/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * temperature.h - temperature controller */ #ifndef TEMPERATURE_H #define TEMPERATURE_H #include "Marlin.h" #include "planner.h" #if ENABLED(PID_ADD_EXTRUSION_RATE) #include "stepper.h" #endif #ifndef SOFT_PWM_SCALE #define SOFT_PWM_SCALE 0 #endif class Temperature { public: int current_temperature_raw[EXTRUDERS] = { 0 }; float current_temperature[EXTRUDERS] = { 0.0 }; int target_temperature[EXTRUDERS] = { 0 }; int current_temperature_bed_raw = 0; float current_temperature_bed = 0.0; int target_temperature_bed = 0; #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) float redundant_temperature = 0.0; #endif unsigned char soft_pwm_bed; #if ENABLED(FAN_SOFT_PWM) unsigned char fanSpeedSoftPwm[FAN_COUNT]; #endif #if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED) #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0)) #endif #if ENABLED(PIDTEMP) #if ENABLED(PID_PARAMS_PER_EXTRUDER) static float Kp[EXTRUDERS], Ki[EXTRUDERS], Kd[EXTRUDERS]; #if ENABLED(PID_ADD_EXTRUSION_RATE) float Kc[EXTRUDERS]; #endif #define PID_PARAM(param, e) Temperature::param[e] #else static float Kp, Ki, Kd; #if ENABLED(PID_ADD_EXTRUSION_RATE) static float Kc; #endif #define PID_PARAM(param, e) Temperature::param #endif // PID_PARAMS_PER_EXTRUDER // Apply the scale factors to the PID values #define scalePID_i(i) ( (i) * PID_dT ) #define unscalePID_i(i) ( (i) / PID_dT ) #define scalePID_d(d) ( (d) / PID_dT ) #define unscalePID_d(d) ( (d) * PID_dT ) #endif #if ENABLED(PIDTEMPBED) float bedKp = DEFAULT_bedKp, bedKi = ((DEFAULT_bedKi) * PID_dT), bedKd = ((DEFAULT_bedKd) / PID_dT); #endif #if ENABLED(BABYSTEPPING) volatile int babystepsTodo[3] = { 0 }; #endif #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0 int watch_target_temp[EXTRUDERS] = { 0 }; millis_t watch_heater_next_ms[EXTRUDERS] = { 0 }; #endif #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_BED_TEMP_PERIOD > 0 int watch_target_bed_temp = 0; millis_t watch_bed_next_ms = 0; #endif #if ENABLED(PREVENT_DANGEROUS_EXTRUDE) float extrude_min_temp = EXTRUDE_MINTEMP; FORCE_INLINE bool tooColdToExtrude(uint8_t e) { return degHotend(e) < extrude_min_temp; } #else FORCE_INLINE bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; } #endif private: #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) int redundant_temperature_raw = 0; float redundant_temperature = 0.0; #endif volatile bool temp_meas_ready = false; #if ENABLED(PIDTEMP) float temp_iState[EXTRUDERS] = { 0 }; float temp_dState[EXTRUDERS] = { 0 }; float pTerm[EXTRUDERS]; float iTerm[EXTRUDERS]; float dTerm[EXTRUDERS]; #if ENABLED(PID_ADD_EXTRUSION_RATE) float cTerm[EXTRUDERS]; long last_position[EXTRUDERS]; long lpq[LPQ_MAX_LEN]; int lpq_ptr = 0; #endif float pid_error[EXTRUDERS]; float temp_iState_min[EXTRUDERS]; float temp_iState_max[EXTRUDERS]; bool pid_reset[EXTRUDERS]; #endif #if ENABLED(PIDTEMPBED) float temp_iState_bed = { 0 }; float temp_dState_bed = { 0 }; float pTerm_bed; float iTerm_bed; float dTerm_bed; float pid_error_bed; float temp_iState_min_bed; float temp_iState_max_bed; #else millis_t next_bed_check_ms; #endif unsigned long raw_temp_value[4] = { 0 }; unsigned long raw_temp_bed_value = 0; // Init min and max temp with extreme values to prevent false errors during startup int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP); int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP); int minttemp[EXTRUDERS] = { 0 }; int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(16383); #ifdef BED_MINTEMP int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; #endif #ifdef BED_MAXTEMP int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP; #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) int meas_shift_index; // Index of a delayed sample in buffer #endif #if HAS_AUTO_FAN millis_t next_auto_fan_check_ms; #endif unsigned char soft_pwm[EXTRUDERS]; #if ENABLED(FAN_SOFT_PWM) unsigned char soft_pwm_fan[FAN_COUNT]; #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only #endif public: /** * Static (class) methods */ static float analog2temp(int raw, uint8_t e); static float analog2tempBed(int raw); /** * Instance Methods */ Temperature(); void init(); /** * Called from the Temperature ISR */ void isr(); /** * Call periodically to manage heaters */ void manage_heater(); #if ENABLED(FILAMENT_WIDTH_SENSOR) float analog2widthFil(); // Convert raw Filament Width to millimeters int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio #endif //high level conversion routines, for use outside of temperature.cpp //inline so that there is no performance decrease. //deg=degreeCelsius FORCE_INLINE float degHotend(uint8_t extruder) { return current_temperature[extruder]; } FORCE_INLINE float degBed() { return current_temperature_bed; } #if ENABLED(SHOW_TEMP_ADC_VALUES) FORCE_INLINE float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; } FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; } #endif FORCE_INLINE float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; } FORCE_INLINE float degTargetBed() { return target_temperature_bed; } #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0 void start_watching_heater(int e = 0); #endif #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0 void start_watching_bed(); #endif FORCE_INLINE void setTargetHotend(const float& celsius, uint8_t extruder) { target_temperature[extruder] = celsius; #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0 start_watching_heater(extruder); #endif } FORCE_INLINE void setTargetBed(const float& celsius) { target_temperature_bed = celsius; #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0 start_watching_bed(); #endif } FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; } FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; } FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; } FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; } /** * The software PWM power for a heater */ int getHeaterPower(int heater); /** * Switch off all heaters, set all target temperatures to 0 */ void disable_all_heaters(); /** * Perform auto-tuning for hotend or bed in response to M303 */ #if HAS_PID_HEATING void PID_autotune(float temp, int extruder, int ncycles, bool set_result=false); #endif /** * Update the temp manager when PID values change */ void updatePID(); FORCE_INLINE void autotempShutdown() { #if ENABLED(AUTOTEMP) if (planner.autotemp_enabled) { planner.autotemp_enabled = false; if (degTargetHotend(active_extruder) > planner.autotemp_min) setTargetHotend(0, active_extruder); } #endif } #if ENABLED(BABYSTEPPING) FORCE_INLINE void babystep_axis(AxisEnum axis, int distance) { #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ) #if ENABLED(BABYSTEP_XY) switch (axis) { case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZ babystepsTodo[CORE_AXIS_1] += distance * 2; babystepsTodo[CORE_AXIS_2] += distance * 2; break; case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZ babystepsTodo[CORE_AXIS_1] += distance * 2; babystepsTodo[CORE_AXIS_2] -= distance * 2; break; case CORE_AXIS_3: // Z on CoreXY, Y on CoreXZ, X on CoreYZ babystepsTodo[CORE_AXIS_3] += distance; break; } #elif ENABLED(COREXZ) || ENABLED(COREYZ) // Only Z stepping needs to be handled here babystepsTodo[CORE_AXIS_1] += distance * 2; babystepsTodo[CORE_AXIS_2] -= distance * 2; #else babystepsTodo[Z_AXIS] += distance; #endif #else babystepsTodo[axis] += distance; #endif } #endif // BABYSTEPPING private: void set_current_temp_raw(); void updateTemperaturesFromRawValues(); #if ENABLED(HEATER_0_USES_MAX6675) int read_max6675(); #endif void checkExtruderAutoFans(); float get_pid_output(int e); #if ENABLED(PIDTEMPBED) float get_pid_output_bed(); #endif void _temp_error(int e, const char* serial_msg, const char* lcd_msg); void min_temp_error(uint8_t e); void max_temp_error(uint8_t e); #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate; void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc); #if ENABLED(THERMAL_PROTECTION_HOTENDS) TRState thermal_runaway_state_machine[EXTRUDERS] = { TRInactive }; millis_t thermal_runaway_timer[EXTRUDERS] = { 0 }; #endif #if HAS_THERMALLY_PROTECTED_BED TRState thermal_runaway_bed_state_machine = TRInactive; millis_t thermal_runaway_bed_timer; #endif #endif // THERMAL_PROTECTION }; extern Temperature thermalManager; #endif // TEMPERATURE_H