/* stepper.c - stepper motor driver: executes motion plans using stepper motors Part of Grbl Copyright (c) 2009-2011 Simen Svale Skogsrud Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith and Philipp Tiefenbacher. */ #include "stepper.h" #include "Configuration.h" #include "Marlin.h" #include "planner.h" #include "pins.h" #include "fastio.h" #include "temperature.h" #include "ultralcd.h" #include "speed_lookuptable.h" // if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer. // for debugging purposes only, should be disabled by default #ifdef DEBUG_STEPS volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0}; volatile int count_direction[NUM_AXIS] = { 1, 1, 1, 1}; #endif // intRes = intIn1 * intIn2 >> 16 // uses: // r26 to store 0 // r27 to store the byte 1 of the 24 bit result #define MultiU16X8toH16(intRes, charIn1, intIn2) \ asm volatile ( \ "clr r26 \n\t" \ "mul %A1, %B2 \n\t" \ "movw %A0, r0 \n\t" \ "mul %A1, %A2 \n\t" \ "add %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "lsr r0 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "clr r1 \n\t" \ : \ "=&r" (intRes) \ : \ "d" (charIn1), \ "d" (intIn2) \ : \ "r26" \ ) // intRes = longIn1 * longIn2 >> 24 // uses: // r26 to store 0 // r27 to store the byte 1 of the 48bit result #define MultiU24X24toH16(intRes, longIn1, longIn2) \ asm volatile ( \ "clr r26 \n\t" \ "mul %A1, %B2 \n\t" \ "mov r27, r1 \n\t" \ "mul %B1, %C2 \n\t" \ "movw %A0, r0 \n\t" \ "mul %C1, %C2 \n\t" \ "add %B0, r0 \n\t" \ "mul %C1, %B2 \n\t" \ "add %A0, r0 \n\t" \ "adc %B0, r1 \n\t" \ "mul %A1, %C2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %B1, %B2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %C1, %A2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %B1, %A2 \n\t" \ "add r27, r1 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "lsr r27 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "clr r1 \n\t" \ : \ "=&r" (intRes) \ : \ "d" (longIn1), \ "d" (longIn2) \ : \ "r26" , "r27" \ ) // Some useful constants #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1< // // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates // first block->accelerate_until step_events_completed, then keeps going at constant speed until // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. // The slope of acceleration is calculated with the leib ramp alghorithm. void st_wake_up() { // TCNT1 = 0; ENABLE_STEPPER_DRIVER_INTERRUPT(); } inline unsigned short calc_timer(unsigned short step_rate) { unsigned short timer; if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY; if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times step_rate = step_rate >> 2; step_loops = 4; } else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times step_rate = step_rate >> 1; step_loops = 2; } else { step_loops = 1; } if(step_rate < 32) step_rate = 32; step_rate -= 32; // Correct for minimal speed if(step_rate >= (8*256)){ // higher step rate unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0]; unsigned char tmp_step_rate = (step_rate & 0x00ff); unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2); MultiU16X8toH16(timer, tmp_step_rate, gain); timer = (unsigned short)pgm_read_word_near(table_address) - timer; } else { // lower step rates unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0]; table_address += ((step_rate)>>1) & 0xfffc; timer = (unsigned short)pgm_read_word_near(table_address); timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3); } if(timer < 100) timer = 100; return timer; } // Initializes the trapezoid generator from the current block. Called whenever a new // block begins. inline void trapezoid_generator_reset() { #ifdef ADVANCE advance = current_block->initial_advance; final_advance = current_block->final_advance; #endif deceleration_time = 0; // advance_rate = current_block->advance_rate; // step_rate to timer interval acc_step_rate = current_block->initial_rate; acceleration_time = calc_timer(acc_step_rate); OCR1A = acceleration_time; } // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. ISR(TIMER1_COMPA_vect) { if(busy){ Serial.print(*(unsigned short *)OCR1A); Serial.println(" BUSY"); return; } // The busy-flag is used to avoid reentering this interrupt busy = true; sei(); // Re enable interrupts (normally disabled while inside an interrupt handler) // If there is no current block, attempt to pop one from the buffer if (current_block == NULL) { // Anything in the buffer? current_block = plan_get_current_block(); if (current_block != NULL) { trapezoid_generator_reset(); counter_x = -(current_block->step_event_count >> 1); counter_y = counter_x; counter_z = counter_x; counter_e = counter_x; step_events_completed = 0; #ifdef ADVANCE e_steps = 0; #endif } else { // DISABLE_STEPPER_DRIVER_INTERRUPT(); } } if (current_block != NULL) { // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt out_bits = current_block->direction_bits; #ifdef ADVANCE // Calculate E early. counter_e += current_block->steps_e; if (counter_e > 0) { counter_e -= current_block->step_event_count; if ((out_bits & (1<> 16) - old_advance); CRITICAL_SECTION_END; old_advance = advance >> 16; #endif //ADVANCE // Set direction en check limit switches if ((out_bits & (1< -1 if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) { step_events_completed = current_block->step_event_count; } #endif } else { // +direction WRITE(X_DIR_PIN,!INVERT_X_DIR); #ifdef DEBUG_STEPS count_direction[X_AXIS]=1; #endif #if X_MAX_PIN > -1 if((READ(X_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x >0)){ step_events_completed = current_block->step_event_count; } #endif } if ((out_bits & (1< -1 if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) { step_events_completed = current_block->step_event_count; } #endif } else { // +direction WRITE(Y_DIR_PIN,!INVERT_Y_DIR); #ifdef DEBUG_STEPS count_direction[Y_AXIS]=1; #endif #if Y_MAX_PIN > -1 if((READ(Y_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y >0)){ step_events_completed = current_block->step_event_count; } #endif } if ((out_bits & (1< -1 if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) { step_events_completed = current_block->step_event_count; } #endif } else { // +direction WRITE(Z_DIR_PIN,!INVERT_Z_DIR); #ifdef DEBUG_STEPS count_direction[Z_AXIS]=1; #endif #if Z_MAX_PIN > -1 if((READ(Z_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z >0)){ step_events_completed = current_block->step_event_count; } #endif } #ifndef ADVANCE if ((out_bits & (1<steps_x; if (counter_x > 0) { WRITE(X_STEP_PIN, HIGH); counter_x -= current_block->step_event_count; WRITE(X_STEP_PIN, LOW); #ifdef DEBUG_STEPS count_position[X_AXIS]+=count_direction[X_AXIS]; #endif } counter_y += current_block->steps_y; if (counter_y > 0) { WRITE(Y_STEP_PIN, HIGH); counter_y -= current_block->step_event_count; WRITE(Y_STEP_PIN, LOW); #ifdef DEBUG_STEPS count_position[Y_AXIS]+=count_direction[Y_AXIS]; #endif } counter_z += current_block->steps_z; if (counter_z > 0) { WRITE(Z_STEP_PIN, HIGH); counter_z -= current_block->step_event_count; WRITE(Z_STEP_PIN, LOW); #ifdef DEBUG_STEPS count_position[Z_AXIS]+=count_direction[Z_AXIS]; #endif } #ifndef ADVANCE counter_e += current_block->steps_e; if (counter_e > 0) { WRITE(E_STEP_PIN, HIGH); counter_e -= current_block->step_event_count; WRITE(E_STEP_PIN, LOW); } #endif //!ADVANCE step_events_completed += 1; if(step_events_completed >= current_block->step_event_count) break; } // Calculare new timer value unsigned short timer; unsigned short step_rate; if (step_events_completed <= current_block->accelerate_until) { MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); acc_step_rate += current_block->initial_rate; // upper limit if(acc_step_rate > current_block->nominal_rate) acc_step_rate = current_block->nominal_rate; // step_rate to timer interval timer = calc_timer(acc_step_rate); #ifdef ADVANCE advance += advance_rate; #endif acceleration_time += timer; OCR1A = timer; } else if (step_events_completed > current_block->decelerate_after) { MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate); if(step_rate > acc_step_rate) { // Check step_rate stays positive step_rate = current_block->final_rate; } else { step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point. } // lower limit if(step_rate < current_block->final_rate) step_rate = current_block->final_rate; // step_rate to timer interval timer = calc_timer(step_rate); #ifdef ADVANCE advance -= advance_rate; if(advance < final_advance) advance = final_advance; #endif //ADVANCE deceleration_time += timer; OCR1A = timer; } // If current block is finished, reset pointer if (step_events_completed >= current_block->step_event_count) { current_block = NULL; plan_discard_current_block(); } } cli(); // disable interrupts busy=false; } #ifdef ADVANCE unsigned char old_OCR0A; // Timer interrupt for E. e_steps is set in the main routine; // Timer 0 is shared with millies ISR(TIMER0_COMPA_vect) { // Critical section needed because Timer 1 interrupt has higher priority. // The pin set functions are placed on trategic position to comply with the stepper driver timing. WRITE(E_STEP_PIN, LOW); // Set E direction (Depends on E direction + advance) if (e_steps < 0) { WRITE(E_DIR_PIN,INVERT_E_DIR); e_steps++; WRITE(E_STEP_PIN, HIGH); } if (e_steps > 0) { WRITE(E_DIR_PIN,!INVERT_E_DIR); e_steps--; WRITE(E_STEP_PIN, HIGH); } old_OCR0A += 25; // 10kHz interrupt OCR0A = old_OCR0A; } #endif // ADVANCE void st_init() { //Initialize Dir Pins #if X_DIR_PIN > -1 SET_OUTPUT(X_DIR_PIN); #endif #if Y_DIR_PIN > -1 SET_OUTPUT(Y_DIR_PIN); #endif #if Z_DIR_PIN > -1 SET_OUTPUT(Z_DIR_PIN); #endif #if E_DIR_PIN > -1 SET_OUTPUT(E_DIR_PIN); #endif //Initialize Enable Pins - steppers default to disabled. #if (X_ENABLE_PIN > -1) SET_OUTPUT(X_ENABLE_PIN); if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH); #endif #if (Y_ENABLE_PIN > -1) SET_OUTPUT(Y_ENABLE_PIN); if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH); #endif #if (Z_ENABLE_PIN > -1) SET_OUTPUT(Z_ENABLE_PIN); if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH); #endif #if (E_ENABLE_PIN > -1) SET_OUTPUT(E_ENABLE_PIN); if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH); #endif //endstops and pullups #ifdef ENDSTOPPULLUPS #if X_MIN_PIN > -1 SET_INPUT(X_MIN_PIN); WRITE(X_MIN_PIN,HIGH); #endif #if X_MAX_PIN > -1 SET_INPUT(X_MAX_PIN); WRITE(X_MAX_PIN,HIGH); #endif #if Y_MIN_PIN > -1 SET_INPUT(Y_MIN_PIN); WRITE(Y_MIN_PIN,HIGH); #endif #if Y_MAX_PIN > -1 SET_INPUT(Y_MAX_PIN); WRITE(Y_MAX_PIN,HIGH); #endif #if Z_MIN_PIN > -1 SET_INPUT(Z_MIN_PIN); WRITE(Z_MIN_PIN,HIGH); #endif #if Z_MAX_PIN > -1 SET_INPUT(Z_MAX_PIN); WRITE(Z_MAX_PIN,HIGH); #endif #else //ENDSTOPPULLUPS #if X_MIN_PIN > -1 SET_INPUT(X_MIN_PIN); #endif #if X_MAX_PIN > -1 SET_INPUT(X_MAX_PIN); #endif #if Y_MIN_PIN > -1 SET_INPUT(Y_MIN_PIN); #endif #if Y_MAX_PIN > -1 SET_INPUT(Y_MAX_PIN); #endif #if Z_MIN_PIN > -1 SET_INPUT(Z_MIN_PIN); #endif #if Z_MAX_PIN > -1 SET_INPUT(Z_MAX_PIN); #endif #endif //ENDSTOPPULLUPS //Initialize Step Pins #if (X_STEP_PIN > -1) SET_OUTPUT(X_STEP_PIN); #endif #if (Y_STEP_PIN > -1) SET_OUTPUT(Y_STEP_PIN); #endif #if (Z_STEP_PIN > -1) SET_OUTPUT(Z_STEP_PIN); #endif #if (E_STEP_PIN > -1) SET_OUTPUT(E_STEP_PIN); #endif // waveform generation = 0100 = CTC TCCR1B &= ~(1<