/* Reprap firmware based on Sprinter and grbl. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* This firmware is a mashup between Sprinter and grbl. (https://github.com/kliment/Sprinter) (https://github.com/simen/grbl/tree) It has preliminary support for Matthew Roberts advance algorithm http://reprap.org/pipermail/reprap-dev/2011-May/003323.html */ #include #include "EEPROMwrite.h" #include "fastio.h" #include "Configuration.h" #include "pins.h" #include "Marlin.h" #include "ultralcd.h" #include "streaming.h" #include "planner.h" #include "stepper.h" #include "temperature.h" #include "motion_control.h" #include "cardreader.h" char version_string[] = "1.0.0 Alpha 1"; // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes //Implemented Codes //------------------- // G0 -> G1 // G1 - Coordinated Movement X Y Z E // G2 - CW ARC // G3 - CCW ARC // G4 - Dwell S or P // G28 - Home all Axis // G90 - Use Absolute Coordinates // G91 - Use Relative Coordinates // G92 - Set current position to cordinates given //RepRap M Codes // M104 - Set extruder target temp // M105 - Read current temp // M106 - Fan on // M107 - Fan off // M109 - Wait for extruder current temp to reach target temp. // M114 - Display current position //Custom M Codes // M20 - List SD card // M21 - Init SD card // M22 - Release SD card // M23 - Select SD file (M23 filename.g) // M24 - Start/resume SD print // M25 - Pause SD print // M26 - Set SD position in bytes (M26 S12345) // M27 - Report SD print status // M28 - Start SD write (M28 filename.g) // M29 - Stop SD write // M30 - Output time since last M109 or SD card start to serial // M42 - Change pin status via gcode // M80 - Turn on Power Supply // M81 - Turn off Power Supply // M82 - Set E codes absolute (default) // M83 - Set E codes relative while in Absolute Coordinates (G90) mode // M84 - Disable steppers until next move, // or use S to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout. // M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default) // M92 - Set axis_steps_per_unit - same syntax as G92 // M115 - Capabilities string // M140 - Set bed target temp // M190 - Wait for bed current temp to reach target temp. // M200 - Set filament diameter // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!! // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk // M220 - set speed factor override percentage S:factor in percent // M301 - Set PID parameters P I and D // M500 - stores paramters in EEPROM // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). D // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to. //Stepper Movement Variables //=========================================================================== //=============================imported variables============================ //=========================================================================== extern float HeaterPower; //=========================================================================== //=============================public variables============================= //=========================================================================== CardReader card; float homing_feedrate[] = HOMING_FEEDRATE; bool axis_relative_modes[] = AXIS_RELATIVE_MODES; volatile int feedmultiply=100; //100->1 200->2 int saved_feedmultiply; volatile bool feedmultiplychanged=false; //=========================================================================== //=============================private variables============================= //=========================================================================== const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0}; static float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0}; static float offset[3] = {0.0, 0.0, 0.0}; static bool home_all_axis = true; static float feedrate = 1500.0, next_feedrate, saved_feedrate; static long gcode_N, gcode_LastN; static bool relative_mode = false; //Determines Absolute or Relative Coordinates static bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode. static uint8_t fanpwm=0; static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE]; static bool fromsd[BUFSIZE]; static int bufindr = 0; static int bufindw = 0; static int buflen = 0; static int i = 0; static char serial_char; static int serial_count = 0; static boolean comment_mode = false; static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42 static float tt = 0, bt = 0; //Inactivity shutdown variables static unsigned long previous_millis_cmd = 0; static unsigned long max_inactive_time = 0; static unsigned long stepper_inactive_time = 0; static unsigned long starttime=0; static unsigned long stoptime=0; //=========================================================================== //=============================ROUTINES============================= //=========================================================================== //adds an command to the main command buffer //thats really done in a non-safe way. //needs overworking someday void enquecommand(const char *cmd) { if(buflen < BUFSIZE) { //this is dangerous if a mixing of serial and this happsens strcpy(&(cmdbuffer[bufindw][0]),cmd); SERIAL_ECHOLN("enqueing \""< 0 && buflen < BUFSIZE) { serial_char = Serial.read(); if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) ) { if(!serial_count) return; //if empty line cmdbuffer[bufindw][serial_count] = 0; //terminate string if(!comment_mode){ fromsd[bufindw] = false; if(strstr(cmdbuffer[bufindw], "N") != NULL) { strchr_pointer = strchr(cmdbuffer[bufindw], 'N'); gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10)); if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) { Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:"); Serial.println(gcode_LastN); //Serial.println(gcode_N); FlushSerialRequestResend(); serial_count = 0; return; } if(strstr(cmdbuffer[bufindw], "*") != NULL) { byte checksum = 0; byte count = 0; while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++]; strchr_pointer = strchr(cmdbuffer[bufindw], '*'); if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) { Serial.print("Error: checksum mismatch, Last Line:"); Serial.println(gcode_LastN); FlushSerialRequestResend(); serial_count = 0; return; } //if no errors, continue parsing } else { Serial.print("Error: No Checksum with line number, Last Line:"); Serial.println(gcode_LastN); FlushSerialRequestResend(); serial_count = 0; return; } gcode_LastN = gcode_N; //if no errors, continue parsing } else // if we don't receive 'N' but still see '*' { if((strstr(cmdbuffer[bufindw], "*") != NULL)) { Serial.print("Error: No Line Number with checksum, Last Line:"); Serial.println(gcode_LastN); serial_count = 0; return; } } if((strstr(cmdbuffer[bufindw], "G") != NULL)){ strchr_pointer = strchr(cmdbuffer[bufindw], 'G'); switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){ case 0: case 1: case 2: case 3: #ifdef SDSUPPORT if(card.savetosd) break; #endif //SDSUPPORT Serial.println("ok"); break; default: break; } } bufindw = (bufindw + 1)%BUFSIZE; buflen += 1; } comment_mode = false; //for new command serial_count = 0; //clear buffer } else { if(serial_char == ';') comment_mode = true; if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char; } } #ifdef SDSUPPORT if(!card.sdmode || serial_count!=0){ return; } while( card.filesize > card.sdpos && buflen < BUFSIZE) { short n = card.file.read(); serial_char = (char)n; if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1) { card.sdpos = card.file.curPosition(); if(card.sdpos >= card.filesize){ card.sdmode = false; Serial.println("echo: Done printing file"); stoptime=millis(); char time[30]; unsigned long t=(stoptime-starttime)/1000; int sec,min; min=t/60; sec=t%60; sprintf(time,"echo: %i min, %i sec",min,sec); Serial.println(time); LCD_MESSAGE(time); card.checkautostart(true); } if(!serial_count) return; //if empty line cmdbuffer[bufindw][serial_count] = 0; //terminate string if(!comment_mode){ fromsd[bufindw] = true; buflen += 1; bufindw = (bufindw + 1)%BUFSIZE; } comment_mode = false; //for new command serial_count = 0; //clear buffer } else { if(serial_char == ';') comment_mode = true; if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char; } } #endif //SDSUPPORT } inline float code_value() { return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL)); } inline long code_value_long() { return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10)); } inline bool code_seen(char code_string[]) //Return True if the string was found { return (strstr(cmdbuffer[bufindr], code_string) != NULL); } inline bool code_seen(char code) { strchr_pointer = strchr(cmdbuffer[bufindr], code); return (strchr_pointer != NULL); //Return True if a character was found } inline void process_commands() { unsigned long codenum; //throw away variable char *starpos = NULL; if(code_seen('G')) { switch((int)code_value()) { case 0: // G0 -> G1 case 1: // G1 get_coordinates(); // For X Y Z E F prepare_move(); previous_millis_cmd = millis(); //ClearToSend(); return; //break; case 2: // G2 - CW ARC get_arc_coordinates(); prepare_arc_move(true); previous_millis_cmd = millis(); return; case 3: // G3 - CCW ARC get_arc_coordinates(); prepare_arc_move(false); previous_millis_cmd = millis(); return; case 4: // G4 dwell codenum = 0; if(code_seen('P')) codenum = code_value(); // milliseconds to wait if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait codenum += millis(); // keep track of when we started waiting while(millis() < codenum ){ manage_heater(); } break; case 28: //G28 Home all Axis one at a time saved_feedrate = feedrate; saved_feedmultiply = feedmultiply; feedmultiply = 100; for(int i=0; i < NUM_AXIS; i++) { destination[i] = current_position[i]; } feedrate = 0.0; home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))); if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) { if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){ // st_synchronize(); current_position[X_AXIS] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR; feedrate = homing_feedrate[X_AXIS]; prepare_move(); // st_synchronize(); current_position[X_AXIS] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[X_AXIS] = -5 * X_HOME_DIR; prepare_move(); // st_synchronize(); destination[X_AXIS] = 10 * X_HOME_DIR; feedrate = homing_feedrate[X_AXIS]/2 ; prepare_move(); // st_synchronize(); current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[X_AXIS] = current_position[X_AXIS]; feedrate = 0.0; } } if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) { if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){ current_position[Y_AXIS] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR; feedrate = homing_feedrate[Y_AXIS]; prepare_move(); // st_synchronize(); current_position[Y_AXIS] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[Y_AXIS] = -5 * Y_HOME_DIR; prepare_move(); // st_synchronize(); destination[Y_AXIS] = 10 * Y_HOME_DIR; feedrate = homing_feedrate[Y_AXIS]/2; prepare_move(); // st_synchronize(); current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[Y_AXIS] = current_position[Y_AXIS]; feedrate = 0.0; } } if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) { if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){ current_position[Z_AXIS] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR; feedrate = homing_feedrate[Z_AXIS]; prepare_move(); // st_synchronize(); current_position[Z_AXIS] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[Z_AXIS] = -2 * Z_HOME_DIR; prepare_move(); // st_synchronize(); destination[Z_AXIS] = 3 * Z_HOME_DIR; feedrate = homing_feedrate[Z_AXIS]/2; prepare_move(); // st_synchronize(); current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[Z_AXIS] = current_position[Z_AXIS]; feedrate = 0.0; } } feedrate = saved_feedrate; feedmultiply = saved_feedmultiply; previous_millis_cmd = millis(); break; case 90: // G90 relative_mode = false; break; case 91: // G91 relative_mode = true; break; case 92: // G92 if(!code_seen(axis_codes[E_AXIS])) st_synchronize(); for(int i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) current_position[i] = code_value(); } plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); break; } } else if(code_seen('M')) { switch( (int)code_value() ) { #ifdef SDSUPPORT case 20: // M20 - list SD card Serial.println("Begin file list"); card.root.ls(); Serial.println("End file list"); break; case 21: // M21 - init SD card card.sdmode = false; card.initsd(); break; case 22: //M22 - release SD card card.sdmode = false; card.sdactive = false; break; case 23: //M23 - Select file if(card.sdactive){ card.sdmode = false; card.file.close(); starpos = (strchr(strchr_pointer + 4,'*')); if(starpos!=NULL) *(starpos-1)='\0'; if (card.file.open(&card.root, strchr_pointer + 4, O_READ)) { Serial.print("File opened:"); Serial.print(strchr_pointer + 4); Serial.print(" Size:"); Serial.println(card.file.fileSize()); card.sdpos = 0; card.filesize = card.file.fileSize(); Serial.println("File selected"); } else{ Serial.println("file.open failed"); } } break; case 24: //M24 - Start SD print if(card.sdactive){ card.sdmode = true; starttime=millis(); } break; case 25: //M25 - Pause SD print if(card.sdmode){ card.sdmode = false; } break; case 26: //M26 - Set SD index if(card.sdactive && code_seen('S')){ card.sdpos = code_value_long(); card.file.seekSet(card.sdpos); } break; case 27: //M27 - Get SD status if(card.sdactive){ Serial.print("SD printing byte "); Serial.print(card.sdpos); Serial.print("/"); Serial.println(card.filesize); } else{ Serial.println("Not SD printing"); } break; case 28: //M28 - Start SD write if(card.sdactive){ char* npos = 0; card.file.close(); card.sdmode = false; starpos = (strchr(strchr_pointer + 4,'*')); if(starpos != NULL){ npos = strchr(cmdbuffer[bufindr], 'N'); strchr_pointer = strchr(npos,' ') + 1; *(starpos-1) = '\0'; } if (!card.file.open(&card.root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC)) { Serial.print("open failed, File: "); Serial.print(strchr_pointer + 4); Serial.print("."); } else{ card.savetosd = true; Serial.print("Writing to file: "); Serial.println(strchr_pointer + 4); } } break; case 29: //M29 - Stop SD write //processed in write to file routine above //savetosd = false; break; #endif //SDSUPPORT case 30: //M30 take time since the start of the SD print or an M109 command { stoptime=millis(); char time[30]; unsigned long t=(stoptime-starttime)/1000; int sec,min; min=t/60; sec=t%60; sprintf(time,"echo: time needed %i min, %i sec",min,sec); Serial.println(time); LCD_MESSAGE(time); } break; case 42: //M42 -Change pin status via gcode if (code_seen('S')) { int pin_status = code_value(); if (code_seen('P') && pin_status >= 0 && pin_status <= 255) { int pin_number = code_value(); for(int i = 0; i < (int)sizeof(sensitive_pins); i++) { if (sensitive_pins[i] == pin_number) { pin_number = -1; break; } } if (pin_number > -1) { pinMode(pin_number, OUTPUT); digitalWrite(pin_number, pin_status); analogWrite(pin_number, pin_status); } } } break; case 104: // M104 if (code_seen('S')) setTargetHotend0(code_value()); setWatch(); break; case 140: // M140 set bed temp if (code_seen('S')) setTargetBed(code_value()); break; case 105: // M105 #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595) tt = degHotend0(); #endif #if TEMP_1_PIN > -1 bt = degBed(); #endif #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595) Serial.print("ok T:"); Serial.print(tt); #if TEMP_1_PIN > -1 #ifdef PIDTEMP Serial.print(" B:"); #if TEMP_1_PIN > -1 Serial.println(bt); #else Serial.println(HeaterPower); #endif #else //not PIDTEMP Serial.println(); #endif //PIDTEMP #else Serial.println(); #endif //TEMP_1_PIN #else Serial.println("echo: No thermistors - no temp"); #endif return; break; case 109: {// M109 - Wait for extruder heater to reach target. LCD_MESSAGE("Heating..."); if (code_seen('S')) setTargetHotend0(code_value()); setWatch(); codenum = millis(); /* See if we are heating up or cooling down */ bool target_direction = isHeatingHotend0(); // true if heating, false if cooling #ifdef TEMP_RESIDENCY_TIME long residencyStart; residencyStart = -1; /* continue to loop until we have reached the target temp _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */ while((target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()) || (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) { #else while ( target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()) ) { #endif //TEMP_RESIDENCY_TIME if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up/cooling down Serial.print("T:"); Serial.println( degHotend0() ); codenum = millis(); } manage_heater(); LCD_STATUS; #ifdef TEMP_RESIDENCY_TIME /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time or when current temp falls outside the hysteresis after target temp was reached */ if ((residencyStart == -1 && target_direction && !isHeatingHotend0()) || (residencyStart == -1 && !target_direction && !isCoolingHotend0()) || (residencyStart > -1 && labs(degHotend0() - degTargetHotend0()) > TEMP_HYSTERESIS) ) { residencyStart = millis(); } #endif //TEMP_RESIDENCY_TIME } LCD_MESSAGE("Heating done."); starttime=millis(); } break; case 190: // M190 - Wait bed for heater to reach target. #if TEMP_1_PIN > -1 if (code_seen('S')) setTargetBed(code_value()); codenum = millis(); while(isHeatingBed()) { if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up. { float tt=degHotend0(); Serial.print("T:"); Serial.println( tt ); Serial.print("ok T:"); Serial.print( tt ); Serial.print(" B:"); Serial.println( degBed() ); codenum = millis(); } manage_heater(); } #endif break; #if FAN_PIN > -1 case 106: //M106 Fan On if (code_seen('S')){ WRITE(FAN_PIN,HIGH); fanpwm=constrain(code_value(),0,255); analogWrite(FAN_PIN, fanpwm); } else { WRITE(FAN_PIN,HIGH); fanpwm=255; analogWrite(FAN_PIN, fanpwm); } break; case 107: //M107 Fan Off WRITE(FAN_PIN,LOW); analogWrite(FAN_PIN, 0); break; #endif //FAN_PIN #if (PS_ON_PIN > -1) case 80: // M80 - ATX Power On SET_OUTPUT(PS_ON_PIN); //GND break; case 81: // M81 - ATX Power Off SET_INPUT(PS_ON_PIN); //Floating break; #endif case 82: axis_relative_modes[3] = false; break; case 83: axis_relative_modes[3] = true; break; case 18: //compatibility case 84: if(code_seen('S')){ stepper_inactive_time = code_value() * 1000; } else { st_synchronize(); disable_x(); disable_y(); disable_z(); disable_e(); } break; case 85: // M85 code_seen('S'); max_inactive_time = code_value() * 1000; break; case 92: // M92 for(int i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value(); } break; case 115: // M115 Serial.println("FIRMWARE_NAME:Marlin; Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1"); break; case 114: // M114 Serial.print("X:"); Serial.print(current_position[X_AXIS]); Serial.print("Y:"); Serial.print(current_position[Y_AXIS]); Serial.print("Z:"); Serial.print(current_position[Z_AXIS]); Serial.print("E:"); Serial.print(current_position[E_AXIS]); #ifdef DEBUG_STEPS Serial.print(" Count X:"); Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]); Serial.print("Y:"); Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]); Serial.print("Z:"); Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]); #endif Serial.println(""); break; case 119: // M119 #if (X_MIN_PIN > -1) Serial.print("x_min:"); Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L "); #endif #if (X_MAX_PIN > -1) Serial.print("x_max:"); Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L "); #endif #if (Y_MIN_PIN > -1) Serial.print("y_min:"); Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L "); #endif #if (Y_MAX_PIN > -1) Serial.print("y_max:"); Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L "); #endif #if (Z_MIN_PIN > -1) Serial.print("z_min:"); Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L "); #endif #if (Z_MAX_PIN > -1) Serial.print("z_max:"); Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L "); #endif Serial.println(""); break; //TODO: update for all axis, use for loop case 201: // M201 for(int i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; } break; #if 0 // Not used for Sprinter/grbl gen6 case 202: // M202 for(int i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; } break; #endif case 203: // M203 max feedrate mm/sec for(int i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ; } break; case 204: // M204 acclereration S normal moves T filmanent only moves { if(code_seen('S')) acceleration = code_value() ; if(code_seen('T')) retract_acceleration = code_value() ; } break; case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk { if(code_seen('S')) minimumfeedrate = code_value()*60 ; if(code_seen('T')) mintravelfeedrate = code_value()*60 ; if(code_seen('B')) minsegmenttime = code_value() ; if(code_seen('X')) max_xy_jerk = code_value()*60 ; if(code_seen('Z')) max_z_jerk = code_value()*60 ; } break; case 220: // M220 S- set speed factor override percentage { if(code_seen('S')) { feedmultiply = code_value() ; feedmultiplychanged=true; } } break; #ifdef PIDTEMP case 301: // M301 if(code_seen('P')) Kp = code_value(); if(code_seen('I')) Ki = code_value()*PID_dT; if(code_seen('D')) Kd = code_value()/PID_dT; break; #endif //PIDTEMP case 500: // Store settings in EEPROM { StoreSettings(); } break; case 501: // Read settings from EEPROM { RetrieveSettings(); } break; case 502: // Revert to default settings { RetrieveSettings(true); } break; } } else { Serial.print("echo: Unknown command:\""); Serial.print(cmdbuffer[bufindr]); Serial.println("\""); } ClearToSend(); } void FlushSerialRequestResend() { //char cmdbuffer[bufindr][100]="Resend:"; Serial.flush(); Serial.print("Resend:"); Serial.println(gcode_LastN + 1); ClearToSend(); } void ClearToSend() { previous_millis_cmd = millis(); #ifdef SDSUPPORT if(fromsd[bufindr]) return; #endif //SDSUPPORT Serial.println("ok"); } inline void get_coordinates() { for(int i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i]; else destination[i] = current_position[i]; //Are these else lines really needed? } if(code_seen('F')) { next_feedrate = code_value(); if(next_feedrate > 0.0) feedrate = next_feedrate; } } inline void get_arc_coordinates() { get_coordinates(); if(code_seen('I')) offset[0] = code_value(); if(code_seen('J')) offset[1] = code_value(); } void prepare_move() { plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0); for(int i=0; i < NUM_AXIS; i++) { current_position[i] = destination[i]; } } void prepare_arc_move(char isclockwise) { float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc // Trace the arc mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60.0/100.0, r, isclockwise); // As far as the parser is concerned, the position is now == target. In reality the // motion control system might still be processing the action and the real tool position // in any intermediate location. for(int i=0; i < NUM_AXIS; i++) { current_position[i] = destination[i]; } } void manage_inactivity(byte debug) { if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill(); if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) { disable_x(); disable_y(); disable_z(); disable_e(); } check_axes_activity(); } void kill() { disable_heater(); disable_x(); disable_y(); disable_z(); disable_e(); if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT); SERIAL_ERRORLN("Printer halted. kill() called !!"); while(1); // Wait for reset }