/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2 * Copyright (c) 2009 Michael Margolis. All right reserved. */ /** * A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method. * The servos are pulsed in the background using the value most recently written using the write() method * * Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached. * Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four. * * The methods are: * * Servo - Class for manipulating servo motors connected to Arduino pins. * * attach(pin) - Attach a servo motor to an i/o pin. * attach(pin, min, max) - Attach to a pin, setting min and max values in microseconds * Default min is 544, max is 2400 * * write() - Set the servo angle in degrees. (Invalid angles —over MIN_PULSE_WIDTH— are treated as µs.) * writeMicroseconds() - Set the servo pulse width in microseconds. * move(pin, angle) - Sequence of attach(pin), write(angle), delay(SERVO_DELAY). * With DEACTIVATE_SERVOS_AFTER_MOVE it detaches after SERVO_DELAY. * read() - Get the last-written servo pulse width as an angle between 0 and 180. * readMicroseconds() - Get the last-written servo pulse width in microseconds. * attached() - Return true if a servo is attached. * detach() - Stop an attached servo from pulsing its i/o pin. * */ #include "MarlinConfig.h" #if HAS_SERVOS #include #include #include "servo.h" #define usToTicks(_us) (( clockCyclesPerMicrosecond()* _us) / 8) // converts microseconds to tick (assumes prescale of 8) // 12 Aug 2009 #define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds #define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009 //#define NBR_TIMERS ((MAX_SERVOS) / (SERVOS_PER_TIMER)) static ServoInfo_t servo_info[MAX_SERVOS]; // static array of servo info structures static volatile int8_t Channel[_Nbr_16timers ]; // counter for the servo being pulsed for each timer (or -1 if refresh interval) uint8_t ServoCount = 0; // the total number of attached servos // convenience macros #define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / (SERVOS_PER_TIMER))) // returns the timer controlling this servo #define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % (SERVOS_PER_TIMER)) // returns the index of the servo on this timer #define SERVO_INDEX(_timer,_channel) ((_timer*(SERVOS_PER_TIMER)) + _channel) // macro to access servo index by timer and channel #define SERVO(_timer,_channel) (servo_info[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel #define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo #define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo /************ static functions common to all instances ***********************/ static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t* TCNTn, volatile uint16_t* OCRnA) { if (Channel[timer] < 0) *TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer else { if (SERVO_INDEX(timer, Channel[timer]) < ServoCount && SERVO(timer, Channel[timer]).Pin.isActive) digitalWrite(SERVO(timer, Channel[timer]).Pin.nbr, LOW); // pulse this channel low if activated } Channel[timer]++; // increment to the next channel if (SERVO_INDEX(timer, Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) { *OCRnA = *TCNTn + SERVO(timer, Channel[timer]).ticks; if (SERVO(timer, Channel[timer]).Pin.isActive) // check if activated digitalWrite(SERVO(timer, Channel[timer]).Pin.nbr, HIGH); // it's an active channel so pulse it high } else { // finished all channels so wait for the refresh period to expire before starting over if (((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL)) // allow a few ticks to ensure the next OCR1A not missed *OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL); else *OCRnA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel } } #ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform // Interrupt handlers for Arduino #if ENABLED(_useTimer1) SIGNAL (TIMER1_COMPA_vect) { handle_interrupts(_timer1, &TCNT1, &OCR1A); } #endif #if ENABLED(_useTimer3) SIGNAL (TIMER3_COMPA_vect) { handle_interrupts(_timer3, &TCNT3, &OCR3A); } #endif #if ENABLED(_useTimer4) SIGNAL (TIMER4_COMPA_vect) { handle_interrupts(_timer4, &TCNT4, &OCR4A); } #endif #if ENABLED(_useTimer5) SIGNAL (TIMER5_COMPA_vect) { handle_interrupts(_timer5, &TCNT5, &OCR5A); } #endif #else // WIRING // Interrupt handlers for Wiring #if ENABLED(_useTimer1) void Timer1Service() { handle_interrupts(_timer1, &TCNT1, &OCR1A); } #endif #if ENABLED(_useTimer3) void Timer3Service() { handle_interrupts(_timer3, &TCNT3, &OCR3A); } #endif #endif // WIRING static void initISR(timer16_Sequence_t timer) { #if ENABLED(_useTimer1) if (timer == _timer1) { TCCR1A = 0; // normal counting mode TCCR1B = _BV(CS11); // set prescaler of 8 TCNT1 = 0; // clear the timer count #if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__) SBI(TIFR, OCF1A); // clear any pending interrupts; SBI(TIMSK, OCIE1A); // enable the output compare interrupt #else // here if not ATmega8 or ATmega128 SBI(TIFR1, OCF1A); // clear any pending interrupts; SBI(TIMSK1, OCIE1A); // enable the output compare interrupt #endif #ifdef WIRING timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service); #endif } #endif #if ENABLED(_useTimer3) if (timer == _timer3) { TCCR3A = 0; // normal counting mode TCCR3B = _BV(CS31); // set prescaler of 8 TCNT3 = 0; // clear the timer count #ifdef __AVR_ATmega128__ SBI(TIFR, OCF3A); // clear any pending interrupts; SBI(ETIMSK, OCIE3A); // enable the output compare interrupt #else SBI(TIFR3, OCF3A); // clear any pending interrupts; SBI(TIMSK3, OCIE3A); // enable the output compare interrupt #endif #ifdef WIRING timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only #endif } #endif #if ENABLED(_useTimer4) if (timer == _timer4) { TCCR4A = 0; // normal counting mode TCCR4B = _BV(CS41); // set prescaler of 8 TCNT4 = 0; // clear the timer count TIFR4 = _BV(OCF4A); // clear any pending interrupts; TIMSK4 = _BV(OCIE4A); // enable the output compare interrupt } #endif #if ENABLED(_useTimer5) if (timer == _timer5) { TCCR5A = 0; // normal counting mode TCCR5B = _BV(CS51); // set prescaler of 8 TCNT5 = 0; // clear the timer count TIFR5 = _BV(OCF5A); // clear any pending interrupts; TIMSK5 = _BV(OCIE5A); // enable the output compare interrupt } #endif } static void finISR(timer16_Sequence_t timer) { // Disable use of the given timer #ifdef WIRING if (timer == _timer1) { CBI( #if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__) TIMSK1 #else TIMSK #endif , OCIE1A); // disable timer 1 output compare interrupt timerDetach(TIMER1OUTCOMPAREA_INT); } else if (timer == _timer3) { CBI( #if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__) TIMSK3 #else ETIMSK #endif , OCIE3A); // disable the timer3 output compare A interrupt timerDetach(TIMER3OUTCOMPAREA_INT); } #else // !WIRING // For arduino - in future: call here to a currently undefined function to reset the timer UNUSED(timer); #endif } static bool isTimerActive(timer16_Sequence_t timer) { // returns true if any servo is active on this timer for (uint8_t channel = 0; channel < SERVOS_PER_TIMER; channel++) { if (SERVO(timer, channel).Pin.isActive) return true; } return false; } /****************** end of static functions ******************************/ Servo::Servo() { if (ServoCount < MAX_SERVOS) { this->servoIndex = ServoCount++; // assign a servo index to this instance servo_info[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009 } else this->servoIndex = INVALID_SERVO; // too many servos } int8_t Servo::attach(int pin) { return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH); } int8_t Servo::attach(int pin, int min, int max) { if (this->servoIndex >= MAX_SERVOS) return -1; if (pin > 0) servo_info[this->servoIndex].Pin.nbr = pin; pinMode(servo_info[this->servoIndex].Pin.nbr, OUTPUT); // set servo pin to output // todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128 this->min = (MIN_PULSE_WIDTH - min) / 4; //resolution of min/max is 4 uS this->max = (MAX_PULSE_WIDTH - max) / 4; // initialize the timer if it has not already been initialized timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex); if (!isTimerActive(timer)) initISR(timer); servo_info[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive return this->servoIndex; } void Servo::detach() { servo_info[this->servoIndex].Pin.isActive = false; timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex); if (!isTimerActive(timer)) finISR(timer); } void Servo::write(int value) { if (value < MIN_PULSE_WIDTH) { // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds) value = map(constrain(value, 0, 180), 0, 180, SERVO_MIN(), SERVO_MAX()); } this->writeMicroseconds(value); } void Servo::writeMicroseconds(int value) { // calculate and store the values for the given channel byte channel = this->servoIndex; if (channel < MAX_SERVOS) { // ensure channel is valid // ensure pulse width is valid value = constrain(value, SERVO_MIN(), SERVO_MAX()) - (TRIM_DURATION); value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009 CRITICAL_SECTION_START; servo_info[channel].ticks = value; CRITICAL_SECTION_END; } } // return the value as degrees int Servo::read() { return map(this->readMicroseconds() + 1, SERVO_MIN(), SERVO_MAX(), 0, 180); } int Servo::readMicroseconds() { return (this->servoIndex == INVALID_SERVO) ? 0 : ticksToUs(servo_info[this->servoIndex].ticks) + TRIM_DURATION; } bool Servo::attached() { return servo_info[this->servoIndex].Pin.isActive; } void Servo::move(int value) { constexpr uint16_t servo_delay[] = SERVO_DELAY; static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long."); if (this->attach(0) >= 0) { this->write(value); delay(servo_delay[this->servoIndex]); #if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE) this->detach(); #endif } } #endif