/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "MarlinConfig.h" #if ENABLED(AUTO_BED_LEVELING_UBL) //#include "vector_3.h" //#include "qr_solve.h" #include "ubl.h" #include "Marlin.h" #include "hex_print_routines.h" #include "configuration_store.h" #include "ultralcd.h" #include #include "least_squares_fit.h" void lcd_return_to_status(); bool lcd_clicked(); void lcd_implementation_clear(); void lcd_mesh_edit_setup(float initial); float lcd_mesh_edit(); void lcd_z_offset_edit_setup(float); float lcd_z_offset_edit(); extern float meshedit_done; extern long babysteps_done; extern float code_value_float(); extern uint8_t code_value_byte(); extern bool code_value_bool(); extern bool code_has_value(); extern float probe_pt(float x, float y, bool, int); extern bool set_probe_deployed(bool); void smart_fill_mesh(); bool ProbeStay = true; #define SIZE_OF_LITTLE_RAISE 0 #define BIG_RAISE_NOT_NEEDED 0 extern void lcd_quick_feedback(); /** * G29: Unified Bed Leveling by Roxy * * Parameters understood by this leveling system: * * A Activate Activate the Unified Bed Leveling system. * * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as * G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card * as a shim that the nozzle will pinch as it is lowered. The idea is that you * can easily feel the nozzle getting to the same height by the amount of resistance * the business card exhibits to movement. You should try to achieve the same amount * of resistance on each probed point to facilitate accurate and repeatable measurements. * You should be very careful not to drive the nozzle into the bussiness card with a * lot of force as it is very possible to cause damage to your printer if your are * careless. If you use the B option with G29 P2 B you can leave the number parameter off * on its first use to enable measurement of the business card thickness. Subsequent usage * of the B parameter can have the number previously measured supplied to the command. * Incidently, you are much better off using something like a Spark Gap feeler gauge than * something that compresses like a Business Card. * * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to * further refine the behaviour of several other commands. Issuing a G29 P1 C will * continue the generation of a partially constructed Mesh without invalidating what has * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C * it indicates to use the current location instead of defaulting to the center of the print bed. * * D Disable Disable the Unified Bed Leveling system. * * E Stow_probe Stow the probe after each sampled point. * * F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the * specified height, no correction is applied and natural printer kenimatics take over. If no * number is specified for the command, 10mm is assumed to be reasonable. * * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The * default is 5mm. * * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless * the X and Y parameter are used. If no number is specified, only the closest Mesh * point to the location is invalidated. The M parameter is available as well to produce * a map after the operation. This command is useful to invalidate a portion of the * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When * attempting to invalidate an isolated bad point in the mesh, the M option will indicate * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on * the bed and use this feature to select the center of the area (or cell) you want to * invalidate. * * J # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side. * * j EEPROM Dump This function probably goes away after debug is complete. * * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This * command literally performs a diff between two Meshes. * * L Load * Load Mesh from the previously activated location in the EEPROM. * * L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated * for subsequent Load and Store operations. * * O Map * Display the Mesh Map Topology. * The parameter can be specified alone (ie. G29 O) or in combination with many of the * other commands. The Mesh Map option works with all of the Phase * commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O) The Map parameter can also of a Map Type * specified. A map type of 0 is the default is user readable. A map type of 1 can * be specified and is suitable to Cut & Paste into Excel to allow graphing of the user's * mesh. * * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with * each additional Phase that processes it. * * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation * was turned on. Setting the entire Mesh to Zero is a special case that allows * a subsequent G or T leveling operation for backward compatibility. * * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and * DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically * generated. This will be handled in Phase 2. If the Phase 1 command is given the * C (Continue) parameter it does not invalidate the Mesh prior to automatically * probing needed locations. This allows you to invalidate portions of the Mesh but still * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y * parameter can be given to prioritize where the command should be trying to measure points. * If the X and Y parameters are not specified the current probe position is used. Phase 1 * allows you to specify the M (Map) parameter so you can watch the generation of the Mesh. * Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state. * It will suspend generation of the Mesh if it sees the user request that. (This check is * only done between probe points. You will need to press and hold the switch until the * Phase 1 command can detect it.) * * P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H * parameter to control the height between Mesh points. The default height for movement * between Mesh points is 5mm. A smaller number can be used to make this part of the * calibration less time consuming. You will be running the nozzle down until it just barely * touches the glass. You should have the nozzle clean with no plastic obstructing your view. * Use caution and move slowly. It is possible to damage your printer if you are careless. * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED. * * The H parameter can be set negative if your Mesh dips in a large area. You can press * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the * area you are manually probing. Note that the command tries to start you in a corner * of the bed where movement will be predictable. You can force the location to be used in * the distance calculations by using the X and Y parameters. You may find it is helpful to * print out a Mesh Map (G29 O) to understand where the mesh is invalidated and where * the nozzle will need to move in order to complete the command. The C parameter is * available on the Phase 2 command also and indicates the search for points to measure should * be done based on the current location of the nozzle. * * A B parameter is also available for this command and described up above. It places the * manual probe subsystem into Business Card mode where the thickness of a business care is * measured and then used to accurately set the nozzle height in all manual probing for the * duration of the command. (S for Shim mode would be a better parameter name, but S is needed * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have * better results if you use a flexible Shim that does not compress very much. That makes it * easier for you to get the nozzle to press with similar amounts of force against the shim so you * can get accurate measurements. As you are starting to touch the nozzle against the shim try * to get it to grasp the shim with the same force as when you measured the thickness of the * shim at the start of the command. * * Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression * of the Mesh being built. * * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths the * user can go down. If the user specifies the value using the C parameter, the closest invalid * mesh points to the nozzle will be filled. The user can specify a repeat count using the R * parameter with the C version of the command. * * A second version of the fill command is available if no C constant is specified. Not * specifying a C constant will invoke the 'Smart Fill' algorithm. The G29 P3 command will search * from the edges of the mesh inward looking for invalid mesh points. It will look at the next * several mesh points to determine if the print bed is sloped up or down. If the bed is sloped * upward from the invalid mesh point, it will be replaced with the value of the nearest mesh point. * If the bed is sloped downward from the invalid mesh point, it will be replaced with a value that * puts all three points in a line. The second version of the G29 P3 command is a quick, easy and * usually safe way to populate the unprobed regions of your mesh so you can continue to the G26 * Mesh Validation Pattern phase. Please note that you are populating your mesh with unverified * numbers. You should use some scrutiny and caution. * * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel. * (More work and details on doing this later!) * The System will search for the closest Mesh Point to the nozzle. It will move the * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle * so it is just barely touching the bed. When the user clicks the control, the System * will lock in that height for that point in the Mesh Compensation System. * * Phase 4 has several additional parameters that the user may find helpful. Phase 4 * can be started at a specific location by specifying an X and Y parameter. Phase 4 * can be requested to continue the adjustment of Mesh Points by using the R(epeat) * parameter. If the Repetition count is not specified, it is assumed the user wishes * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited. * The command can be terminated early (or after the area of interest has been edited) by * pressing and holding the encoder wheel until the system recognizes the exit request. * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position] * * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the * information left on the printer's bed from the G26 command it is very straight forward * and easy to fine tune the Mesh. One concept that is important to remember and that * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points. * If you have too little clearance and not much plastic was extruded in an area, you want to * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to * RAISE the Mesh Point at that location. * * * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically * execute a G29 P6 C . * * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally, * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring * 0.000 at the Z Home location. * * Q Test * Load specified Test Pattern to assist in checking correct operation of system. This * command is not anticipated to be of much value to the typical user. It is intended * for developers to help them verify correct operation of the Unified Bed Leveling System. * * R # Repeat Repeat this command the specified number of times. If no number is specified the * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times. * * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the * current state of the Unified Bed Leveling system in the EEPROM. * * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and * extend to a limit related to the available EEPROM storage. * * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into the system * at a later date. The GCode output can be saved and later replayed by the host software * to reconstruct the current mesh on another machine. * * T 3-Point Perform a 3 Point Bed Leveling on the current Mesh * * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds. * Only used for G29 P1 O U It will speed up the probing of the edge of the bed. This * is useful when the entire bed does not need to be probed because it will be adjusted. * * W What? Display valuable data the Unified Bed Leveling System knows. * * X # * * X Location for this line of commands * * Y # * * Y Location for this line of commands * * Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered * by just doing a G29 Z * * Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference. * zprobe_zoffset is added to the calculation. * * * Release Notes: * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G * respectively.) * * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice * the Unified Bed Leveling probes points further and further away from the starting location. (The * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to * perform a small print and check out your settings quicker. You do not need to populate the * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair. * * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort * to get this Mesh data correct for a user's printer. We do not want this data destroyed as * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the * other data stored in the EEPROM. (For sure the developers are going to complain about this, but * this is going to be helpful to the users!) * * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions * we now have the functionality and features of all three systems combined. */ #define USE_NOZZLE_AS_REFERENCE 0 #define USE_PROBE_AS_REFERENCE 1 // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine. static int g29_verbose_level, phase_value = -1, repetition_cnt, storage_slot = 0, map_type, grid_size; static bool repeat_flag, c_flag, x_flag, y_flag; static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0; extern void lcd_setstatus(const char* message, const bool persist); extern void lcd_setstatuspgm(const char* message, const uint8_t level); void __attribute__((optimize("O0"))) gcode_G29() { if (ubl.eeprom_start < 0) { SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it"); SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n"); return; } if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Don't allow auto-leveling without homing first gcode_G28(); if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem, // Invalidate Mesh Points. This command is a little bit asymetrical because // it directly specifies the repetition count and does not use the 'R' parameter. if (code_seen('I')) { uint8_t cnt = 0; repetition_cnt = code_has_value() ? code_value_int() : 1; while (repetition_cnt--) { if (cnt > 20) { cnt = 0; idle(); } const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false); if (location.x_index < 0) { SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n"); break; // No more invalid Mesh Points to populate } ubl.z_values[location.x_index][location.y_index] = NAN; cnt++; } SERIAL_PROTOCOLLNPGM("Locations invalidated.\n"); } if (code_seen('Q')) { const int test_pattern = code_has_value() ? code_value_int() : -1; if (!WITHIN(test_pattern, 0, 2)) { SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n"); return; } SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n"); switch (test_pattern) { case 0: for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta. const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x, p2 = 0.5 * (GRID_MAX_POINTS_Y) - y; ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2); } } break; case 1: for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised ubl.z_values[x][x] += 9.999; ubl.z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick } break; case 2: // Allow the user to specify the height because 10mm is a little extreme in some cases. for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99; break; } } if (code_seen('J')) { if (!WITHIN(grid_size, 2, 9)) { SERIAL_PROTOCOLLNPGM("ERROR - grid size must be between 2 and 9"); return; } ubl.save_ubl_active_state_and_disable(); ubl.tilt_mesh_based_on_probed_grid(code_seen('O') || code_seen('M')); ubl.restore_ubl_active_state_and_leave(); } if (code_seen('P')) { phase_value = code_value_int(); if (!WITHIN(phase_value, 0, 7)) { SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n"); return; } switch (phase_value) { case 0: // // Zero Mesh Data // ubl.reset(); SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n"); break; case 1: // // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe // if (!code_seen('C')) { ubl.invalidate(); SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n"); } if (g29_verbose_level > 1) { SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", x_pos); SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(y_pos); SERIAL_PROTOCOLLNPGM(")\n"); } ubl.probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U')); break; case 2: { // // Manually Probe Mesh in areas that can't be reached by the probe // SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n"); do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); if (!x_flag && !y_flag) { // use a good default location for the path // The flipped > and < operators on these two comparisons is // intentional. It should cause the probed points to follow a // nice path on Cartesian printers. It may make sense to // have Delta printers default to the center of the bed. // For now, until that is decided, it can be forced with the X // and Y parameters. x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS; y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS; } if (code_seen('C')) { x_pos = current_position[X_AXIS]; y_pos = current_position[Y_AXIS]; } const float height = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES; if (code_seen('B')) { card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height); if (fabs(card_thickness) > 1.5) { SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.\n"); return; } } manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O') || code_seen('M')); } break; case 3: { // // Populate invalid Mesh areas. Two choices are available to the user. The user can // specify the constant to be used with a C # paramter. Or the user can allow the G29 P3 command to // apply a 'reasonable' constant to the invalid mesh point. Some caution and scrutiny should be used // on either of these paths! // if (c_flag) { while (repetition_cnt--) { const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false); if (location.x_index < 0) break; // No more invalid Mesh Points to populate ubl.z_values[location.x_index][location.y_index] = ubl_constant; } break; } else // The user wants to do a 'Smart' fill where we use the surrounding known smart_fill_mesh(); // values to provide a good guess of what the unprobed mesh point should be break; } case 4: // // Fine Tune (i.e., Edit) the Mesh // fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M')); break; case 5: ubl.find_mean_mesh_height(); break; case 6: ubl.shift_mesh_height(); break; case 10: // [DEBUG] Pay no attention to this stuff. It can be removed soon. SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:"); KEEPALIVE_STATE(PAUSED_FOR_USER); ubl.has_control_of_lcd_panel = true; while (!ubl_lcd_clicked()) { safe_delay(250); if (ubl.encoder_diff) { SERIAL_ECHOLN((int)ubl.encoder_diff); ubl.encoder_diff = 0; } } SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel."); ubl.has_control_of_lcd_panel = false; KEEPALIVE_STATE(IN_HANDLER); break; case 11: // [DEBUG] wait_for_user code. Pay no attention to this stuff. It can be removed soon. SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:"); KEEPALIVE_STATE(PAUSED_FOR_USER); wait_for_user = true; while (wait_for_user) { safe_delay(250); if (ubl.encoder_diff) { SERIAL_ECHOLN((int)ubl.encoder_diff); ubl.encoder_diff = 0; } } SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel."); KEEPALIVE_STATE(IN_HANDLER); break; } } if (code_seen('T')) { float z1 = probe_pt( LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level), z2 = probe_pt( LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level), z3 = probe_pt( LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level); // We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is) ubl.save_ubl_active_state_and_disable(); z1 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y)) /* + zprobe_zoffset */ ; z2 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ; z3 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ; do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0); ubl.tilt_mesh_based_on_3pts(z1, z2, z3); ubl.restore_ubl_active_state_and_leave(); } // // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is // good to have the extra information. Soon... we prune this to just a few items // if (code_seen('W')) g29_what_command(); // // When we are fully debugged, the EEPROM dump command will get deleted also. But // right now, it is good to have the extra information. Soon... we prune this. // if (code_seen('j')) g29_eeprom_dump(); // EEPROM Dump // // When we are fully debugged, this may go away. But there are some valid // use cases for the users. So we can wait and see what to do with it. // if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh g29_compare_current_mesh_to_stored_mesh(); // // Load a Mesh from the EEPROM // if (code_seen('L')) { // Load Current Mesh Data storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot; const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values); if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); return; } ubl.load_mesh(storage_slot); ubl.state.eeprom_storage_slot = storage_slot; SERIAL_PROTOCOLLNPGM("Done.\n"); } // // Store a Mesh in the EEPROM // if (code_seen('S')) { // Store (or Save) Current Mesh Data storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot; if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) if (!isnan(ubl.z_values[x][y])) { SERIAL_ECHOPAIR("M421 I ", x); SERIAL_ECHOPAIR(" J ", y); SERIAL_ECHOPGM(" Z "); SERIAL_ECHO_F(ubl.z_values[x][y], 6); SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[x])))); SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[y])))); SERIAL_EOL; } return; } const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values); if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1); goto LEAVE; } ubl.store_mesh(storage_slot); ubl.state.eeprom_storage_slot = storage_slot; SERIAL_PROTOCOLLNPGM("Done.\n"); } if (code_seen('O') || code_seen('M')) ubl.display_map(code_has_value() ? code_value_int() : 0); if (code_seen('Z')) { if (code_has_value()) ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value else { ubl.save_ubl_active_state_and_disable(); //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level); ubl.has_control_of_lcd_panel = true; // Grab the LCD Hardware measured_z = 1.5; do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything // The user is not going to be locking in a new Z-Offset very often so // it won't be that painful to spin the Encoder Wheel for 1.5mm lcd_implementation_clear(); lcd_z_offset_edit_setup(measured_z); KEEPALIVE_STATE(PAUSED_FOR_USER); do { measured_z = lcd_z_offset_edit(); idle(); do_blocking_move_to_z(measured_z); } while (!ubl_lcd_clicked()); ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) // or here. So, until we are done looking for a long Encoder Wheel Press, // we need to take control of the panel KEEPALIVE_STATE(IN_HANDLER); lcd_return_to_status(); const millis_t nxt = millis() + 1500UL; while (ubl_lcd_clicked()) { // debounce and watch for abort idle(); if (ELAPSED(millis(), nxt)) { SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped."); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); LCD_MESSAGEPGM("Z-Offset Stopped"); ubl.restore_ubl_active_state_and_leave(); goto LEAVE; } } ubl.has_control_of_lcd_panel = false; safe_delay(20); // We don't want any switch noise. ubl.state.z_offset = measured_z; lcd_implementation_clear(); ubl.restore_ubl_active_state_and_leave(); } } LEAVE: lcd_reset_alert_level(); LCD_MESSAGEPGM(""); lcd_quick_feedback(); ubl.has_control_of_lcd_panel = false; } void unified_bed_leveling::find_mean_mesh_height() { uint8_t x, y; int n; float sum, sum_of_diff_squared, sigma, difference, mean; sum = sum_of_diff_squared = 0.0; n = 0; for (x = 0; x < GRID_MAX_POINTS_X; x++) for (y = 0; y < GRID_MAX_POINTS_Y; y++) if (!isnan(ubl.z_values[x][y])) { sum += ubl.z_values[x][y]; n++; } mean = sum / n; // // Now do the sumation of the squares of difference from mean // for (x = 0; x < GRID_MAX_POINTS_X; x++) for (y = 0; y < GRID_MAX_POINTS_Y; y++) if (!isnan(ubl.z_values[x][y])) { difference = (ubl.z_values[x][y] - mean); sum_of_diff_squared += difference * difference; } SERIAL_ECHOLNPAIR("# of samples: ", n); SERIAL_ECHOPGM("Mean Mesh Height: "); SERIAL_ECHO_F(mean, 6); SERIAL_EOL; sigma = sqrt(sum_of_diff_squared / (n + 1)); SERIAL_ECHOPGM("Standard Deviation: "); SERIAL_ECHO_F(sigma, 6); SERIAL_EOL; if (c_flag) for (x = 0; x < GRID_MAX_POINTS_X; x++) for (y = 0; y < GRID_MAX_POINTS_Y; y++) if (!isnan(ubl.z_values[x][y])) ubl.z_values[x][y] -= mean + ubl_constant; } void unified_bed_leveling::shift_mesh_height() { for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) if (!isnan(ubl.z_values[x][y])) ubl.z_values[x][y] += ubl_constant; } /** * Probe all invalidated locations of the mesh that can be reached by the probe. * This attempts to fill in locations closest to the nozzle's start location first. */ void unified_bed_leveling::probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) { mesh_index_pair location; ubl.has_control_of_lcd_panel = true; ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe DEPLOY_PROBE(); do { if (ubl_lcd_clicked()) { SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n"); lcd_quick_feedback(); STOW_PROBE(); while (ubl_lcd_clicked()) idle(); ubl.has_control_of_lcd_panel = false; ubl.restore_ubl_active_state_and_leave(); safe_delay(50); // Debounce the Encoder wheel return; } location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, do_furthest); if (location.x_index >= 0 && location.y_index >= 0) { const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])), rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index])); // TODO: Change to use `position_is_reachable` (for SCARA-compatibility) if (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Attempt to probe off the bed."); ubl.has_control_of_lcd_panel = false; goto LEAVE; } const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level); ubl.z_values[location.x_index][location.y_index] = measured_z; } if (do_ubl_mesh_map) ubl.display_map(map_type); } while (location.x_index >= 0 && location.y_index >= 0); LEAVE: STOW_PROBE(); ubl.restore_ubl_active_state_and_leave(); do_blocking_move_to_xy( constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), X_MIN_POS, X_MAX_POS), constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), Y_MIN_POS, Y_MAX_POS) ); } void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) { float d, t, inv_z; int i, j; matrix_3x3 rotation; vector_3 v1 = vector_3( (UBL_PROBE_PT_1_X - UBL_PROBE_PT_2_X), (UBL_PROBE_PT_1_Y - UBL_PROBE_PT_2_Y), (z1 - z2) ), v2 = vector_3( (UBL_PROBE_PT_3_X - UBL_PROBE_PT_2_X), (UBL_PROBE_PT_3_Y - UBL_PROBE_PT_2_Y), (z3 - z2) ), normal = vector_3::cross(v1, v2); normal = normal.get_normal(); /** * This vector is normal to the tilted plane. * However, we don't know its direction. We need it to point up. So if * Z is negative, we need to invert the sign of all components of the vector */ if ( normal.z < 0.0 ) { normal.x = -normal.x; normal.y = -normal.y; normal.z = -normal.z; } rotation = matrix_3x3::create_look_at( vector_3( normal.x, normal.y, 1)); if (g29_verbose_level>2) { SERIAL_ECHOPGM("bed plane normal = ["); SERIAL_PROTOCOL_F( normal.x, 7); SERIAL_ECHOPGM(","); SERIAL_PROTOCOL_F( normal.y, 7); SERIAL_ECHOPGM(","); SERIAL_PROTOCOL_F( normal.z, 7); SERIAL_ECHOPGM("]\n"); rotation.debug("rotation matrix:"); } // // All of 3 of these points should give us the same d constant // t = normal.x * UBL_PROBE_PT_1_X + normal.y * UBL_PROBE_PT_1_Y; d = t + normal.z * z1; if (g29_verbose_level>2) { SERIAL_ECHOPGM("D constant: "); SERIAL_PROTOCOL_F( d, 7); SERIAL_ECHOPGM(" \n"); } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPGM("d from 1st point: "); SERIAL_ECHO_F(d, 6); SERIAL_EOL; t = normal.x * UBL_PROBE_PT_2_X + normal.y * UBL_PROBE_PT_2_Y; d = t + normal.z * z2; SERIAL_ECHOPGM("d from 2nd point: "); SERIAL_ECHO_F(d, 6); SERIAL_EOL; t = normal.x * UBL_PROBE_PT_3_X + normal.y * UBL_PROBE_PT_3_Y; d = t + normal.z * z3; SERIAL_ECHOPGM("d from 3rd point: "); SERIAL_ECHO_F(d, 6); SERIAL_EOL; } #endif for (i = 0; i < GRID_MAX_POINTS_X; i++) { for (j = 0; j < GRID_MAX_POINTS_Y; j++) { float x_tmp, y_tmp, z_tmp; x_tmp = pgm_read_float(ubl.mesh_index_to_xpos[i]); y_tmp = pgm_read_float(ubl.mesh_index_to_ypos[j]); z_tmp = ubl.z_values[i][j]; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPGM("before rotation = ["); SERIAL_PROTOCOL_F( x_tmp, 7); SERIAL_ECHOPGM(","); SERIAL_PROTOCOL_F( y_tmp, 7); SERIAL_ECHOPGM(","); SERIAL_PROTOCOL_F( z_tmp, 7); SERIAL_ECHOPGM("] ---> "); safe_delay(20); } #endif apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPGM("after rotation = ["); SERIAL_PROTOCOL_F( x_tmp, 7); SERIAL_ECHOPGM(","); SERIAL_PROTOCOL_F( y_tmp, 7); SERIAL_ECHOPGM(","); SERIAL_PROTOCOL_F( z_tmp, 7); SERIAL_ECHOPGM("]\n"); safe_delay(55); } #endif ubl.z_values[i][j] += z_tmp - d; } } return; } float use_encoder_wheel_to_measure_point() { KEEPALIVE_STATE(PAUSED_FOR_USER); while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! idle(); if (ubl.encoder_diff) { do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff)); ubl.encoder_diff = 0; } } KEEPALIVE_STATE(IN_HANDLER); return current_position[Z_AXIS]; } float measure_business_card_thickness(const float &in_height) { ubl.has_control_of_lcd_panel = true; ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement."); do_blocking_move_to_z(in_height); do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0); //, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0); const float z1 = use_encoder_wheel_to_measure_point(); do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); ubl.has_control_of_lcd_panel = false; SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height."); const float z2 = use_encoder_wheel_to_measure_point(); do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); if (g29_verbose_level > 1) { SERIAL_PROTOCOLPGM("Business Card is: "); SERIAL_PROTOCOL_F(abs(z1 - z2), 6); SERIAL_PROTOCOLLNPGM("mm thick."); } ubl.restore_ubl_active_state_and_leave(); return abs(z1 - z2); } void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) { ubl.has_control_of_lcd_panel = true; ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe do_blocking_move_to_z(z_clearance); do_blocking_move_to_xy(lx, ly); float last_x = -9999.99, last_y = -9999.99; mesh_index_pair location; do { location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL, false); // It doesn't matter if the probe can't reach the NAN location. This is a manual probe. if (location.x_index < 0 && location.y_index < 0) continue; const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])), rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index])); // TODO: Change to use `position_is_reachable` (for SCARA-compatibility) if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Attempt to probe off the bed."); ubl.has_control_of_lcd_panel = false; goto LEAVE; } const float xProbe = LOGICAL_X_POSITION(rawx), yProbe = LOGICAL_Y_POSITION(rawy), dx = xProbe - last_x, dy = yProbe - last_y; if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED) do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); else do_blocking_move_to_z(z_clearance); do_blocking_move_to_xy(xProbe, yProbe); last_x = xProbe; last_y = yProbe; KEEPALIVE_STATE(PAUSED_FOR_USER); ubl.has_control_of_lcd_panel = true; if (do_ubl_mesh_map) ubl.display_map(map_type); // show user where we're probing while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! idle(); if (ubl.encoder_diff) { do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0); ubl.encoder_diff = 0; } } const millis_t nxt = millis() + 1500L; while (ubl_lcd_clicked()) { // debounce and watch for abort idle(); if (ELAPSED(millis(), nxt)) { SERIAL_PROTOCOLLNPGM("\nMesh only partially populated."); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); lcd_quick_feedback(); while (ubl_lcd_clicked()) idle(); ubl.has_control_of_lcd_panel = false; KEEPALIVE_STATE(IN_HANDLER); ubl.restore_ubl_active_state_and_leave(); return; } } ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness; if (g29_verbose_level > 2) { SERIAL_PROTOCOLPGM("Mesh Point Measured at: "); SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6); SERIAL_EOL; } } while (location.x_index >= 0 && location.y_index >= 0); if (do_ubl_mesh_map) ubl.display_map(map_type); LEAVE: ubl.restore_ubl_active_state_and_leave(); KEEPALIVE_STATE(IN_HANDLER); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_xy(lx, ly); } bool g29_parameter_parsing() { bool err_flag = false; LCD_MESSAGEPGM("Doing G29 UBL!"); ubl_constant = 0.0; repetition_cnt = 0; lcd_quick_feedback(); x_flag = code_seen('X') && code_has_value(); x_pos = x_flag ? code_value_float() : current_position[X_AXIS]; y_flag = code_seen('Y') && code_has_value(); y_pos = y_flag ? code_value_float() : current_position[Y_AXIS]; repeat_flag = code_seen('R'); if (repeat_flag) { repetition_cnt = code_has_value() ? code_value_int() : (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y); if (repetition_cnt < 1) { SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n"); return UBL_ERR; } } g29_verbose_level = code_seen('V') ? code_value_int() : 0; if (!WITHIN(g29_verbose_level, 0, 4)) { SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n"); err_flag = true; } if (code_seen('J')) { grid_size = code_has_value() ? code_value_int() : 3; if (!WITHIN(grid_size, 2, 5)) { SERIAL_PROTOCOLLNPGM("Invalid grid probe points specified.\n"); err_flag = true; } } if (x_flag != y_flag) { SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n"); err_flag = true; } if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) { SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n"); err_flag = true; } if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) { SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n"); err_flag = true; } if (err_flag) return UBL_ERR; if (code_seen('A')) { // Activate the Unified Bed Leveling System ubl.state.active = 1; SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n"); } c_flag = code_seen('C'); if (c_flag) ubl_constant = code_value_float(); if (code_seen('D')) { // Disable the Unified Bed Leveling System ubl.state.active = 0; SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n"); } #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) if (code_seen('F') && code_has_value()) { const float fh = code_value_float(); if (!WITHIN(fh, 0.0, 100.0)) { SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n"); return UBL_ERR; } set_z_fade_height(fh); } #endif map_type = code_seen('O') && code_has_value() ? code_value_int() : 0; if (!WITHIN(map_type, 0, 1)) { SERIAL_PROTOCOLLNPGM("Invalid map type.\n"); return UBL_ERR; } if (code_seen('M')) { // Check if a map type was specified map_type = code_has_value() ? code_value_int() : 0; if (!WITHIN(map_type, 0, 1)) { SERIAL_PROTOCOLLNPGM("Invalid map type.\n"); return UBL_ERR; } } return UBL_OK; } /** * This function goes away after G29 debug is complete. But for right now, it is a handy * routine to dump binary data structures. */ /* void dump(char * const str, const float &f) { char *ptr; SERIAL_PROTOCOL(str); SERIAL_PROTOCOL_F(f, 8); SERIAL_PROTOCOLPGM(" "); ptr = (char*)&f; for (uint8_t i = 0; i < 4; i++) SERIAL_PROTOCOLPAIR(" ", hex_byte(*ptr++)); SERIAL_PROTOCOLPAIR(" isnan()=", isnan(f)); SERIAL_PROTOCOLPAIR(" isinf()=", isinf(f)); if (f == -INFINITY) SERIAL_PROTOCOLPGM(" Minus Infinity detected."); SERIAL_EOL; } */ static int ubl_state_at_invocation = 0, ubl_state_recursion_chk = 0; void unified_bed_leveling::save_ubl_active_state_and_disable() { ubl_state_recursion_chk++; if (ubl_state_recursion_chk != 1) { SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row."); LCD_MESSAGEPGM("save_UBL_active() error"); lcd_quick_feedback(); return; } ubl_state_at_invocation = ubl.state.active; ubl.state.active = 0; } void unified_bed_leveling::restore_ubl_active_state_and_leave() { if (--ubl_state_recursion_chk) { SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times."); LCD_MESSAGEPGM("restore_UBL_active() error"); lcd_quick_feedback(); return; } ubl.state.active = ubl_state_at_invocation; } /** * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is * good to have the extra information. Soon... we prune this to just a few items */ void g29_what_command() { const uint16_t k = E2END - ubl.eeprom_start; SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version " UBL_VERSION " "); if (ubl.state.active) SERIAL_PROTOCOLCHAR('A'); else SERIAL_PROTOCOLPGM("Ina"); SERIAL_PROTOCOLLNPGM("ctive.\n"); safe_delay(50); if (ubl.state.eeprom_storage_slot == -1) SERIAL_PROTOCOLPGM("No Mesh Loaded."); else { SERIAL_PROTOCOLPAIR("Mesh ", ubl.state.eeprom_storage_slot); SERIAL_PROTOCOLPGM(" Loaded."); } SERIAL_EOL; safe_delay(50); SERIAL_PROTOCOLLNPAIR("UBL object count: ", ubl_cnt); #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) SERIAL_PROTOCOLLNPAIR("planner.z_fade_height : ", planner.z_fade_height); #endif SERIAL_PROTOCOLPGM("zprobe_zoffset: "); SERIAL_PROTOCOL_F(zprobe_zoffset, 7); SERIAL_EOL; SERIAL_PROTOCOLPGM("z_offset: "); SERIAL_PROTOCOL_F(ubl.state.z_offset, 7); SERIAL_EOL; safe_delay(25); SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=0x", hex_word(ubl.eeprom_start)); SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: "); for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[i]))), 1); SERIAL_PROTOCOLPGM(" "); safe_delay(50); } SERIAL_EOL; SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: "); for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) { SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[i]))), 1); SERIAL_PROTOCOLPGM(" "); safe_delay(50); } SERIAL_EOL; #if HAS_KILL SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN); SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN)); #endif SERIAL_EOL; safe_delay(50); SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation); SERIAL_EOL; SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk); SERIAL_EOL; safe_delay(50); SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: ", hex_address((void*)ubl.eeprom_start)); SERIAL_PROTOCOLLNPAIR("end of EEPROM : ", hex_address((void*)E2END)); safe_delay(50); SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl)); SERIAL_EOL; SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(ubl.z_values)); SERIAL_EOL; safe_delay(50); SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)k)); safe_delay(50); SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(ubl.z_values)); SERIAL_PROTOCOLLNPGM(" meshes.\n"); safe_delay(50); SERIAL_PROTOCOLPAIR("sizeof(ubl.state) : ", (int)sizeof(ubl.state)); SERIAL_PROTOCOLPAIR("\nGRID_MAX_POINTS_X ", GRID_MAX_POINTS_X); SERIAL_PROTOCOLPAIR("\nGRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y); safe_delay(50); SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X); SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y); safe_delay(50); SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X); SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y); safe_delay(50); SERIAL_PROTOCOLPGM("\nMESH_X_DIST "); SERIAL_PROTOCOL_F(MESH_X_DIST, 6); SERIAL_PROTOCOLPGM("\nMESH_Y_DIST "); SERIAL_PROTOCOL_F(MESH_Y_DIST, 6); SERIAL_EOL; safe_delay(50); if (!ubl.sanity_check()) SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed."); } /** * When we are fully debugged, the EEPROM dump command will get deleted also. But * right now, it is good to have the extra information. Soon... we prune this. */ void g29_eeprom_dump() { unsigned char cccc; uint16_t kkkk; SERIAL_ECHO_START; SERIAL_ECHOLNPGM("EEPROM Dump:"); for (uint16_t i = 0; i < E2END + 1; i += 16) { if (!(i & 0x3)) idle(); print_hex_word(i); SERIAL_ECHOPGM(": "); for (uint16_t j = 0; j < 16; j++) { kkkk = i + j; eeprom_read_block(&cccc, (void *)kkkk, 1); print_hex_byte(cccc); SERIAL_ECHO(' '); } SERIAL_EOL; } SERIAL_EOL; } /** * When we are fully debugged, this may go away. But there are some valid * use cases for the users. So we can wait and see what to do with it. */ void g29_compare_current_mesh_to_stored_mesh() { float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; if (!code_has_value()) { SERIAL_PROTOCOLLNPGM("?Mesh # required.\n"); return; } storage_slot = code_value_int(); int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values); if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); return; } j = UBL_LAST_EEPROM_INDEX - (storage_slot + 1) * sizeof(tmp_z_values); eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values)); SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot); SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_address((void*)j)); // Soon, we can remove the extra clutter of printing // the address in the EEPROM where the Mesh is stored. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) ubl.z_values[x][y] -= tmp_z_values[x][y]; } mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) { float distance, closest = far_flag ? -99999.99 : 99999.99; mesh_index_pair return_val; return_val.x_index = return_val.y_index = -1; const float current_x = current_position[X_AXIS], current_y = current_position[Y_AXIS]; // Get our reference position. Either the nozzle or probe location. const float px = lx - (probe_as_reference==USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0), py = ly - (probe_as_reference==USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0); for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing || (type == REAL && !isnan(ubl.z_values[i][j])) || (type == SET_IN_BITMAP && is_bit_set(bits, i, j)) ) { // We only get here if we found a Mesh Point of the specified type const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[i])), // Check if we can probe this mesh location rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[j])); // If using the probe as the reference there are some unreachable locations. // Prune them from the list and ignore them till the next Phase (manual nozzle probing). if (probe_as_reference==USE_PROBE_AS_REFERENCE && (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) ) continue; // Unreachable. Check if it's the closest location to the nozzle. // Add in a weighting factor that considers the current location of the nozzle. const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location my = LOGICAL_Y_POSITION(rawy); distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1; if (far_flag) { // If doing the far_flag action, we want to be as far as possible for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) { // from the starting point and from any other probed points. We for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) { // want the next point spread out and filling in any blank spaces if (!isnan(ubl.z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed distance += sq(i - k) * (MESH_X_DIST) * .05 // point we can find. + sq(j - l) * (MESH_Y_DIST) * .05; } } } } if (far_flag == (distance > closest) && distance != closest) { // if far_flag, look for farthest point closest = distance; // We found a closer/farther location with return_val.x_index = i; // the specified type of mesh value. return_val.y_index = j; return_val.distance = closest; } } } // for j } // for i return return_val; } void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) { if (!code_seen('R')) // fine_tune_mesh() is special. If no repetion count flag is specified repetition_cnt = 1; // we know to do exactly one mesh location. Otherwise we use what the parser decided. mesh_index_pair location; uint16_t not_done[16]; int32_t round_off; ubl.save_ubl_active_state_and_disable(); memset(not_done, 0xFF, sizeof(not_done)); LCD_MESSAGEPGM("Fine Tuning Mesh"); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_xy(lx, ly); do { location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false); // It doesn't matter if the probe can not reach this // location. This is a manual edit of the Mesh Point. if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points. bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a // different location the next time through the loop const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])), rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index])); // TODO: Change to use `position_is_reachable` (for SCARA-compatibility) if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { // In theory, we don't need this check. SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now ubl.has_control_of_lcd_panel = false; goto FINE_TUNE_EXIT; } do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy)); float new_z = ubl.z_values[location.x_index][location.y_index]; round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the new_z = float(round_off) / 1000.0; KEEPALIVE_STATE(PAUSED_FOR_USER); ubl.has_control_of_lcd_panel = true; if (do_ubl_mesh_map) ubl.display_map(map_type); // show the user which point is being adjusted lcd_implementation_clear(); lcd_mesh_edit_setup(new_z); do { new_z = lcd_mesh_edit(); idle(); } while (!ubl_lcd_clicked()); lcd_return_to_status(); ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) // or here. const millis_t nxt = millis() + 1500UL; while (ubl_lcd_clicked()) { // debounce and watch for abort idle(); if (ELAPSED(millis(), nxt)) { lcd_return_to_status(); //SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped."); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); LCD_MESSAGEPGM("Mesh Editing Stopped"); while (ubl_lcd_clicked()) idle(); goto FINE_TUNE_EXIT; } } safe_delay(20); // We don't want any switch noise. ubl.z_values[location.x_index][location.y_index] = new_z; lcd_implementation_clear(); } while (location.x_index >= 0 && location.y_index >= 0 && (--repetition_cnt>0)); FINE_TUNE_EXIT: ubl.has_control_of_lcd_panel = false; KEEPALIVE_STATE(IN_HANDLER); if (do_ubl_mesh_map) ubl.display_map(map_type); ubl.restore_ubl_active_state_and_leave(); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_xy(lx, ly); LCD_MESSAGEPGM("Done Editing Mesh"); SERIAL_ECHOLNPGM("Done Editing Mesh"); } // // The routine provides the 'Smart Fill' capability. It scans from the // outward edges of the mesh towards the center. If it finds an invalid // location, it uses the next two points (assumming they are valid) to // calculate a 'reasonable' value for the unprobed mesh point. // void smart_fill_mesh() { float f, diff; for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Bottom of the mesh looking up for (uint8_t y = 0; y < GRID_MAX_POINTS_Y-2; y++) { if (isnan(ubl.z_values[x][y])) { if (isnan(ubl.z_values[x][y+1])) // we only deal with the first NAN next to a block of continue; // good numbers. we want 2 good numbers to extrapolate off of. if (isnan(ubl.z_values[x][y+2])) continue; if (ubl.z_values[x][y+1] < ubl.z_values[x][y+2]) // The bed is angled down near this edge. So to be safe, we ubl.z_values[x][y] = ubl.z_values[x][y+1]; // use the closest value, which is probably a little too high else { diff = ubl.z_values[x][y+1] - ubl.z_values[x][y+2]; // The bed is angled up near this edge. So we will use the closest ubl.z_values[x][y] = ubl.z_values[x][y+1] + diff; // height and add in the difference between that and the next point } break; } } } for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Top of the mesh looking down for (uint8_t y=GRID_MAX_POINTS_Y-1; y>=1; y--) { if (isnan(ubl.z_values[x][y])) { if (isnan(ubl.z_values[x][y-1])) // we only deal with the first NAN next to a block of continue; // good numbers. we want 2 good numbers to extrapolate off of. if (isnan(ubl.z_values[x][y-2])) continue; if (ubl.z_values[x][y-1] < ubl.z_values[x][y-2]) // The bed is angled down near this edge. So to be safe, we ubl.z_values[x][y] = ubl.z_values[x][y-1]; // use the closest value, which is probably a little too high else { diff = ubl.z_values[x][y-1] - ubl.z_values[x][y-2]; // The bed is angled up near this edge. So we will use the closest ubl.z_values[x][y] = ubl.z_values[x][y-1] + diff; // height and add in the difference between that and the next point } break; } } } for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { for (uint8_t x = 0; x < GRID_MAX_POINTS_X-2; x++) { // Left side of the mesh looking right if (isnan(ubl.z_values[x][y])) { if (isnan(ubl.z_values[x+1][y])) // we only deal with the first NAN next to a block of continue; // good numbers. we want 2 good numbers to extrapolate off of. if (isnan(ubl.z_values[x+2][y])) continue; if (ubl.z_values[x+1][y] < ubl.z_values[x+2][y]) // The bed is angled down near this edge. So to be safe, we ubl.z_values[x][y] = ubl.z_values[x][y+1]; // use the closest value, which is probably a little too high else { diff = ubl.z_values[x+1][y] - ubl.z_values[x+2][y]; // The bed is angled up near this edge. So we will use the closest ubl.z_values[x][y] = ubl.z_values[x+1][y] + diff; // height and add in the difference between that and the next point } break; } } } for (uint8_t y=0; y < GRID_MAX_POINTS_Y; y++) { for (uint8_t x=GRID_MAX_POINTS_X-1; x>=1; x--) { // Right side of the mesh looking left if (isnan(ubl.z_values[x][y])) { if (isnan(ubl.z_values[x-1][y])) // we only deal with the first NAN next to a block of continue; // good numbers. we want 2 good numbers to extrapolate off of. if (isnan(ubl.z_values[x-2][y])) continue; if (ubl.z_values[x-1][y] < ubl.z_values[x-2][y]) // The bed is angled down near this edge. So to be safe, we ubl.z_values[x][y] = ubl.z_values[x-1][y]; // use the closest value, which is probably a little too high else { diff = ubl.z_values[x-1][y] - ubl.z_values[x-2][y]; // The bed is angled up near this edge. So we will use the closest ubl.z_values[x][y] = ubl.z_values[x-1][y] + diff; // height and add in the difference between that and the next point } break; } } } } void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) { int8_t i, j ,k, xCount, yCount, xi, yi; // counter variables int8_t ix, iy, zig_zag=0, status; float dx, dy, x, y, measured_z, inv_z; struct linear_fit_data lsf_results; matrix_3x3 rotation; vector_3 normal; int16_t x_min = max((MIN_PROBE_X),(UBL_MESH_MIN_X)), x_max = min((MAX_PROBE_X),(UBL_MESH_MAX_X)), y_min = max((MIN_PROBE_Y),(UBL_MESH_MIN_Y)), y_max = min((MAX_PROBE_Y),(UBL_MESH_MAX_Y)); dx = ((float)(x_max-x_min)) / (grid_size-1.0); dy = ((float)(y_max-y_min)) / (grid_size-1.0); incremental_LSF_reset(&lsf_results); for(ix=0; ix>>---> "); SERIAL_PROTOCOL_F( measured_z, 7); SERIAL_ECHOPGM("\n"); } #endif incremental_LSF(&lsf_results, x, y, measured_z); } zig_zag = !zig_zag; } status = finish_incremental_LSF(&lsf_results); if (g29_verbose_level>3) { SERIAL_ECHOPGM("LSF Results A="); SERIAL_PROTOCOL_F( lsf_results.A, 7); SERIAL_ECHOPGM(" B="); SERIAL_PROTOCOL_F( lsf_results.B, 7); SERIAL_ECHOPGM(" D="); SERIAL_PROTOCOL_F( lsf_results.D, 7); SERIAL_CHAR('\n'); } normal = vector_3( lsf_results.A, lsf_results.B, 1.0000); normal = normal.get_normal(); if (g29_verbose_level>2) { SERIAL_ECHOPGM("bed plane normal = ["); SERIAL_PROTOCOL_F( normal.x, 7); SERIAL_ECHOPGM(","); SERIAL_PROTOCOL_F( normal.y, 7); SERIAL_ECHOPGM(","); SERIAL_PROTOCOL_F( normal.z, 7); SERIAL_ECHOPGM("]\n"); } rotation = matrix_3x3::create_look_at( vector_3( lsf_results.A, lsf_results.B, 1)); for (i = 0; i < GRID_MAX_POINTS_X; i++) { for (j = 0; j < GRID_MAX_POINTS_Y; j++) { float x_tmp, y_tmp, z_tmp; x_tmp = pgm_read_float(&(ubl.mesh_index_to_xpos[i])); y_tmp = pgm_read_float(&(ubl.mesh_index_to_ypos[j])); z_tmp = ubl.z_values[i][j]; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPGM("before rotation = ["); SERIAL_PROTOCOL_F( x_tmp, 7); SERIAL_ECHOPGM(","); SERIAL_PROTOCOL_F( y_tmp, 7); SERIAL_ECHOPGM(","); SERIAL_PROTOCOL_F( z_tmp, 7); SERIAL_ECHOPGM("] ---> "); safe_delay(20); } #endif apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPGM("after rotation = ["); SERIAL_PROTOCOL_F( x_tmp, 7); SERIAL_ECHOPGM(","); SERIAL_PROTOCOL_F( y_tmp, 7); SERIAL_ECHOPGM(","); SERIAL_PROTOCOL_F( z_tmp, 7); SERIAL_ECHOPGM("]\n"); safe_delay(55); } #endif ubl.z_values[i][j] += z_tmp - lsf_results.D; } } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { rotation.debug("rotation matrix:"); SERIAL_ECHOPGM("LSF Results A="); SERIAL_PROTOCOL_F( lsf_results.A, 7); SERIAL_ECHOPGM(" B="); SERIAL_PROTOCOL_F( lsf_results.B, 7); SERIAL_ECHOPGM(" D="); SERIAL_PROTOCOL_F( lsf_results.D, 7); SERIAL_CHAR('\n'); safe_delay(55); SERIAL_ECHOPGM("bed plane normal = ["); SERIAL_PROTOCOL_F( normal.x, 7); SERIAL_ECHOPGM(","); SERIAL_PROTOCOL_F( normal.y, 7); SERIAL_ECHOPGM(","); SERIAL_PROTOCOL_F( normal.z, 7); SERIAL_ECHOPGM("]\n"); SERIAL_CHAR('\n'); } #endif return; } #endif // AUTO_BED_LEVELING_UBL