/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * configuration_store.cpp * * Configuration and EEPROM storage * * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM * in the functions below, also increment the version number. This makes sure that * the default values are used whenever there is a change to the data, to prevent * wrong data being written to the variables. * * ALSO: Variables in the Store and Retrieve sections must be in the same order. * If a feature is disabled, some data must still be written that, when read, * either sets a Sane Default, or results in No Change to the existing value. * */ #define EEPROM_VERSION "V23" /** * V23 EEPROM Layout: * * 100 Version (char x4) * * 104 M92 XYZE planner.axis_steps_per_mm (float x4) * 120 M203 XYZE planner.max_feedrate (float x4) * 136 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4) * 152 M204 P planner.acceleration (float) * 156 M204 R planner.retract_acceleration (float) * 160 M204 T planner.travel_acceleration (float) * 164 M205 S planner.min_feedrate (float) * 168 M205 T planner.min_travel_feedrate (float) * 172 M205 B planner.min_segment_time (ulong) * 176 M205 X planner.max_xy_jerk (float) * 180 M205 Z planner.max_z_jerk (float) * 184 M205 E planner.max_e_jerk (float) * 188 M206 XYZ home_offset (float x3) * * Mesh bed leveling: * 200 M420 S status (uint8) * 201 z_offset (float) * 205 mesh_num_x (uint8 as set in firmware) * 206 mesh_num_y (uint8 as set in firmware) * 207 G29 S3 XYZ z_values[][] (float x9, by default) * * AUTO BED LEVELING * 243 M851 zprobe_zoffset (float) * * DELTA: * 247 M666 XYZ endstop_adj (float x3) * 259 M665 R delta_radius (float) * 263 M665 L delta_diagonal_rod (float) * 267 M665 S delta_segments_per_second (float) * 271 M665 A delta_diagonal_rod_trim_tower_1 (float) * 275 M665 B delta_diagonal_rod_trim_tower_2 (float) * 279 M665 C delta_diagonal_rod_trim_tower_3 (float) * * Z_DUAL_ENDSTOPS: * 283 M666 Z z_endstop_adj (float) * * ULTIPANEL: * 287 M145 S0 H plaPreheatHotendTemp (int) * 289 M145 S0 B plaPreheatHPBTemp (int) * 291 M145 S0 F plaPreheatFanSpeed (int) * 293 M145 S1 H absPreheatHotendTemp (int) * 295 M145 S1 B absPreheatHPBTemp (int) * 297 M145 S1 F absPreheatFanSpeed (int) * * PIDTEMP: * 299 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4) * 315 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4) * 331 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4) * 347 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4) * 363 M301 L lpq_len (int) * * PIDTEMPBED: * 365 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3) * * DOGLCD: * 377 M250 C lcd_contrast (int) * * SCARA: * 379 M365 XYZ axis_scaling (float x3) * * FWRETRACT: * 391 M209 S autoretract_enabled (bool) * 392 M207 S retract_length (float) * 396 M207 W retract_length_swap (float) * 400 M207 F retract_feedrate (float) * 404 M207 Z retract_zlift (float) * 408 M208 S retract_recover_length (float) * 412 M208 W retract_recover_length_swap (float) * 416 M208 F retract_recover_feedrate (float) * * Volumetric Extrusion: * 420 M200 D volumetric_enabled (bool) * 421 M200 T D filament_size (float x4) (T0..3) * * 437 This Slot is Available! * */ #include "Marlin.h" #include "language.h" #include "planner.h" #include "temperature.h" #include "ultralcd.h" #include "configuration_store.h" #if ENABLED(MESH_BED_LEVELING) #include "mesh_bed_leveling.h" #endif void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) { uint8_t c; while (size--) { eeprom_write_byte((unsigned char*)pos, *value); c = eeprom_read_byte((unsigned char*)pos); if (c != *value) { SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE); } pos++; value++; }; } void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) { do { *value = eeprom_read_byte((unsigned char*)pos); pos++; value++; } while (--size); } #define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value)) #define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value)) /** * Store Configuration Settings - M500 */ #define DUMMY_PID_VALUE 3000.0f #define EEPROM_OFFSET 100 #if ENABLED(EEPROM_SETTINGS) /** * Store Configuration Settings - M500 */ void Config_StoreSettings() { float dummy = 0.0f; char ver[4] = "000"; int i = EEPROM_OFFSET; EEPROM_WRITE_VAR(i, ver); // invalidate data first EEPROM_WRITE_VAR(i, planner.axis_steps_per_mm); EEPROM_WRITE_VAR(i, planner.max_feedrate); EEPROM_WRITE_VAR(i, planner.max_acceleration_mm_per_s2); EEPROM_WRITE_VAR(i, planner.acceleration); EEPROM_WRITE_VAR(i, planner.retract_acceleration); EEPROM_WRITE_VAR(i, planner.travel_acceleration); EEPROM_WRITE_VAR(i, planner.min_feedrate); EEPROM_WRITE_VAR(i, planner.min_travel_feedrate); EEPROM_WRITE_VAR(i, planner.min_segment_time); EEPROM_WRITE_VAR(i, planner.max_xy_jerk); EEPROM_WRITE_VAR(i, planner.max_z_jerk); EEPROM_WRITE_VAR(i, planner.max_e_jerk); EEPROM_WRITE_VAR(i, home_offset); #if ENABLED(MESH_BED_LEVELING) // Compile time test that sizeof(mbl.z_values) is as expected typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1]; uint8_t mesh_num_x = MESH_NUM_X_POINTS, mesh_num_y = MESH_NUM_Y_POINTS, dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT); EEPROM_WRITE_VAR(i, dummy_uint8); EEPROM_WRITE_VAR(i, mbl.z_offset); EEPROM_WRITE_VAR(i, mesh_num_x); EEPROM_WRITE_VAR(i, mesh_num_y); EEPROM_WRITE_VAR(i, mbl.z_values); #else uint8_t mesh_num_x = 3, mesh_num_y = 3, dummy_uint8 = 0; dummy = 0.0f; EEPROM_WRITE_VAR(i, dummy_uint8); EEPROM_WRITE_VAR(i, dummy); EEPROM_WRITE_VAR(i, mesh_num_x); EEPROM_WRITE_VAR(i, mesh_num_y); for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE_VAR(i, dummy); #endif // MESH_BED_LEVELING #if DISABLED(AUTO_BED_LEVELING_FEATURE) float zprobe_zoffset = 0; #endif EEPROM_WRITE_VAR(i, zprobe_zoffset); #if ENABLED(DELTA) EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats EEPROM_WRITE_VAR(i, delta_radius); // 1 float EEPROM_WRITE_VAR(i, delta_diagonal_rod); // 1 float EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float #elif ENABLED(Z_DUAL_ENDSTOPS) EEPROM_WRITE_VAR(i, z_endstop_adj); // 1 float dummy = 0.0f; for (uint8_t q = 8; q--;) EEPROM_WRITE_VAR(i, dummy); #else dummy = 0.0f; for (uint8_t q = 9; q--;) EEPROM_WRITE_VAR(i, dummy); #endif #if DISABLED(ULTIPANEL) int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED, absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED; #endif // !ULTIPANEL EEPROM_WRITE_VAR(i, plaPreheatHotendTemp); EEPROM_WRITE_VAR(i, plaPreheatHPBTemp); EEPROM_WRITE_VAR(i, plaPreheatFanSpeed); EEPROM_WRITE_VAR(i, absPreheatHotendTemp); EEPROM_WRITE_VAR(i, absPreheatHPBTemp); EEPROM_WRITE_VAR(i, absPreheatFanSpeed); for (uint8_t e = 0; e < 4; e++) { #if ENABLED(PIDTEMP) if (e < HOTENDS) { EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e)); EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e)); EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e)); #if ENABLED(PID_ADD_EXTRUSION_RATE) EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e)); #else dummy = 1.0f; // 1.0 = default kc EEPROM_WRITE_VAR(i, dummy); #endif } else #endif // !PIDTEMP { dummy = DUMMY_PID_VALUE; // When read, will not change the existing value EEPROM_WRITE_VAR(i, dummy); // Kp dummy = 0.0f; for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy); // Ki, Kd, Kc } } // Hotends Loop #if DISABLED(PID_ADD_EXTRUSION_RATE) int lpq_len = 20; #endif EEPROM_WRITE_VAR(i, lpq_len); #if DISABLED(PIDTEMPBED) dummy = DUMMY_PID_VALUE; for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy); #else EEPROM_WRITE_VAR(i, thermalManager.bedKp); EEPROM_WRITE_VAR(i, thermalManager.bedKi); EEPROM_WRITE_VAR(i, thermalManager.bedKd); #endif #if !HAS_LCD_CONTRAST const int lcd_contrast = 32; #endif EEPROM_WRITE_VAR(i, lcd_contrast); #if ENABLED(SCARA) EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats #else dummy = 1.0f; EEPROM_WRITE_VAR(i, dummy); #endif #if ENABLED(FWRETRACT) EEPROM_WRITE_VAR(i, autoretract_enabled); EEPROM_WRITE_VAR(i, retract_length); #if EXTRUDERS > 1 EEPROM_WRITE_VAR(i, retract_length_swap); #else dummy = 0.0f; EEPROM_WRITE_VAR(i, dummy); #endif EEPROM_WRITE_VAR(i, retract_feedrate); EEPROM_WRITE_VAR(i, retract_zlift); EEPROM_WRITE_VAR(i, retract_recover_length); #if EXTRUDERS > 1 EEPROM_WRITE_VAR(i, retract_recover_length_swap); #else dummy = 0.0f; EEPROM_WRITE_VAR(i, dummy); #endif EEPROM_WRITE_VAR(i, retract_recover_feedrate); #endif // FWRETRACT EEPROM_WRITE_VAR(i, volumetric_enabled); // Save filament sizes for (uint8_t q = 0; q < 4; q++) { if (q < EXTRUDERS) dummy = filament_size[q]; EEPROM_WRITE_VAR(i, dummy); } char ver2[4] = EEPROM_VERSION; int j = EEPROM_OFFSET; EEPROM_WRITE_VAR(j, ver2); // validate data // Report storage size SERIAL_ECHO_START; SERIAL_ECHOPAIR("Settings Stored (", i); SERIAL_ECHOLNPGM(" bytes)"); } /** * Retrieve Configuration Settings - M501 */ void Config_RetrieveSettings() { int i = EEPROM_OFFSET; char stored_ver[4]; char ver[4] = EEPROM_VERSION; EEPROM_READ_VAR(i, stored_ver); //read stored version // SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]"); if (strncmp(ver, stored_ver, 3) != 0) { Config_ResetDefault(); } else { float dummy = 0; // version number match EEPROM_READ_VAR(i, planner.axis_steps_per_mm); EEPROM_READ_VAR(i, planner.max_feedrate); EEPROM_READ_VAR(i, planner.max_acceleration_mm_per_s2); // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) planner.reset_acceleration_rates(); EEPROM_READ_VAR(i, planner.acceleration); EEPROM_READ_VAR(i, planner.retract_acceleration); EEPROM_READ_VAR(i, planner.travel_acceleration); EEPROM_READ_VAR(i, planner.min_feedrate); EEPROM_READ_VAR(i, planner.min_travel_feedrate); EEPROM_READ_VAR(i, planner.min_segment_time); EEPROM_READ_VAR(i, planner.max_xy_jerk); EEPROM_READ_VAR(i, planner.max_z_jerk); EEPROM_READ_VAR(i, planner.max_e_jerk); EEPROM_READ_VAR(i, home_offset); uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0; EEPROM_READ_VAR(i, dummy_uint8); EEPROM_READ_VAR(i, dummy); EEPROM_READ_VAR(i, mesh_num_x); EEPROM_READ_VAR(i, mesh_num_y); #if ENABLED(MESH_BED_LEVELING) mbl.status = dummy_uint8; mbl.z_offset = dummy; if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) { EEPROM_READ_VAR(i, mbl.z_values); } else { mbl.reset(); for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy); } #else for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy); #endif // MESH_BED_LEVELING #if DISABLED(AUTO_BED_LEVELING_FEATURE) float zprobe_zoffset = 0; #endif EEPROM_READ_VAR(i, zprobe_zoffset); #if ENABLED(DELTA) EEPROM_READ_VAR(i, endstop_adj); // 3 floats EEPROM_READ_VAR(i, delta_radius); // 1 float EEPROM_READ_VAR(i, delta_diagonal_rod); // 1 float EEPROM_READ_VAR(i, delta_segments_per_second); // 1 float EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float recalc_delta_settings(delta_radius, delta_diagonal_rod); #elif ENABLED(Z_DUAL_ENDSTOPS) EEPROM_READ_VAR(i, z_endstop_adj); dummy = 0.0f; for (uint8_t q=8; q--;) EEPROM_READ_VAR(i, dummy); #else dummy = 0.0f; for (uint8_t q=9; q--;) EEPROM_READ_VAR(i, dummy); #endif #if DISABLED(ULTIPANEL) int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed; #endif EEPROM_READ_VAR(i, plaPreheatHotendTemp); EEPROM_READ_VAR(i, plaPreheatHPBTemp); EEPROM_READ_VAR(i, plaPreheatFanSpeed); EEPROM_READ_VAR(i, absPreheatHotendTemp); EEPROM_READ_VAR(i, absPreheatHPBTemp); EEPROM_READ_VAR(i, absPreheatFanSpeed); #if ENABLED(PIDTEMP) for (uint8_t e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin EEPROM_READ_VAR(i, dummy); // Kp if (e < HOTENDS && dummy != DUMMY_PID_VALUE) { // do not need to scale PID values as the values in EEPROM are already scaled PID_PARAM(Kp, e) = dummy; EEPROM_READ_VAR(i, PID_PARAM(Ki, e)); EEPROM_READ_VAR(i, PID_PARAM(Kd, e)); #if ENABLED(PID_ADD_EXTRUSION_RATE) EEPROM_READ_VAR(i, PID_PARAM(Kc, e)); #else EEPROM_READ_VAR(i, dummy); #endif } else { for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc } } #else // !PIDTEMP // 4 x 4 = 16 slots for PID parameters for (uint8_t q=16; q--;) EEPROM_READ_VAR(i, dummy); // 4x Kp, Ki, Kd, Kc #endif // !PIDTEMP #if DISABLED(PID_ADD_EXTRUSION_RATE) int lpq_len; #endif EEPROM_READ_VAR(i, lpq_len); #if ENABLED(PIDTEMPBED) EEPROM_READ_VAR(i, dummy); // bedKp if (dummy != DUMMY_PID_VALUE) { thermalManager.bedKp = dummy; EEPROM_READ_VAR(i, thermalManager.bedKi); EEPROM_READ_VAR(i, thermalManager.bedKd); } #else for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // bedKp, bedKi, bedKd #endif #if !HAS_LCD_CONTRAST int lcd_contrast; #endif EEPROM_READ_VAR(i, lcd_contrast); #if ENABLED(SCARA) EEPROM_READ_VAR(i, axis_scaling); // 3 floats #else EEPROM_READ_VAR(i, dummy); #endif #if ENABLED(FWRETRACT) EEPROM_READ_VAR(i, autoretract_enabled); EEPROM_READ_VAR(i, retract_length); #if EXTRUDERS > 1 EEPROM_READ_VAR(i, retract_length_swap); #else EEPROM_READ_VAR(i, dummy); #endif EEPROM_READ_VAR(i, retract_feedrate); EEPROM_READ_VAR(i, retract_zlift); EEPROM_READ_VAR(i, retract_recover_length); #if EXTRUDERS > 1 EEPROM_READ_VAR(i, retract_recover_length_swap); #else EEPROM_READ_VAR(i, dummy); #endif EEPROM_READ_VAR(i, retract_recover_feedrate); #endif // FWRETRACT EEPROM_READ_VAR(i, volumetric_enabled); for (uint8_t q = 0; q < 4; q++) { EEPROM_READ_VAR(i, dummy); if (q < EXTRUDERS) filament_size[q] = dummy; } calculate_volumetric_multipliers(); // Call thermalManager.updatePID (similar to when we have processed M301) thermalManager.updatePID(); // Report settings retrieved and length SERIAL_ECHO_START; SERIAL_ECHO(ver); SERIAL_ECHOPAIR(" stored settings retrieved (", i); SERIAL_ECHOLNPGM(" bytes)"); } #if ENABLED(EEPROM_CHITCHAT) Config_PrintSettings(); #endif } #endif // EEPROM_SETTINGS /** * Reset Configuration Settings - M502 */ void Config_ResetDefault() { float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT; float tmp2[] = DEFAULT_MAX_FEEDRATE; long tmp3[] = DEFAULT_MAX_ACCELERATION; for (uint8_t i = 0; i < NUM_AXIS; i++) { planner.axis_steps_per_mm[i] = tmp1[i]; planner.max_feedrate[i] = tmp2[i]; planner.max_acceleration_mm_per_s2[i] = tmp3[i]; #if ENABLED(SCARA) if (i < COUNT(axis_scaling)) axis_scaling[i] = 1; #endif } // steps per sq second need to be updated to agree with the units per sq second planner.reset_acceleration_rates(); planner.acceleration = DEFAULT_ACCELERATION; planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION; planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION; planner.min_feedrate = DEFAULT_MINIMUMFEEDRATE; planner.min_segment_time = DEFAULT_MINSEGMENTTIME; planner.min_travel_feedrate = DEFAULT_MINTRAVELFEEDRATE; planner.max_xy_jerk = DEFAULT_XYJERK; planner.max_z_jerk = DEFAULT_ZJERK; planner.max_e_jerk = DEFAULT_EJERK; home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0; #if ENABLED(MESH_BED_LEVELING) mbl.reset(); #endif #if ENABLED(AUTO_BED_LEVELING_FEATURE) zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER; #endif #if ENABLED(DELTA) endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0; delta_radius = DELTA_RADIUS; delta_diagonal_rod = DELTA_DIAGONAL_ROD; delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1; delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2; delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3; recalc_delta_settings(delta_radius, delta_diagonal_rod); #elif ENABLED(Z_DUAL_ENDSTOPS) z_endstop_adj = 0; #endif #if ENABLED(ULTIPANEL) plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP; plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP; plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED; absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP; absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP; absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED; #endif #if HAS_LCD_CONTRAST lcd_contrast = DEFAULT_LCD_CONTRAST; #endif #if ENABLED(PIDTEMP) #if ENABLED(PID_PARAMS_PER_HOTEND) for (uint8_t e = 0; e < HOTENDS; e++) #else int e = 0; UNUSED(e); // only need to write once #endif { PID_PARAM(Kp, e) = DEFAULT_Kp; PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki); PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd); #if ENABLED(PID_ADD_EXTRUSION_RATE) PID_PARAM(Kc, e) = DEFAULT_Kc; #endif } #if ENABLED(PID_ADD_EXTRUSION_RATE) lpq_len = 20; // default last-position-queue size #endif // call thermalManager.updatePID (similar to when we have processed M301) thermalManager.updatePID(); #endif // PIDTEMP #if ENABLED(PIDTEMPBED) thermalManager.bedKp = DEFAULT_bedKp; thermalManager.bedKi = scalePID_i(DEFAULT_bedKi); thermalManager.bedKd = scalePID_d(DEFAULT_bedKd); #endif #if ENABLED(FWRETRACT) autoretract_enabled = false; retract_length = RETRACT_LENGTH; #if EXTRUDERS > 1 retract_length_swap = RETRACT_LENGTH_SWAP; #endif retract_feedrate = RETRACT_FEEDRATE; retract_zlift = RETRACT_ZLIFT; retract_recover_length = RETRACT_RECOVER_LENGTH; #if EXTRUDERS > 1 retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; #endif retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE; #endif volumetric_enabled = false; for (uint8_t q = 0; q < COUNT(filament_size); q++) filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA; calculate_volumetric_multipliers(); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded"); } #if DISABLED(DISABLE_M503) /** * Print Configuration Settings - M503 */ #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0) void Config_PrintSettings(bool forReplay) { // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Steps per unit:"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]); SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]); SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]); SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]); SERIAL_EOL; CONFIG_ECHO_START; #if ENABLED(SCARA) if (!forReplay) { SERIAL_ECHOLNPGM("Scaling factors:"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M365 X", axis_scaling[X_AXIS]); SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]); SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]); SERIAL_EOL; CONFIG_ECHO_START; #endif // SCARA if (!forReplay) { SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate[X_AXIS]); SERIAL_ECHOPAIR(" Y", planner.max_feedrate[Y_AXIS]); SERIAL_ECHOPAIR(" Z", planner.max_feedrate[Z_AXIS]); SERIAL_ECHOPAIR(" E", planner.max_feedrate[E_AXIS]); SERIAL_EOL; CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]); SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]); SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]); SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]); SERIAL_EOL; CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M204 P", planner.acceleration); SERIAL_ECHOPAIR(" R", planner.retract_acceleration); SERIAL_ECHOPAIR(" T", planner.travel_acceleration); SERIAL_EOL; CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate); SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate); SERIAL_ECHOPAIR(" B", planner.min_segment_time); SERIAL_ECHOPAIR(" X", planner.max_xy_jerk); SERIAL_ECHOPAIR(" Z", planner.max_z_jerk); SERIAL_ECHOPAIR(" E", planner.max_e_jerk); SERIAL_EOL; CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Home offset (mm):"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]); SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]); SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]); SERIAL_EOL; #if ENABLED(MESH_BED_LEVELING) if (!forReplay) { SERIAL_ECHOLNPGM("Mesh bed leveling:"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0); SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS); SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS); SERIAL_EOL; for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) { for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) { CONFIG_ECHO_START; SERIAL_ECHOPAIR(" G29 S3 X", px); SERIAL_ECHOPAIR(" Y", py); SERIAL_ECHOPGM(" Z"); SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5); SERIAL_EOL; } } #endif #if ENABLED(DELTA) CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Endstop adjustment (mm):"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]); SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]); SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]); SERIAL_EOL; CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod); SERIAL_ECHOPAIR(" R", delta_radius); SERIAL_ECHOPAIR(" S", delta_segments_per_second); SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1); SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2); SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3); SERIAL_EOL; #elif ENABLED(Z_DUAL_ENDSTOPS) CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj); SERIAL_EOL; #endif // DELTA #if ENABLED(ULTIPANEL) CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Material heatup parameters:"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M145 S0 H", plaPreheatHotendTemp); SERIAL_ECHOPAIR(" B", plaPreheatHPBTemp); SERIAL_ECHOPAIR(" F", plaPreheatFanSpeed); SERIAL_EOL; CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M145 S1 H", absPreheatHotendTemp); SERIAL_ECHOPAIR(" B", absPreheatHPBTemp); SERIAL_ECHOPAIR(" F", absPreheatFanSpeed); SERIAL_EOL; #endif // ULTIPANEL #if HAS_PID_HEATING CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("PID settings:"); } #if ENABLED(PIDTEMP) #if HOTENDS > 1 if (forReplay) { for (uint8_t i = 0; i < HOTENDS; i++) { CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M301 E", i); SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, i)); SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, i))); SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, i))); #if ENABLED(PID_ADD_EXTRUSION_RATE) SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, i)); if (i == 0) SERIAL_ECHOPAIR(" L", lpq_len); #endif SERIAL_EOL; } } else #endif // HOTENDS > 1 // !forReplay || HOTENDS == 1 { CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0 SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0))); SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0))); #if ENABLED(PID_ADD_EXTRUSION_RATE) SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0)); SERIAL_ECHOPAIR(" L", lpq_len); #endif SERIAL_EOL; } #endif // PIDTEMP #if ENABLED(PIDTEMPBED) CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp); SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi)); SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd)); SERIAL_EOL; #endif #endif // PIDTEMP || PIDTEMPBED #if HAS_LCD_CONTRAST CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("LCD Contrast:"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M250 C", lcd_contrast); SERIAL_EOL; #endif #if ENABLED(FWRETRACT) CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M207 S", retract_length); #if EXTRUDERS > 1 SERIAL_ECHOPAIR(" W", retract_length_swap); #endif SERIAL_ECHOPAIR(" F", retract_feedrate * 60); SERIAL_ECHOPAIR(" Z", retract_zlift); SERIAL_EOL; CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M208 S", retract_recover_length); #if EXTRUDERS > 1 SERIAL_ECHOPAIR(" W", retract_recover_length_swap); #endif SERIAL_ECHOPAIR(" F", retract_recover_feedrate * 60); SERIAL_EOL; CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M209 S", (autoretract_enabled ? 1 : 0)); SERIAL_EOL; #endif // FWRETRACT /** * Volumetric extrusion M200 */ if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOPGM("Filament settings:"); if (volumetric_enabled) SERIAL_EOL; else SERIAL_ECHOLNPGM(" Disabled"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M200 D", filament_size[0]); SERIAL_EOL; #if EXTRUDERS > 1 CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]); SERIAL_EOL; #if EXTRUDERS > 2 CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]); SERIAL_EOL; #if EXTRUDERS > 3 CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]); SERIAL_EOL; #endif #endif #endif if (!volumetric_enabled) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM(" M200 D0"); } /** * Auto Bed Leveling */ #if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(CUSTOM_M_CODES) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Z-Probe Offset (mm):"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M" STRINGIFY(CUSTOM_M_CODE_SET_Z_PROBE_OFFSET) " Z", zprobe_zoffset); #else if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOPAIR("Z-Probe Offset (mm):", zprobe_zoffset); } #endif SERIAL_EOL; #endif } #endif // !DISABLE_M503