/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * temperature.h - temperature controller */ #ifndef TEMPERATURE_H #define TEMPERATURE_H #include "thermistortables.h" #include "MarlinConfig.h" #if ENABLED(PID_EXTRUSION_SCALING) #include "stepper.h" #endif #ifndef SOFT_PWM_SCALE #define SOFT_PWM_SCALE 0 #endif #define HOTEND_LOOP() for (int8_t e = 0; e < HOTENDS; e++) #if HOTENDS == 1 #define HOTEND_INDEX 0 #define EXTRUDER_IDX 0 #else #define HOTEND_INDEX e #define EXTRUDER_IDX active_extruder #endif /** * States for ADC reading in the ISR */ enum ADCSensorState { #if HAS_TEMP_0 PrepareTemp_0, MeasureTemp_0, #endif #if HAS_TEMP_1 PrepareTemp_1, MeasureTemp_1, #endif #if HAS_TEMP_2 PrepareTemp_2, MeasureTemp_2, #endif #if HAS_TEMP_3 PrepareTemp_3, MeasureTemp_3, #endif #if HAS_TEMP_4 PrepareTemp_4, MeasureTemp_4, #endif #if HAS_TEMP_BED PrepareTemp_BED, MeasureTemp_BED, #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) Prepare_FILWIDTH, Measure_FILWIDTH, #endif #if ENABLED(ADC_KEYPAD) Prepare_ADC_KEY, Measure_ADC_KEY, #endif SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle }; // Minimum number of Temperature::ISR loops between sensor readings. // Multiplied by 16 (OVERSAMPLENR) to obtain the total time to // get all oversampled sensor readings #define MIN_ADC_ISR_LOOPS 10 #define ACTUAL_ADC_SAMPLES max(int(MIN_ADC_ISR_LOOPS), int(SensorsReady)) #if HAS_PID_HEATING #define PID_K2 (1.0-PID_K1) #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / (F_CPU / 64.0 / 256.0)) // Apply the scale factors to the PID values #define scalePID_i(i) ( (i) * PID_dT ) #define unscalePID_i(i) ( (i) / PID_dT ) #define scalePID_d(d) ( (d) / PID_dT ) #define unscalePID_d(d) ( (d) * PID_dT ) #endif #if !HAS_HEATER_BED constexpr int16_t target_temperature_bed = 0; #endif class Temperature { public: static float current_temperature[HOTENDS], current_temperature_bed; static int16_t current_temperature_raw[HOTENDS], target_temperature[HOTENDS], current_temperature_bed_raw; #if HAS_HEATER_BED static int16_t target_temperature_bed; #endif static volatile bool in_temp_isr; static uint8_t soft_pwm_amount[HOTENDS], soft_pwm_amount_bed; #if ENABLED(FAN_SOFT_PWM) static uint8_t soft_pwm_amount_fan[FAN_COUNT], soft_pwm_count_fan[FAN_COUNT]; #endif #if ENABLED(PIDTEMP) #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1 static float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS]; #if ENABLED(PID_EXTRUSION_SCALING) static float Kc[HOTENDS]; #endif #define PID_PARAM(param, h) Temperature::param[h] #else static float Kp, Ki, Kd; #if ENABLED(PID_EXTRUSION_SCALING) static float Kc; #endif #define PID_PARAM(param, h) Temperature::param #endif // PID_PARAMS_PER_HOTEND #endif #if ENABLED(PIDTEMPBED) static float bedKp, bedKi, bedKd; #endif #if ENABLED(BABYSTEPPING) static volatile int babystepsTodo[3]; #endif #if WATCH_HOTENDS static uint16_t watch_target_temp[HOTENDS]; static millis_t watch_heater_next_ms[HOTENDS]; #endif #if WATCH_THE_BED static uint16_t watch_target_bed_temp; static millis_t watch_bed_next_ms; #endif #if ENABLED(PREVENT_COLD_EXTRUSION) static bool allow_cold_extrude; static int16_t extrude_min_temp; static bool tooColdToExtrude(uint8_t e) { #if HOTENDS == 1 UNUSED(e); #endif return allow_cold_extrude ? false : degHotend(HOTEND_INDEX) < extrude_min_temp; } #else static bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; } #endif private: #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) static uint16_t redundant_temperature_raw; static float redundant_temperature; #endif static volatile bool temp_meas_ready; #if ENABLED(PIDTEMP) static float temp_iState[HOTENDS], temp_dState[HOTENDS], pTerm[HOTENDS], iTerm[HOTENDS], dTerm[HOTENDS]; #if ENABLED(PID_EXTRUSION_SCALING) static float cTerm[HOTENDS]; static long last_e_position; static long lpq[LPQ_MAX_LEN]; static int lpq_ptr; #endif static float pid_error[HOTENDS]; static bool pid_reset[HOTENDS]; #endif #if ENABLED(PIDTEMPBED) static float temp_iState_bed, temp_dState_bed, pTerm_bed, iTerm_bed, dTerm_bed, pid_error_bed; #else static millis_t next_bed_check_ms; #endif static uint16_t raw_temp_value[MAX_EXTRUDERS], raw_temp_bed_value; // Init min and max temp with extreme values to prevent false errors during startup static int16_t minttemp_raw[HOTENDS], maxttemp_raw[HOTENDS], minttemp[HOTENDS], maxttemp[HOTENDS]; #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED static uint8_t consecutive_low_temperature_error[HOTENDS]; #endif #ifdef MILLISECONDS_PREHEAT_TIME static millis_t preheat_end_time[HOTENDS]; #endif #ifdef BED_MINTEMP static int16_t bed_minttemp_raw; #endif #ifdef BED_MAXTEMP static int16_t bed_maxttemp_raw; #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) static int8_t meas_shift_index; // Index of a delayed sample in buffer #endif #if HAS_AUTO_FAN static millis_t next_auto_fan_check_ms; #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) static uint16_t current_raw_filwidth; // Measured filament diameter - one extruder only #endif #if ENABLED(PROBING_HEATERS_OFF) static bool paused; #endif #if HEATER_IDLE_HANDLER static millis_t heater_idle_timeout_ms[HOTENDS]; static bool heater_idle_timeout_exceeded[HOTENDS]; #if HAS_TEMP_BED static millis_t bed_idle_timeout_ms; static bool bed_idle_timeout_exceeded; #endif #endif public: #if ENABLED(ADC_KEYPAD) static uint32_t current_ADCKey_raw; static uint8_t ADCKey_count; #endif /** * Instance Methods */ Temperature(); void init(); /** * Static (class) methods */ static float analog2temp(const int raw, const uint8_t e); #if HAS_TEMP_BED static float analog2tempBed(const int raw); #endif /** * Called from the Temperature ISR */ static void isr(); /** * Call periodically to manage heaters */ static void manage_heater() _O2; // Added _O2 to work around a compiler error /** * Preheating hotends */ #ifdef MILLISECONDS_PREHEAT_TIME static bool is_preheating(uint8_t e) { #if HOTENDS == 1 UNUSED(e); #endif return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]); } static void start_preheat_time(uint8_t e) { #if HOTENDS == 1 UNUSED(e); #endif preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME; } static void reset_preheat_time(uint8_t e) { #if HOTENDS == 1 UNUSED(e); #endif preheat_end_time[HOTEND_INDEX] = 0; } #else #define is_preheating(n) (false) #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) static float analog2widthFil(); // Convert raw Filament Width to millimeters static int8_t widthFil_to_size_ratio(); // Convert Filament Width (mm) to an extrusion ratio #endif //high level conversion routines, for use outside of temperature.cpp //inline so that there is no performance decrease. //deg=degreeCelsius static float degHotend(uint8_t e) { #if HOTENDS == 1 UNUSED(e); #endif return current_temperature[HOTEND_INDEX]; } static float degBed() { return current_temperature_bed; } #if ENABLED(SHOW_TEMP_ADC_VALUES) static int16_t rawHotendTemp(uint8_t e) { #if HOTENDS == 1 UNUSED(e); #endif return current_temperature_raw[HOTEND_INDEX]; } static int16_t rawBedTemp() { return current_temperature_bed_raw; } #endif static int16_t degTargetHotend(uint8_t e) { #if HOTENDS == 1 UNUSED(e); #endif return target_temperature[HOTEND_INDEX]; } static int16_t degTargetBed() { return target_temperature_bed; } #if WATCH_HOTENDS static void start_watching_heater(const uint8_t e = 0); #endif #if WATCH_THE_BED static void start_watching_bed(); #endif static void setTargetHotend(const int16_t celsius, const uint8_t e) { #if HOTENDS == 1 UNUSED(e); #endif #ifdef MILLISECONDS_PREHEAT_TIME if (celsius == 0) reset_preheat_time(HOTEND_INDEX); else if (target_temperature[HOTEND_INDEX] == 0) start_preheat_time(HOTEND_INDEX); #endif target_temperature[HOTEND_INDEX] = celsius; #if WATCH_HOTENDS start_watching_heater(HOTEND_INDEX); #endif } static void setTargetBed(const int16_t celsius) { #if HAS_HEATER_BED target_temperature_bed = #ifdef BED_MAXTEMP min(celsius, BED_MAXTEMP) #else celsius #endif ; #if WATCH_THE_BED start_watching_bed(); #endif #endif } static bool isHeatingHotend(uint8_t e) { #if HOTENDS == 1 UNUSED(e); #endif return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX]; } static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; } static bool isCoolingHotend(uint8_t e) { #if HOTENDS == 1 UNUSED(e); #endif return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX]; } static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; } /** * The software PWM power for a heater */ static int getHeaterPower(int heater); /** * Switch off all heaters, set all target temperatures to 0 */ static void disable_all_heaters(); /** * Perform auto-tuning for hotend or bed in response to M303 */ #if HAS_PID_HEATING static void PID_autotune(const float temp, const int8_t hotend, const int8_t ncycles, const bool set_result=false); /** * Update the temp manager when PID values change */ #if ENABLED(PIDTEMP) FORCE_INLINE static void updatePID() { #if ENABLED(PID_EXTRUSION_SCALING) last_e_position = 0; #endif } #endif #endif #if ENABLED(BABYSTEPPING) static void babystep_axis(const AxisEnum axis, const int16_t distance) { if (axis_known_position[axis]) { #if IS_CORE #if ENABLED(BABYSTEP_XY) switch (axis) { case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZ babystepsTodo[CORE_AXIS_1] += distance * 2; babystepsTodo[CORE_AXIS_2] += distance * 2; break; case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZ babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2); babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2); break; case NORMAL_AXIS: // Z on CoreXY, Y on CoreXZ, X on CoreYZ babystepsTodo[NORMAL_AXIS] += distance; break; } #elif CORE_IS_XZ || CORE_IS_YZ // Only Z stepping needs to be handled here babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2); babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2); #else babystepsTodo[Z_AXIS] += distance; #endif #else babystepsTodo[axis] += distance; #endif } } #endif // BABYSTEPPING #if ENABLED(PROBING_HEATERS_OFF) static void pause(const bool p); static bool is_paused() { return paused; } #endif #if HEATER_IDLE_HANDLER static void start_heater_idle_timer(uint8_t e, millis_t timeout_ms) { #if HOTENDS == 1 UNUSED(e); #endif heater_idle_timeout_ms[HOTEND_INDEX] = millis() + timeout_ms; heater_idle_timeout_exceeded[HOTEND_INDEX] = false; } static void reset_heater_idle_timer(uint8_t e) { #if HOTENDS == 1 UNUSED(e); #endif heater_idle_timeout_ms[HOTEND_INDEX] = 0; heater_idle_timeout_exceeded[HOTEND_INDEX] = false; #if WATCH_HOTENDS start_watching_heater(HOTEND_INDEX); #endif } static bool is_heater_idle(uint8_t e) { #if HOTENDS == 1 UNUSED(e); #endif return heater_idle_timeout_exceeded[HOTEND_INDEX]; } #if HAS_TEMP_BED static void start_bed_idle_timer(millis_t timeout_ms) { bed_idle_timeout_ms = millis() + timeout_ms; bed_idle_timeout_exceeded = false; } static void reset_bed_idle_timer() { bed_idle_timeout_ms = 0; bed_idle_timeout_exceeded = false; #if WATCH_THE_BED start_watching_bed(); #endif } static bool is_bed_idle() { return bed_idle_timeout_exceeded; } #endif #endif #if HAS_TEMP_HOTEND || HAS_TEMP_BED static void print_heaterstates(); #if ENABLED(AUTO_REPORT_TEMPERATURES) static uint8_t auto_report_temp_interval; static millis_t next_temp_report_ms; static void auto_report_temperatures(void); FORCE_INLINE void set_auto_report_interval(uint8_t v) { NOMORE(v, 60); auto_report_temp_interval = v; next_temp_report_ms = millis() + 1000UL * v; } #endif #endif private: static void set_current_temp_raw(); static void updateTemperaturesFromRawValues(); #if ENABLED(HEATER_0_USES_MAX6675) static int read_max6675(); #endif static void checkExtruderAutoFans(); static float get_pid_output(const int8_t e); #if ENABLED(PIDTEMPBED) static float get_pid_output_bed(); #endif static void _temp_error(const int8_t e, const char * const serial_msg, const char * const lcd_msg); static void min_temp_error(const int8_t e); static void max_temp_error(const int8_t e); #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate; static void thermal_runaway_protection(TRState * const state, millis_t * const timer, const float current, const float target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc); #if ENABLED(THERMAL_PROTECTION_HOTENDS) static TRState thermal_runaway_state_machine[HOTENDS]; static millis_t thermal_runaway_timer[HOTENDS]; #endif #if HAS_THERMALLY_PROTECTED_BED static TRState thermal_runaway_bed_state_machine; static millis_t thermal_runaway_bed_timer; #endif #endif // THERMAL_PROTECTION }; extern Temperature thermalManager; #endif // TEMPERATURE_H