#ifndef __CONFIGURATION_H #define __CONFIGURATION_H // This determines the communication speed of the printer //#define BAUDRATE 250000 #define BAUDRATE 115200 //#define BAUDRATE 230400 // Frequency limit // See nophead's blog for more info // Not working OK //#define XY_FREQUENCY_LIMIT 15 // Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end // of the buffer and all stops. This should not be much greater than zero and should only be changed // if unwanted behavior is observed on a user's machine when running at very slow speeds. #define MINIMUM_PLANNER_SPEED 2.0 // (mm/sec) // If defined the movements slow down when the look ahead buffer is only half full #define SLOWDOWN // BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration //// The following define selects which electronics board you have. Please choose the one that matches your setup // MEGA/RAMPS up to 1.2 = 3, // RAMPS 1.3 = 33 // Gen6 = 5, // Sanguinololu 1.2 and above = 62 // Ultimaker = 7, // Teensylu = 8 #define MOTHERBOARD 7 //=========================================================================== //=============================Thermal Settings ============================ //=========================================================================== //// Thermistor settings: // 1 is 100k thermistor // 2 is 200k thermistor // 3 is mendel-parts thermistor // 4 is 10k thermistor // 5 is ParCan supplied 104GT-2 100K // 6 is EPCOS 100k // 7 is 100k Honeywell thermistor 135-104LAG-J01 #define THERMISTORHEATER_0 3 #define THERMISTORHEATER_1 3 #define THERMISTORBED 3 //#define HEATER_0_USES_THERMISTOR //#define HEATER_1_USES_THERMISTOR #define HEATER_0_USES_AD595 //#define HEATER_1_USES_AD595 // Select one of these only to define how the bed temp is read. //#define BED_USES_THERMISTOR //#define BED_USES_AD595 #define BED_CHECK_INTERVAL 5000 //ms //// Experimental watchdog and minimal temp // The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature // If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109 /// CURRENTLY NOT IMPLEMENTED AND UNUSEABLE //#define WATCHPERIOD 5000 //5 seconds // Actual temperature must be close to target for this long before M109 returns success //#define TEMP_RESIDENCY_TIME 20 // (seconds) //#define TEMP_HYSTERESIS 5 // (C°) range of +/- temperatures considered "close" to the target one //// The minimal temperature defines the temperature below which the heater will not be enabled #define HEATER_0_MINTEMP 5 //#define HEATER_1_MINTEMP 5 //#define BED_MINTEMP 5 // When temperature exceeds max temp, your heater will be switched off. // This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure! // You should use MINTEMP for thermistor short/failure protection. #define HEATER_0_MAXTEMP 275 //#define_HEATER_1_MAXTEMP 275 //#define BED_MAXTEMP 150 // PID settings: // Uncomment the following line to enable PID support. #define PIDTEMP #ifdef PIDTEMP //#define PID_DEBUG // Sends debug data to the serial port. //#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in % #define PID_MAX 255 // limits current to nozzle; 255=full current #define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term #define K1 0.95 //smoothing factor withing the PID #define PID_dT 0.1 //sampling period of the PID //To develop some PID settings for your machine, you can initiall follow // the Ziegler-Nichols method. // set Ki and Kd to zero. // heat with a defined Kp and see if the temperature stabilizes // ideally you do this graphically with repg. // the PID_CRITIAL_GAIN should be the Kp at which temperature oscillatins are not dampned out/decreas in amplitutde // PID_SWING_AT_CRITIAL is the time for a full period of the oscillations at the critical Gain // usually further manual tunine is necessary. #define PID_CRITIAL_GAIN 50 #define PID_SWING_AT_CRITIAL 47 //seconds //#define PID_PI //no differentail term #define PID_PID //normal PID #ifdef PID_PID //PID according to Ziegler-Nichols method // #define DEFAULT_Kp (0.6*PID_CRITIAL_GAIN) // #define DEFAULT_Ki (2*Kp/PID_SWING_AT_CRITIAL*PID_dT) // #define DEFAULT_Kd (PID_SWING_AT_CRITIAL/8./PID_dT) #define DEFAULT_Kp 22.2 #define DEFAULT_Ki (1.25*PID_dT) #define DEFAULT_Kd (99/PID_dT) #endif #ifdef PID_PI //PI according to Ziegler-Nichols method #define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2) #define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT) #define DEFAULT_Kd (0) #endif // this adds an experimental additional term to the heatingpower, proportional to the extrusion speed. // if Kc is choosen well, the additional required power due to increased melting should be compensated. #define PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE #define DEFAULT_Kc (3) //heatingpower=Kc*(e_speed) #endif #endif // PIDTEMP //=========================================================================== //=============================Mechanical Settings=========================== //=========================================================================== // Endstop Settings #define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors // The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins. const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops. // For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false // For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1 #define X_ENABLE_ON 0 #define Y_ENABLE_ON 0 #define Z_ENABLE_ON 0 #define E_ENABLE_ON 0 // Disables axis when it's not being used. #define DISABLE_X false #define DISABLE_Y false #define DISABLE_Z false #define DISABLE_E false // Inverting axis direction //#define INVERT_X_DIR false // for Mendel set to false, for Orca set to true //#define INVERT_Y_DIR true // for Mendel set to true, for Orca set to false //#define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true //#define INVERT_E_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false #define INVERT_X_DIR true // for Mendel set to false, for Orca set to true #define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false #define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true #define INVERT_E_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false //// ENDSTOP SETTINGS: // Sets direction of endstops when homing; 1=MAX, -1=MIN #define X_HOME_DIR -1 #define Y_HOME_DIR -1 #define Z_HOME_DIR -1 #define min_software_endstops false //If true, axis won't move to coordinates less than zero. #define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below. #define X_MAX_LENGTH 210 #define Y_MAX_LENGTH 210 #define Z_MAX_LENGTH 210 //// MOVEMENT SETTINGS #define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E //note: on bernhards ultimaker 200 200 12 are working well. #define HOMING_FEEDRATE {50*60, 50*60, 4*60, 0} // set the homing speeds (mm/min) #define AXIS_RELATIVE_MODES {false, false, false, false} #define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step) // default settings #define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,760*1.1} // default steps per unit for ultimaker //#define DEFAULT_AXIS_STEPS_PER_UNIT {40, 40, 3333.92, 67} #define DEFAULT_MAX_FEEDRATE {500, 500, 5, 200000} // (mm/sec) #define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot. #define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves #define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts #define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate #define DEFAULT_MINTRAVELFEEDRATE 0.0 // minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff. #define DEFAULT_MINSEGMENTTIME 20000 // Obsolete delete this #define DEFAULT_XYJERK 30.0 // (mm/sec) #define DEFAULT_ZJERK 0.4 // (mm/sec) //=========================================================================== //=============================Additional Features=========================== //=========================================================================== // EEPROM // the microcontroller can store settings in the EEPROM, e.g. max velocity... // M500 - stores paramters in EEPROM // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to. //define this to enable eeprom support #define EEPROM_SETTINGS //to disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out: // please keep turned on if you can. #define EEPROM_CHITCHAT // The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature // this enables the watchdog interrupt. //#define USE_WATCHDOG #ifdef USE_WATCHDOG // you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby: #define RESET_MANUAL #define WATCHDOG_TIMEOUT 4 //seconds #endif // extruder advance constant (s2/mm3) // // advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2 // // hooke's law says: force = k * distance // bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant // so: v ^ 2 is proportional to number of steps we advance the extruder //#define ADVANCE #ifdef ADVANCE #define EXTRUDER_ADVANCE_K .3 #define D_FILAMENT 1.7 #define STEPS_MM_E 65 #define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159) #define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA) #endif // ADVANCE //LCD and SD support //#define ULTRA_LCD //general lcd support, also 16x2 //#define SDSUPPORT // Enable SD Card Support in Hardware Console #define ULTIPANEL #ifdef ULTIPANEL #define NEWPANEL //enable this if you have a click-encoder panel #define SDSUPPORT #define ULTRA_LCD #define LCD_WIDTH 20 #define LCD_HEIGHT 4 #else //no panel but just lcd #ifdef ULTRA_LCD #define LCD_WIDTH 16 #define LCD_HEIGHT 2 #endif #endif // A debugging feature to compare calculated vs performed steps, to see if steps are lost by the software. //#define DEBUG_STEPS // Arc interpretation settings: #define MM_PER_ARC_SEGMENT 1 #define N_ARC_CORRECTION 25 //automatic temperature: just for testing, this is very dangerous, keep disabled! // not working yet. //Erik: the settings currently depend dramatically on skeinforge39 or 41. //#define AUTOTEMP #define AUTOTEMP_MIN 190 #define AUTOTEMP_MAX 260 #define AUTOTEMP_FACTOR 1000. //current target temperature= min+largest buffered espeeds)*FACTOR const int dropsegments=0; //everything with less than this number of steps will be ignored as move and joined with the next movement //=========================================================================== //=============================Buffers ============================ //=========================================================================== // The number of linear motions that can be in the plan at any give time. // THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ringbuffering. #if defined SDSUPPORT #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller #else #define BLOCK_BUFFER_SIZE 16 // maximize block buffer #endif //The ASCII buffer for recieving from the serial: #define MAX_CMD_SIZE 96 #define BUFSIZE 4 #include "thermistortables.h" #endif //__CONFIGURATION_H