EXTENDED_CAPABILITIES_REPORT, and AUTO_REPORT_TEMPERATURES
#
- opt_enable AUTO_BED_LEVELING_3POINT DEBUG_LEVELING_FEATURE EEPROM_SETTINGS EEPROM_CHITCHAT
- opt_enable_adv EXTENDED_CAPABILITIES_REPORT AUTO_REPORT_TEMPERATURES
- build_marlin
@ -149,7 +142,13 @@ script:
# Test MESH_BED_LEVELING feature, with LCD
#
- restore_configs
- opt_enable MESH_BED_LEVELING MESH_G28_REST_ORIGIN MANUAL_BED_LEVELING ULTIMAKERCONTROLLER
- opt_enable MESH_BED_LEVELING MESH_G28_REST_ORIGIN LCD_BED_LEVELING ULTIMAKERCONTROLLER
- build_marlin
#
# Test PROBE_MANUALLY feature
#
- restore_configs
- opt_enable PROBE_MANUALLY AUTO_BED_LEVELING_BILINEAR
- build_marlin
#
# Test EEPROM_SETTINGS, EEPROM_CHITCHAT, M100_FREE_MEMORY_WATCHER,

@ -353,10 +353,10 @@ static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
* the main loop. The process_next_command function parses the next
* command and hands off execution to individual handler functions.
*/
static char command_queue[BUFSIZE][MAX_CMD_SIZE];
uint8_t commands_in_queue = 0; // Count of commands in the queue
static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
cmd_queue_index_w = 0, // Ring buffer write position
commands_in_queue = 0; // Count of commands in the queue
cmd_queue_index_w = 0; // Ring buffer write position
static char command_queue[BUFSIZE][MAX_CMD_SIZE];
/**
* Current GCode Command
@ -3502,6 +3502,12 @@ inline void gcode_G4() {
#endif // Z_SAFE_HOMING
#if ENABLED(PROBE_MANUALLY)
static bool g29_in_progress = false;
#else
constexpr bool g29_in_progress = false;
#endif
/**
* G28: Home all axes according to settings
*
@ -3529,6 +3535,11 @@ inline void gcode_G28() {
// Wait for planner moves to finish!
stepper.synchronize();
// Cancel the active G29 session
#if ENABLED(PROBE_MANUALLY)
g29_in_progress = false;
#endif
// Disable the leveling matrix before homing
#if PLANNER_LEVELING
#if ENABLED(AUTO_BED_LEVELING_UBL)
@ -3719,9 +3730,9 @@ inline void gcode_G28() {
#endif
#if ENABLED(MESH_BED_LEVELING)
#if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
inline void _mbl_goto_xy(const float &x, const float &y) {
inline void _manual_goto_xy(const float &x, const float &y) {
const float old_feedrate_mm_s = feedrate_mm_s;
#if MANUAL_PROBE_HEIGHT > 0
@ -3745,6 +3756,10 @@ inline void gcode_G28() {
stepper.synchronize();
}
#endif
#if ENABLED(MESH_BED_LEVELING)
// Save 130 bytes with non-duplication of PSTR
void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
@ -3835,7 +3850,7 @@ inline void gcode_G28() {
// If there's another point to sample, move there with optional lift.
if (mbl_probe_index < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
mbl.zigzag(mbl_probe_index, px, py);
_mbl_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
_manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
#if HAS_SOFTWARE_ENDSTOPS
// Disable software endstops to allow manual adjustment
@ -3917,50 +3932,86 @@ inline void gcode_G28() {
#elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
#if ABL_GRID
#if ENABLED(PROBE_Y_FIRST)
#define PR_OUTER_VAR xCount
#define PR_OUTER_END abl_grid_points_x
#define PR_INNER_VAR yCount
#define PR_INNER_END abl_grid_points_y
#else
#define PR_OUTER_VAR yCount
#define PR_OUTER_END abl_grid_points_y
#define PR_INNER_VAR xCount
#define PR_INNER_END abl_grid_points_x
#endif
#endif
/**
* G29: Detailed Z probe, probes the bed at 3 or more points.
* Will fail if the printer has not been homed with G28.
*
* Enhanced G29 Auto Bed Leveling Probe Routine
*
* Parameters With LINEAR and BILINEAR:
* D Dry-Run mode. Just evaluate the bed Topology - Don't apply
* or alter the bed level data. Useful to check the topology
* after a first run of G29.
*
* J Jettison current bed leveling data
*
* V Set the verbose level (0-4). Example: "G29 V3"
*
* Parameters With LINEAR leveling only:
*
* P Set the size of the grid that will be probed (P x P points).
* Not supported by non-linear delta printer bed leveling.
* Example: "G29 P4"
*
* S Set the XY travel speed between probe points (in units/min)
* X Set the X size of the grid that will be probed (X x Y points).
* Example: "G29 X7 Y5"
*
* D Dry-Run mode. Just evaluate the bed Topology - Don't apply
* or clean the rotation Matrix. Useful to check the topology
* after a first run of G29.
*
* V Set the verbose level (0-4). Example: "G29 V3"
* Y Set the Y size of the grid that will be probed (X x Y points).
*
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
* This is useful for manual bed leveling and finding flaws in the bed (to
* assist with part placement).
* Not supported by non-linear delta printer bed leveling.
*
* Parameters With LINEAR and BILINEAR leveling only:
*
* S Set the XY travel speed between probe points (in units/min)
*
* F Set the Front limit of the probing grid
* B Set the Back limit of the probing grid
* L Set the Left limit of the probing grid
* R Set the Right limit of the probing grid
*
* Parameters with BILINEAR only:
* Parameters with BILINEAR leveling only:
*
* Z Supply an additional Z probe offset
*
* Global Parameters:
* Extra parameters with PROBE_MANUALLY:
*
* To do manual probing simply repeat G29 until the procedure is complete.
* The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
*
* Q Query leveling and G29 state
*
* A Abort current leveling procedure
*
* W Write a mesh point. (Ignored during leveling.)
* X Required X for mesh point
* Y Required Y for mesh point
* Z Required Z for mesh point
*
* E/e By default G29 will engage the Z probe, test the bed, then disengage.
* Without PROBE_MANUALLY:
*
* E By default G29 will engage the Z probe, test the bed, then disengage.
* Include "E" to engage/disengage the Z probe for each sample.
* There's no extra effect if you have a fixed Z probe.
* Usage: "G29 E" or "G29 e"
*
*/
inline void gcode_G29() {
// G29 Q is also available if debugging
#if ENABLED(DEBUG_LEVELING_FEATURE)
const bool query = code_seen('Q');
const uint8_t old_debug_flags = marlin_debug_flags;
@ -3970,37 +4021,148 @@ inline void gcode_G28() {
log_machine_info();
}
marlin_debug_flags = old_debug_flags;
if (query) return;
#if DISABLED(PROBE_MANUALLY)
if (query) return;
#endif
#endif
// Don't allow auto-leveling without homing first
if (axis_unhomed_error(true, true, true)) return;
const int verbose_level = code_seen('V') ? code_value_int() : 1;
if (verbose_level < 0 || verbose_level > 4) {
SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
return;
}
// Define local vars 'static' for manual probing, 'auto' otherwise
#if ENABLED(PROBE_MANUALLY)
#define ABL_VAR static
#else
#define ABL_VAR
#endif
bool dryrun = code_seen('D'),
stow_probe_after_each = code_seen('E');
ABL_VAR int verbose_level, abl_probe_index;
ABL_VAR float xProbe, yProbe, measured_z;
ABL_VAR bool dryrun, abl_should_enable;
#if HAS_SOFTWARE_ENDSTOPS
ABL_VAR bool enable_soft_endstops = true;
#endif
#if ABL_GRID
ABL_VAR uint8_t PR_OUTER_VAR;
ABL_VAR int8_t PR_INNER_VAR;
ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
ABL_VAR float xGridSpacing, yGridSpacing;
if (verbose_level > 0) {
SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
}
#define ABL_GRID_MAX (ABL_GRID_MAX_POINTS_X) * (ABL_GRID_MAX_POINTS_Y)
#if ABL_PLANAR
ABL_VAR uint8_t abl_grid_points_x = ABL_GRID_MAX_POINTS_X,
abl_grid_points_y = ABL_GRID_MAX_POINTS_Y;
ABL_VAR int abl2;
ABL_VAR bool do_topography_map;
#else // 3-point
uint8_t constexpr abl_grid_points_x = ABL_GRID_MAX_POINTS_X,
abl_grid_points_y = ABL_GRID_MAX_POINTS_Y;
int constexpr abl2 = ABL_GRID_MAX;
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
ABL_VAR float zoffset;
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
ABL_VAR int indexIntoAB[ABL_GRID_MAX_POINTS_X][ABL_GRID_MAX_POINTS_Y];
ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
mean;
#endif
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
// Probe at 3 arbitrary points
ABL_VAR vector_3 points[3] = {
vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
};
#endif // AUTO_BED_LEVELING_3POINT
bool do_topography_map = verbose_level > 2 || code_seen('T');
/**
* On the initial G29 fetch command parameters.
*/
if (!g29_in_progress) {
abl_probe_index = 0;
abl_should_enable = planner.abl_enabled;
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (code_seen('W')) {
if (!bilinear_grid_spacing[X_AXIS]) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("No bilinear grid");
return;
}
const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
if (!WITHIN(z, -10, 10)) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Bad Z value");
return;
}
const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
if (x < 99998 && y < 99998) {
// Get nearest i / j from x / y
i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
i = constrain(i, 0, ABL_GRID_MAX_POINTS_X - 1);
j = constrain(j, 0, ABL_GRID_MAX_POINTS_Y - 1);
}
if (WITHIN(i, 0, ABL_GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, ABL_GRID_MAX_POINTS_Y)) {
set_bed_leveling_enabled(false);
bed_level_grid[i][j] = z;
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
bed_level_virt_interpolate();
#endif
set_bed_leveling_enabled(abl_should_enable);
}
return;
} // code_seen('W')
#endif
#if PLANNER_LEVELING
// Jettison bed leveling data
if (code_seen('J')) {
reset_bed_level();
return;
}
#endif
verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
if (!WITHIN(verbose_level, 0, 4)) {
SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
return;
}
dryrun = code_seen('D') ? code_value_bool() : false;
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
do_topography_map = verbose_level > 2 || code_seen('T');
// X and Y specify points in each direction, overriding the default
// These values may be saved with the completed mesh
int abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_MAX_POINTS_X,
abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_MAX_POINTS_Y;
abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_MAX_POINTS_X;
abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_MAX_POINTS_Y;
if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
@ -4008,91 +4170,98 @@ inline void gcode_G28() {
return;
}
#else
abl2 = abl_grid_points_x * abl_grid_points_y;
const uint8_t abl_grid_points_x = ABL_GRID_MAX_POINTS_X, abl_grid_points_y = ABL_GRID_MAX_POINTS_Y;
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
zoffset = code_seen('Z') ? code_value_axis_units(Z_AXIS) : 0;
#if HAS_BED_PROBE
zoffset += zprobe_zoffset;
#endif
#endif
xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
#if ABL_GRID
int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
if (left_out || right_out || front_out || back_out) {
if (left_out) {
out_of_range_error(PSTR("(L)eft"));
left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
}
if (right_out) {
out_of_range_error(PSTR("(R)ight"));
right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
}
if (front_out) {
out_of_range_error(PSTR("(F)ront"));
front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
}
if (back_out) {
out_of_range_error(PSTR("(B)ack"));
back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
}
return;
}
const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
#endif // ABL_GRID
if (left_out || right_out || front_out || back_out) {
if (left_out) {
out_of_range_error(PSTR("(L)eft"));
left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
}
if (right_out) {
out_of_range_error(PSTR("(R)ight"));
right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
}
if (front_out) {
out_of_range_error(PSTR("(F)ront"));
front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
}
if (back_out) {
out_of_range_error(PSTR("(B)ack"));
back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
}
return;
}
stepper.synchronize();
// probe at the points of a lattice grid
xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
// Disable auto bed leveling during G29
bool abl_should_enable = planner.abl_enabled;
#endif // ABL_GRID
planner.abl_enabled = false;
if (verbose_level > 0) {
SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
}
if (!dryrun) {
// Re-orient the current position without leveling
// based on where the steppers are positioned.
set_current_from_steppers_for_axis(ALL_AXES);
stepper.synchronize();
// Sync the planner to where the steppers stopped
SYNC_PLAN_POSITION_KINEMATIC();
}
// Disable auto bed leveling during G29
planner.abl_enabled = false;
setup_for_endstop_or_probe_move();
if (!dryrun) {
// Re-orient the current position without leveling
// based on where the steppers are positioned.
set_current_from_steppers_for_axis(ALL_AXES);
// Deploy the probe. Probe will raise if needed.
if (DEPLOY_PROBE()) {
planner.abl_enabled = abl_should_enable;
return;
}
// Sync the planner to where the steppers stopped
SYNC_PLAN_POSITION_KINEMATIC();
}
float xProbe = 0, yProbe = 0, measured_z = 0;
setup_for_endstop_or_probe_move();
#if ABL_GRID
//xProbe = yProbe = measured_z = 0;
// probe at the points of a lattice grid
const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
#if HAS_BED_PROBE
// Deploy the probe. Probe will raise if needed.
if (DEPLOY_PROBE()) {
planner.abl_enabled = abl_should_enable;
return;
}
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
float zoffset = zprobe_zoffset;
if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
|| yGridSpacing != bilinear_grid_spacing[Y_AXIS]
|| left_probe_bed_position != bilinear_start[X_AXIS]
|| front_probe_bed_position != bilinear_start[Y_AXIS]
|| left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
|| front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
) {
if (dryrun) {
// Before reset bed level, re-enable to correct the position
@ -4101,164 +4270,311 @@ inline void gcode_G28() {
// Reset grid to 0.0 or "not probed". (Also disables ABL)
reset_bed_level();
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
bilinear_grid_spacing_virt[X_AXIS] = xGridSpacing / (BILINEAR_SUBDIVISIONS);
bilinear_grid_spacing_virt[Y_AXIS] = yGridSpacing / (BILINEAR_SUBDIVISIONS);
#endif
// Initialize a grid with the given dimensions
bilinear_grid_spacing[X_AXIS] = xGridSpacing;
bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
bilinear_grid_spacing_virt[X_AXIS] = xGridSpacing / (BILINEAR_SUBDIVISIONS);
bilinear_grid_spacing_virt[Y_AXIS] = yGridSpacing / (BILINEAR_SUBDIVISIONS);
#endif
// Can't re-enable (on error) until the new grid is written
abl_should_enable = false;
}
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
/**
* solve the plane equation ax + by + d = z
* A is the matrix with rows [x y 1] for all the probed points
* B is the vector of the Z positions
* the normal vector to the plane is formed by the coefficients of the
* plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
* so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
*/
mean = 0.0;
const int abl2 = abl_grid_points_x * abl_grid_points_y;
#endif // AUTO_BED_LEVELING_LINEAR
int indexIntoAB[abl_grid_points_x][abl_grid_points_y],
probe_index = -1;
#if ENABLED(AUTO_BED_LEVELING_3POINT)
float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
eqnBVector[abl2], // "B" vector of Z points
mean = 0.0;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
#endif
#endif // AUTO_BED_LEVELING_LINEAR
// Probe at 3 arbitrary points
points[0].z = points[1].z = points[2].z = 0;
#if ENABLED(PROBE_Y_FIRST)
#define PR_OUTER_VAR xCount
#define PR_OUTER_NUM abl_grid_points_x
#define PR_INNER_VAR yCount
#define PR_INNER_NUM abl_grid_points_y
#else
#define PR_OUTER_VAR yCount
#define PR_OUTER_NUM abl_grid_points_y
#define PR_INNER_VAR xCount
#define PR_INNER_NUM abl_grid_points_x
#endif
#endif // AUTO_BED_LEVELING_3POINT
bool zig = PR_OUTER_NUM & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
} // !g29_in_progress
// Outer loop is Y with PROBE_Y_FIRST disabled
for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_NUM; PR_OUTER_VAR++) {
#if ENABLED(PROBE_MANUALLY)
int8_t inStart, inStop, inInc;
// Abort current G29 procedure, go back to ABLStart
if (code_seen('A') && g29_in_progress) {
SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
#if HAS_SOFTWARE_ENDSTOPS
soft_endstops_enabled = enable_soft_endstops;
#endif
planner.abl_enabled = abl_should_enable;
g29_in_progress = false;
}
if (zig) { // away from origin
inStart = 0;
inStop = PR_INNER_NUM;
inInc = 1;
}
else { // towards origin
inStart = PR_INNER_NUM - 1;
inStop = -1;
inInc = -1;
// Query G29 status
if (code_seen('Q')) {
if (!g29_in_progress)
SERIAL_PROTOCOLLNPGM("Manual G29 idle");
else {
SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
SERIAL_PROTOCOLLNPAIR(" of ", abl2);
}
}
if (code_seen('A') || code_seen('Q')) return;
zig = !zig; // zag
// Fall through to probe the first point
g29_in_progress = true;
if (abl_probe_index == 0) {
// For the initial G29 S2 save software endstop state
#if HAS_SOFTWARE_ENDSTOPS
enable_soft_endstops = soft_endstops_enabled;
#endif
}
else {
// For G29 after adjusting Z.
// Save the previous Z before going to the next point
measured_z = current_position[Z_AXIS];
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
mean += measured_z;
eqnBVector[abl_probe_index] = measured_z;
eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Inner loop is Y with PROBE_Y_FIRST enabled
for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
bed_level_grid[xCount][yCount] = measured_z + zoffset;
float xBase = left_probe_bed_position + xGridSpacing * xCount,
yBase = front_probe_bed_position + yGridSpacing * yCount;
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
points[i].z = measured_z;
#endif
}
//
// If there's another point to sample, move there with optional lift.
//
#if ABL_GRID
// Find a next point to probe
// On the first G29 this will be the first probe point
while (abl_probe_index < abl2) {
// Set xCount, yCount based on abl_probe_index, with zig-zag
PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
const float xBase = left_probe_bed_position + xGridSpacing * xCount,
yBase = front_probe_bed_position + yGridSpacing * yCount;
xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
indexIntoAB[xCount][yCount] = ++probe_index;
indexIntoAB[xCount][yCount] = abl_probe_index;
#endif
float pos[XYZ] = { xProbe, yProbe, 0 };
if (position_is_reachable(pos)) break;
++abl_probe_index;
}
// Is there a next point to move to?
if (abl_probe_index < abl2) {
_manual_goto_xy(xProbe, yProbe); // Can be used here too!
++abl_probe_index;
#if HAS_SOFTWARE_ENDSTOPS
// Disable software endstops to allow manual adjustment
// If G29 is not completed, they will not be re-enabled
soft_endstops_enabled = false;
#endif
return;
}
else {
// Then leveling is done!
// G29 finishing code goes here
#if IS_KINEMATIC
// Avoid probing outside the round or hexagonal area
float pos[XYZ] = { xProbe, yProbe, 0 };
if (!position_is_reachable(pos, true)) continue;
// After recording the last point, activate abl
SERIAL_PROTOCOLLNPGM("Grid probing done.");
g29_in_progress = false;
// Re-enable software endstops, if needed
#if HAS_SOFTWARE_ENDSTOPS
soft_endstops_enabled = enable_soft_endstops;
#endif
}
measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
if (measured_z == NAN) {
planner.abl_enabled = abl_should_enable;
return;
// Probe at 3 arbitrary points
if (abl_probe_index < 3) {
xProbe = LOGICAL_X_POSITION(points[i].x);
yProbe = LOGICAL_Y_POSITION(points[i].y);
++abl_probe_index;
#if HAS_SOFTWARE_ENDSTOPS
// Disable software endstops to allow manual adjustment
// If G29 is not completed, they will not be re-enabled
soft_endstops_enabled = false;
#endif
return;
}
else {
SERIAL_PROTOCOLLNPGM("3-point probing done.");
g29_in_progress = false;
// Re-enable software endstops, if needed
#if HAS_SOFTWARE_ENDSTOPS
soft_endstops_enabled = enable_soft_endstops;
#endif
if (!dryrun) {
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
if (planeNormal.z < 0) {
planeNormal.x *= -1;
planeNormal.y *= -1;
planeNormal.z *= -1;
}
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
// Can't re-enable (on error) until the new grid is written
abl_should_enable = false;
}
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
}
mean += measured_z;
eqnBVector[probe_index] = measured_z;
eqnAMatrix[probe_index + 0 * abl2] = xProbe;
eqnAMatrix[probe_index + 1 * abl2] = yProbe;
eqnAMatrix[probe_index + 2 * abl2] = 1;
#endif // AUTO_BED_LEVELING_3POINT
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
bed_level_grid[xCount][yCount] = measured_z + zoffset;
#else // !PROBE_MANUALLY
#endif
idle();
bool stow_probe_after_each = code_seen('E');
} // inner
} // outer
#if ABL_GRID
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
#endif
// Outer loop is Y with PROBE_Y_FIRST disabled
for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
// Probe at 3 arbitrary points
vector_3 points[3] = {
vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
};
int8_t inStart, inStop, inInc;
for (uint8_t i = 0; i < 3; ++i) {
// Retain the last probe position
xProbe = LOGICAL_X_POSITION(points[i].x);
yProbe = LOGICAL_Y_POSITION(points[i].y);
measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
}
if (zig) { // away from origin
inStart = 0;
inStop = PR_INNER_END;
inInc = 1;
}
else { // towards origin
inStart = PR_INNER_END - 1;
inStop = -1;
inInc = -1;
}
if (measured_z == NAN) {
planner.abl_enabled = abl_should_enable;
return;
}
zig = !zig; // zag
if (!dryrun) {
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
if (planeNormal.z < 0) {
planeNormal.x *= -1;
planeNormal.y *= -1;
planeNormal.z *= -1;
// Inner loop is Y with PROBE_Y_FIRST enabled
for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
float xBase = left_probe_bed_position + xGridSpacing * xCount,
yBase = front_probe_bed_position + yGridSpacing * yCount;
xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
indexIntoAB[xCount][yCount] = ++abl_probe_index;
#endif
#if IS_KINEMATIC
// Avoid probing outside the round or hexagonal area
float pos[XYZ] = { xProbe, yProbe, 0 };
if (!position_is_reachable(pos, true)) continue;
#endif
measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
if (measured_z == NAN) {
planner.abl_enabled = abl_should_enable;
return;
}
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
mean += measured_z;
eqnBVector[abl_probe_index] = measured_z;
eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
bed_level_grid[xCount][yCount] = measured_z + zoffset;
#endif
abl_should_enable = false;
idle();
} // inner
} // outer
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
// Probe at 3 arbitrary points
for (uint8_t i = 0; i < 3; ++i) {
// Retain the last probe position
xProbe = LOGICAL_X_POSITION(points[i].x);
yProbe = LOGICAL_Y_POSITION(points[i].y);
measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
}
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
// Can't re-enable (on error) until the new grid is written
abl_should_enable = false;
}
if (measured_z == NAN) {
planner.abl_enabled = abl_should_enable;
return;
}
#endif // AUTO_BED_LEVELING_3POINT
if (!dryrun) {
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
if (planeNormal.z < 0) {
planeNormal.x *= -1;
planeNormal.y *= -1;
planeNormal.z *= -1;
}
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
// Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
if (STOW_PROBE()) {
planner.abl_enabled = abl_should_enable;
return;
}
// Can't re-enable (on error) until the new grid is written
abl_should_enable = false;
}
#endif // AUTO_BED_LEVELING_3POINT
// Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
if (STOW_PROBE()) {
planner.abl_enabled = abl_should_enable;
return;
}
#endif // !PROBE_MANUALLY
//
// G29 Finishing Code
//
// Unless this is a dry run, auto bed leveling will
// definitely be enabled after this point
@ -4286,7 +4602,14 @@ inline void gcode_G28() {
// For LINEAR leveling calculate matrix, print reports, correct the position
// solve lsq problem
/**
* solve the plane equation ax + by + d = z
* A is the matrix with rows [x y 1] for all the probed points
* B is the vector of the Z positions
* the normal vector to the plane is formed by the coefficients of the
* plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
* so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
*/
float plane_equation_coefficients[3];
qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);

@ -165,16 +165,6 @@ enum TempState {
};
#endif
#if ENABLED(PROBE_MANUALLY)
enum ABLState {
ABLReport,
ABLStart,
ABLNext,
ABLSet,
ABLReset
};
#endif
/**
* SD Card
*/

@ -181,7 +181,7 @@ uint16_t max_display_update_time = 0;
void lcd_delta_calibrate_menu();
#endif
#if ENABLED(MANUAL_BED_LEVELING)
#if ENABLED(MESH_BED_LEVELING) && ENABLED(LCD_BED_LEVELING)
#include "mesh_bed_leveling.h"
#endif
@ -982,7 +982,7 @@ void kill_screen(const char* lcd_msg) {
MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999);
// Manual bed leveling, Bed Z:
#if ENABLED(MANUAL_BED_LEVELING)
#if ENABLED(LCD_BED_LEVELING)
MENU_ITEM_EDIT(float43, MSG_BED_Z, &mbl.z_offset, -1, 1);
#endif
@ -1321,7 +1321,7 @@ void kill_screen(const char* lcd_msg) {
#endif
#if ENABLED(MANUAL_BED_LEVELING)
#if ENABLED(LCD_BED_LEVELING)
/**
*
@ -1367,8 +1367,8 @@ void kill_screen(const char* lcd_msg) {
if (encoderPosition) {
refresh_cmd_timeout();
current_position[Z_AXIS] += float((int32_t)encoderPosition) * (MBL_Z_STEP);
NOLESS(current_position[Z_AXIS], -(MANUAL_PROBE_Z_RANGE) * 0.5);
NOMORE(current_position[Z_AXIS], (MANUAL_PROBE_Z_RANGE) * 0.5);
NOLESS(current_position[Z_AXIS], -(LCD_PROBE_Z_RANGE) * 0.5);
NOMORE(current_position[Z_AXIS], (LCD_PROBE_Z_RANGE) * 0.5);
line_to_current(Z_AXIS);
lcdDrawUpdate = LCDVIEW_KEEP_REDRAWING;
encoderPosition = 0;
@ -1483,7 +1483,7 @@ KeepDrawing:
END_MENU();
}
#endif // MANUAL_BED_LEVELING
#endif // LCD_BED_LEVELING
/**
*
@ -1524,7 +1524,7 @@ KeepDrawing:
MENU_ITEM(gcode, MSG_LEVEL_BED,
axis_homed[X_AXIS] && axis_homed[Y_AXIS] ? PSTR("G29") : PSTR("G28\nG29")
);
#elif ENABLED(MANUAL_BED_LEVELING)
#elif ENABLED(LCD_BED_LEVELING)
MENU_ITEM(submenu, MSG_LEVEL_BED, lcd_level_bed);
#endif
@ -2253,7 +2253,7 @@ KeepDrawing:
MENU_ITEM_EDIT(float32, MSG_ZPROBE_ZOFFSET, &zprobe_zoffset, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX);
#endif
// Manual bed leveling, Bed Z:
#if ENABLED(MANUAL_BED_LEVELING)
#if ENABLED(LCD_BED_LEVELING)
MENU_ITEM_EDIT(float43, MSG_BED_Z, &mbl.z_offset, -1, 1);
#endif
MENU_ITEM_EDIT(float5, MSG_ACC, &planner.acceleration, 10, 99000);

Loading…
Cancel
Save