/** * Marlin 3D Printer Firmware * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * About Marlin * * This firmware is a mashup between Sprinter and grbl. * - https://github.com/kliment/Sprinter * - https://github.com/simen/grbl/tree */ /** * ----------------- * G-Codes in Marlin * ----------------- * * Helpful G-code references: * - http://linuxcnc.org/handbook/gcode/g-code.html * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes * * Help to document Marlin's G-codes online: * - http://reprap.org/wiki/G-code * - https://github.com/MarlinFirmware/MarlinDocumentation * * ----------------- * * "G" Codes * * G0 -> G1 * G1 - Coordinated Movement X Y Z E * G2 - CW ARC * G3 - CCW ARC * G4 - Dwell S or P * G5 - Cubic B-spline with XYZE destination and IJPQ offsets * G10 - Retract filament according to settings of M207 * G11 - Retract recover filament according to settings of M208 * G12 - Clean tool * G20 - Set input units to inches * G21 - Set input units to millimeters * G28 - Home one or more axes * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location) * G31 - Dock sled (Z_PROBE_SLED only) * G32 - Undock sled (Z_PROBE_SLED only) * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION) * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes * G90 - Use Absolute Coordinates * G91 - Use Relative Coordinates * G92 - Set current position to coordinates given * * "M" Codes * * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled) * M1 - Same as M0 * M17 - Enable/Power all stepper motors * M18 - Disable all stepper motors; same as M84 * M20 - List SD card. (Requires SDSUPPORT) * M21 - Init SD card. (Requires SDSUPPORT) * M22 - Release SD card. (Requires SDSUPPORT) * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT) * M24 - Start/resume SD print. (Requires SDSUPPORT) * M25 - Pause SD print. (Requires SDSUPPORT) * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT) * M27 - Report SD print status. (Requires SDSUPPORT) * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT) * M29 - Stop SD write. (Requires SDSUPPORT) * M30 - Delete file from SD: "M30 /path/file.gco" * M31 - Report time since last M109 or SD card start to serial. * M32 - Select file and start SD print: "M32 [S] !/path/file.gco#". (Requires SDSUPPORT) * Use P to run other files as sub-programs: "M32 P !filename#" * The '#' is necessary when calling from within sd files, as it stops buffer prereading * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT) * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA) * M42 - Change pin status via gcode: M42 P S. LED pin assumed if P is omitted. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins * M48 - Measure Z Probe repeatability: M48 P X Y V E L. (Requires Z_MIN_PROBE_REPEATABILITY_TEST) * M75 - Start the print job timer. * M76 - Pause the print job timer. * M77 - Stop the print job timer. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER) * M80 - Turn on Power Supply. (Requires POWER_SUPPLY) * M81 - Turn off Power Supply. (Requires POWER_SUPPLY) * M82 - Set E codes absolute (default). * M83 - Set E codes relative while in Absolute (G90) mode. * M84 - Disable steppers until next move, or use S to specify an idle * duration after which steppers should turn off. S0 disables the timeout. * M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default) * M92 - Set planner.axis_steps_per_mm for one or more axes. * M104 - Set extruder target temp. * M105 - Report current temperatures. * M106 - Fan on. * M107 - Fan off. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER) * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling * If AUTOTEMP is enabled, S B F. Exit autotemp by any M109 without F * M110 - Set the current line number. (Used by host printing) * M111 - Set debug flags: "M111 S". See flag bits defined in enum.h. * M112 - Emergency stop. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE) * M114 - Report current position. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT) * M117 - Display a message on the controller screen. (Requires an LCD) * M119 - Report endstops status. * M120 - Enable endstops detection. * M121 - Disable endstops detection. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE) * M126 - Solenoid Air Valve Open. (Requires BARICUDA) * M127 - Solenoid Air Valve Closed. (Requires BARICUDA) * M128 - EtoP Open. (Requires BARICUDA) * M129 - EtoP Closed. (Requires BARICUDA) * M140 - Set bed target temp. S * M145 - Set heatup values for materials on the LCD. H B F for S (0=PLA, 1=ABS) * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT) * M150 - Set Status LED Color as R U B. Values 0-255. (Requires BLINKM or RGB_LED) * M155 - Auto-report temperatures with interval of S. (Requires AUTO_REPORT_TEMPERATURES) * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER) * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS) * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER) * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! ** * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. ** * M200 - Set filament diameter, D, setting E axis units to cubic. (Use S0 to revert to linear units.) * M201 - Set max acceleration in units/s^2 for print moves: "M201 X Y Z E" * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X Y Z E" ** UNUSED IN MARLIN! ** * M203 - Set maximum feedrate: "M203 X Y Z E" in units/sec. * M204 - Set default acceleration in units/sec^2: P R T * M205 - Set advanced settings. Current units apply: S T minimum speeds B X, Y, Z, E * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA) * M207 - Set Retract Length: S, Feedrate: F, and Z lift: Z. (Requires FWRETRACT) * M208 - Set Recover (unretract) Additional (!) Length: S and Feedrate: F. (Requires FWRETRACT) * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT) Every normal extrude-only move will be classified as retract depending on the direction. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS) * M218 - Set a tool offset: "M218 T X Y". (Requires 2 or more extruders) * M220 - Set Feedrate Percentage: "M220 S" (i.e., "FR" on the LCD) * M221 - Set Flow Percentage: "M221 S" * M226 - Wait until a pin is in a given state: "M226 P S" * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN) * M250 - Set LCD contrast: "M250 C" (0-63). (Requires LCD support) * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS) * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS) * M280 - Set servo position absolute: "M280 P S". (Requires servos) * M300 - Play beep sound S P * M301 - Set PID parameters P I and D. (Requires PIDTEMP) * M302 - Allow cold extrudes, or set the minimum extrude S. (Requires PREVENT_COLD_EXTRUSION) * M303 - PID relay autotune S sets the target temperature. Default 150C. (Requires PIDTEMP) * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED) * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN) * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID) * M381 - Disable all solenoids. (Requires EXT_SOLENOID) * M400 - Finish all moves. * M401 - Lower Z probe. (Requires a probe) * M402 - Raise Z probe. (Requires a probe) * M404 - Display or set the Nominal Filament Width: "W". (Requires FILAMENT_WIDTH_SENSOR) * M405 - Enable Filament Sensor flow control. "M405 D". (Requires FILAMENT_WIDTH_SENSOR) * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR) * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR) * M410 - Quickstop. Abort all planned moves. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL) * M421 - Set a single Z coordinate in the Mesh Leveling grid. X Y Z (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL) * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA) * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS) * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS) * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! ** * M503 - Print the current settings (in memory): "M503 S". S0 specifies compact output. * M540 - Enable/disable SD card abort on endstop hit: "M540 S". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) * M600 - Pause for filament change: "M600 X Y Z E L". (Requires FILAMENT_CHANGE_FEATURE) * M665 - Set delta configurations: "M665 L R S A B C I J K" (Requires DELTA) * M666 - Set delta endstop adjustment. (Requires DELTA) * M605 - Set dual x-carriage movement mode: "M605 S [X] [R]". (Requires DUAL_X_CARRIAGE) * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.) * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130) * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots) * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN) * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT) * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT) * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130) * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130) * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD) * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING) * M350 - Set microstepping mode. (Requires digital microstepping pins.) * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.) * * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration) * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree) * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration) * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree) * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position) * * ************ Custom codes - This can change to suit future G-code regulations * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER) * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT) * M999 - Restart after being stopped by error * * "T" Codes * * T0-T3 - Select an extruder (tool) by index: "T F" * */ #include "Marlin.h" #include "ultralcd.h" #include "planner.h" #include "stepper.h" #include "endstops.h" #include "temperature.h" #include "cardreader.h" #include "configuration_store.h" #include "language.h" #include "pins_arduino.h" #include "math.h" #include "nozzle.h" #include "duration_t.h" #include "types.h" #if HAS_ABL #include "vector_3.h" #if ENABLED(AUTO_BED_LEVELING_LINEAR) #include "qr_solve.h" #endif #elif ENABLED(MESH_BED_LEVELING) #include "mesh_bed_leveling.h" #endif #if ENABLED(BEZIER_CURVE_SUPPORT) #include "planner_bezier.h" #endif #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER) #include "buzzer.h" #endif #if ENABLED(USE_WATCHDOG) #include "watchdog.h" #endif #if ENABLED(BLINKM) #include "blinkm.h" #include "Wire.h" #endif #if HAS_SERVOS #include "servo.h" #endif #if HAS_DIGIPOTSS #include #endif #if ENABLED(DAC_STEPPER_CURRENT) #include "stepper_dac.h" #endif #if ENABLED(EXPERIMENTAL_I2CBUS) #include "twibus.h" #endif #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) #include "endstop_interrupts.h" #endif #if ENABLED(M100_FREE_MEMORY_WATCHER) void gcode_M100(); void M100_dump_routine(const char * const title, const char *start, const char *end); #endif #if ENABLED(SDSUPPORT) CardReader card; #endif #if ENABLED(EXPERIMENTAL_I2CBUS) TWIBus i2c; #endif #if ENABLED(G38_PROBE_TARGET) bool G38_move = false, G38_endstop_hit = false; #endif #if ENABLED(AUTO_BED_LEVELING_UBL) #include "ubl.h" unified_bed_leveling ubl; #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \ && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \ && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \ && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \ || isnan(ubl.z_values[0][0])) #endif bool Running = true; uint8_t marlin_debug_flags = DEBUG_NONE; /** * Cartesian Current Position * Used to track the logical position as moves are queued. * Used by 'line_to_current_position' to do a move after changing it. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'. */ float current_position[XYZE] = { 0.0 }; /** * Cartesian Destination * A temporary position, usually applied to 'current_position'. * Set with 'gcode_get_destination' or 'set_destination_to_current'. * 'line_to_destination' sets 'current_position' to 'destination'. */ float destination[XYZE] = { 0.0 }; /** * axis_homed * Flags that each linear axis was homed. * XYZ on cartesian, ABC on delta, ABZ on SCARA. * * axis_known_position * Flags that the position is known in each linear axis. Set when homed. * Cleared whenever a stepper powers off, potentially losing its position. */ bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false }; /** * GCode line number handling. Hosts may opt to include line numbers when * sending commands to Marlin, and lines will be checked for sequentiality. * M110 N sets the current line number. */ static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0; /** * GCode Command Queue * A simple ring buffer of BUFSIZE command strings. * * Commands are copied into this buffer by the command injectors * (immediate, serial, sd card) and they are processed sequentially by * the main loop. The process_next_command function parses the next * command and hands off execution to individual handler functions. */ uint8_t commands_in_queue = 0; // Count of commands in the queue static uint8_t cmd_queue_index_r = 0, // Ring buffer read position cmd_queue_index_w = 0; // Ring buffer write position #if ENABLED(M100_FREE_MEMORY_WATCHER) char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption #else // This can be collapsed back to the way it was soon. static char command_queue[BUFSIZE][MAX_CMD_SIZE]; #endif /** * Current GCode Command * When a GCode handler is running, these will be set */ static char *current_command, // The command currently being executed *current_command_args, // The address where arguments begin *seen_pointer; // Set by code_seen(), used by the code_value functions /** * Next Injected Command pointer. NULL if no commands are being injected. * Used by Marlin internally to ensure that commands initiated from within * are enqueued ahead of any pending serial or sd card commands. */ static const char *injected_commands_P = NULL; #if ENABLED(INCH_MODE_SUPPORT) float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0; #endif #if ENABLED(TEMPERATURE_UNITS_SUPPORT) TempUnit input_temp_units = TEMPUNIT_C; #endif /** * Feed rates are often configured with mm/m * but the planner and stepper like mm/s units. */ float constexpr homing_feedrate_mm_s[] = { #if ENABLED(DELTA) MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z), #else MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY), #endif MMM_TO_MMS(HOMING_FEEDRATE_Z), 0 }; static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s; int feedrate_percentage = 100, saved_feedrate_percentage, flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); bool axis_relative_modes[] = AXIS_RELATIVE_MODES, volumetric_enabled = #if ENABLED(VOLUMETRIC_DEFAULT_ON) true #else false #endif ; float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA), volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0); #if HAS_WORKSPACE_OFFSET #if HAS_POSITION_SHIFT // The distance that XYZ has been offset by G92. Reset by G28. float position_shift[XYZ] = { 0 }; #endif #if HAS_HOME_OFFSET // This offset is added to the configured home position. // Set by M206, M428, or menu item. Saved to EEPROM. float home_offset[XYZ] = { 0 }; #endif #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT // The above two are combined to save on computes float workspace_offset[XYZ] = { 0 }; #endif #endif // Software Endstops are based on the configured limits. #if HAS_SOFTWARE_ENDSTOPS bool soft_endstops_enabled = true; #endif float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }, soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; #if FAN_COUNT > 0 int16_t fanSpeeds[FAN_COUNT] = { 0 }; #endif // The active extruder (tool). Set with T command. uint8_t active_extruder = 0; // Relative Mode. Enable with G91, disable with G90. static bool relative_mode = false; // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop volatile bool wait_for_heatup = true; // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop #if HAS_RESUME_CONTINUE volatile bool wait_for_user = false; #endif const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'}; // Number of characters read in the current line of serial input static int serial_count = 0; // Inactivity shutdown millis_t previous_cmd_ms = 0; static millis_t max_inactive_time = 0; static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL; // Print Job Timer #if ENABLED(PRINTCOUNTER) PrintCounter print_job_timer = PrintCounter(); #else Stopwatch print_job_timer = Stopwatch(); #endif // Buzzer - I2C on the LCD or a BEEPER_PIN #if ENABLED(LCD_USE_I2C_BUZZER) #define BUZZ(d,f) lcd_buzz(d, f) #elif PIN_EXISTS(BEEPER) Buzzer buzzer; #define BUZZ(d,f) buzzer.tone(d, f) #else #define BUZZ(d,f) NOOP #endif static uint8_t target_extruder; #if HAS_BED_PROBE float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER; #endif #if HAS_ABL float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED); #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s #elif defined(XY_PROBE_SPEED) #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED) #else #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE() #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) #if ENABLED(DELTA) #define ADJUST_DELTA(V) \ if (planner.abl_enabled) { \ const float zadj = bilinear_z_offset(V); \ delta[A_AXIS] += zadj; \ delta[B_AXIS] += zadj; \ delta[C_AXIS] += zadj; \ } #else #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); } #endif #elif IS_KINEMATIC #define ADJUST_DELTA(V) NOOP #endif #if ENABLED(Z_DUAL_ENDSTOPS) float z_endstop_adj = #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT Z_DUAL_ENDSTOPS_ADJUSTMENT #else 0 #endif ; #endif // Extruder offsets #if HOTENDS > 1 float hotend_offset[XYZ][HOTENDS]; #endif #if HAS_Z_SERVO_ENDSTOP const int z_servo_angle[2] = Z_SERVO_ANGLES; #endif #if ENABLED(BARICUDA) int baricuda_valve_pressure = 0; int baricuda_e_to_p_pressure = 0; #endif #if ENABLED(FWRETRACT) bool autoretract_enabled = false; bool retracted[EXTRUDERS] = { false }; bool retracted_swap[EXTRUDERS] = { false }; float retract_length = RETRACT_LENGTH; float retract_length_swap = RETRACT_LENGTH_SWAP; float retract_feedrate_mm_s = RETRACT_FEEDRATE; float retract_zlift = RETRACT_ZLIFT; float retract_recover_length = RETRACT_RECOVER_LENGTH; float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE; #endif // FWRETRACT #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH bool powersupply = #if ENABLED(PS_DEFAULT_OFF) false #else true #endif ; #endif #if HAS_CASE_LIGHT bool case_light_on = #if ENABLED(CASE_LIGHT_DEFAULT_ON) true #else false #endif ; #endif #if ENABLED(DELTA) float delta[ABC], endstop_adj[ABC] = { 0 }; // These values are loaded or reset at boot time when setup() calls // settings.load(), which calls recalc_delta_settings(). float delta_radius, delta_tower_angle_trim[2], delta_tower[ABC][2], delta_diagonal_rod, delta_calibration_radius, delta_diagonal_rod_2_tower[ABC], delta_segments_per_second, delta_clip_start_height = Z_MAX_POS; float delta_safe_distance_from_top(); #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) int bilinear_grid_spacing[2], bilinear_start[2]; float bilinear_grid_factor[2], z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; #endif #if IS_SCARA // Float constants for SCARA calculations const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2, L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2, L2_2 = sq(float(L2)); float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND, delta[ABC]; #endif float cartes[XYZ] = { 0 }; #if ENABLED(FILAMENT_WIDTH_SENSOR) bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100 int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer int meas_delay_cm = MEASUREMENT_DELAY_CM; // Distance delay setting #endif #if ENABLED(FILAMENT_RUNOUT_SENSOR) static bool filament_ran_out = false; #endif #if ENABLED(FILAMENT_CHANGE_FEATURE) FilamentChangeMenuResponse filament_change_menu_response; #endif #if ENABLED(MIXING_EXTRUDER) float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0. #if MIXING_VIRTUAL_TOOLS > 1 float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS]; #endif #endif static bool send_ok[BUFSIZE]; #if HAS_SERVOS Servo servo[NUM_SERVOS]; #define MOVE_SERVO(I, P) servo[I].move(P) #if HAS_Z_SERVO_ENDSTOP #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0]) #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1]) #endif #endif #ifdef CHDK millis_t chdkHigh = 0; bool chdkActive = false; #endif #ifdef AUTOMATIC_CURRENT_CONTROL bool auto_current_control = 0; #endif #if ENABLED(PID_EXTRUSION_SCALING) int lpq_len = 20; #endif #if ENABLED(HOST_KEEPALIVE_FEATURE) MarlinBusyState busy_state = NOT_BUSY; static millis_t next_busy_signal_ms = 0; uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL; #else #define host_keepalive() NOOP #endif static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); } static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); } #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \ static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \ static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \ typedef void __void_##CONFIG##__ XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS); XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS); XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS); XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH); XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM); XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); /** * *************************************************************************** * ******************************** FUNCTIONS ******************************** * *************************************************************************** */ void stop(); void get_available_commands(); void process_next_command(); void prepare_move_to_destination(); void get_cartesian_from_steppers(); void set_current_from_steppers_for_axis(const AxisEnum axis); #if ENABLED(ARC_SUPPORT) void plan_arc(float target[XYZE], float* offset, uint8_t clockwise); #endif #if ENABLED(BEZIER_CURVE_SUPPORT) void plan_cubic_move(const float offset[4]); #endif void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false); static void report_current_position(); #if ENABLED(DEBUG_LEVELING_FEATURE) void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) { serialprintPGM(prefix); SERIAL_CHAR('('); SERIAL_ECHO(x); SERIAL_ECHOPAIR(", ", y); SERIAL_ECHOPAIR(", ", z); SERIAL_CHAR(')'); suffix ? serialprintPGM(suffix) : SERIAL_EOL; } void print_xyz(const char* prefix, const char* suffix, const float xyz[]) { print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]); } #if HAS_ABL void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) { print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z); } #endif #define DEBUG_POS(SUFFIX,VAR) do { \ print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0) #endif /** * sync_plan_position * * Set the planner/stepper positions directly from current_position with * no kinematic translation. Used for homing axes and cartesian/core syncing. */ inline void sync_plan_position() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position); #endif planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); } #if IS_KINEMATIC inline void sync_plan_position_kinematic() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position); #endif planner.set_position_mm_kinematic(current_position); } #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic() #else #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position() #endif #if ENABLED(SDSUPPORT) #include "SdFatUtil.h" int freeMemory() { return SdFatUtil::FreeRam(); } #else extern "C" { extern char __bss_end; extern char __heap_start; extern void* __brkval; int freeMemory() { int free_memory; if ((int)__brkval == 0) free_memory = ((int)&free_memory) - ((int)&__bss_end); else free_memory = ((int)&free_memory) - ((int)__brkval); return free_memory; } } #endif //!SDSUPPORT #if ENABLED(DIGIPOT_I2C) extern void digipot_i2c_set_current(int channel, float current); extern void digipot_i2c_init(); #endif /** * Inject the next "immediate" command, when possible, onto the front of the queue. * Return true if any immediate commands remain to inject. */ static bool drain_injected_commands_P() { if (injected_commands_P != NULL) { size_t i = 0; char c, cmd[30]; strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1); cmd[sizeof(cmd) - 1] = '\0'; while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command cmd[i] = '\0'; if (enqueue_and_echo_command(cmd)) // success? injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done } return (injected_commands_P != NULL); // return whether any more remain } /** * Record one or many commands to run from program memory. * Aborts the current queue, if any. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards */ void enqueue_and_echo_commands_P(const char* pgcode) { injected_commands_P = pgcode; drain_injected_commands_P(); // first command executed asap (when possible) } /** * Clear the Marlin command queue */ void clear_command_queue() { cmd_queue_index_r = cmd_queue_index_w; commands_in_queue = 0; } /** * Once a new command is in the ring buffer, call this to commit it */ inline void _commit_command(bool say_ok) { send_ok[cmd_queue_index_w] = say_ok; cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE; commands_in_queue++; } /** * Copy a command from RAM into the main command buffer. * Return true if the command was successfully added. * Return false for a full buffer, or if the 'command' is a comment. */ inline bool _enqueuecommand(const char* cmd, bool say_ok=false) { if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false; strcpy(command_queue[cmd_queue_index_w], cmd); _commit_command(say_ok); return true; } /** * Enqueue with Serial Echo */ bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) { if (_enqueuecommand(cmd, say_ok)) { SERIAL_ECHO_START; SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd); SERIAL_CHAR('"'); SERIAL_EOL; return true; } return false; } void setup_killpin() { #if HAS_KILL SET_INPUT_PULLUP(KILL_PIN); #endif } #if ENABLED(FILAMENT_RUNOUT_SENSOR) void setup_filrunoutpin() { #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT) SET_INPUT_PULLUP(FIL_RUNOUT_PIN); #else SET_INPUT(FIL_RUNOUT_PIN); #endif } #endif void setup_homepin(void) { #if HAS_HOME SET_INPUT_PULLUP(HOME_PIN); #endif } void setup_powerhold() { #if HAS_SUICIDE OUT_WRITE(SUICIDE_PIN, HIGH); #endif #if HAS_POWER_SWITCH #if ENABLED(PS_DEFAULT_OFF) OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP); #else OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); #endif #endif } void suicide() { #if HAS_SUICIDE OUT_WRITE(SUICIDE_PIN, LOW); #endif } void servo_init() { #if NUM_SERVOS >= 1 && HAS_SERVO_0 servo[0].attach(SERVO0_PIN); servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position. #endif #if NUM_SERVOS >= 2 && HAS_SERVO_1 servo[1].attach(SERVO1_PIN); servo[1].detach(); #endif #if NUM_SERVOS >= 3 && HAS_SERVO_2 servo[2].attach(SERVO2_PIN); servo[2].detach(); #endif #if NUM_SERVOS >= 4 && HAS_SERVO_3 servo[3].attach(SERVO3_PIN); servo[3].detach(); #endif #if HAS_Z_SERVO_ENDSTOP /** * Set position of Z Servo Endstop * * The servo might be deployed and positioned too low to stow * when starting up the machine or rebooting the board. * There's no way to know where the nozzle is positioned until * homing has been done - no homing with z-probe without init! * */ STOW_Z_SERVO(); #endif } /** * Stepper Reset (RigidBoard, et.al.) */ #if HAS_STEPPER_RESET void disableStepperDrivers() { OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips } void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups #endif #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0 void i2c_on_receive(int bytes) { // just echo all bytes received to serial i2c.receive(bytes); } void i2c_on_request() { // just send dummy data for now i2c.reply("Hello World!\n"); } #endif #if HAS_COLOR_LEDS void set_led_color( const uint8_t r, const uint8_t g, const uint8_t b #if ENABLED(RGBW_LED) , const uint8_t w=0 #endif ) { #if ENABLED(BLINKM) // This variant uses i2c to send the RGB components to the device. SendColors(r, g, b); #else // This variant uses 3 separate pins for the RGB components. // If the pins can do PWM then their intensity will be set. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW); WRITE(RGB_LED_G_PIN, g ? HIGH : LOW); WRITE(RGB_LED_B_PIN, b ? HIGH : LOW); analogWrite(RGB_LED_R_PIN, r); analogWrite(RGB_LED_G_PIN, g); analogWrite(RGB_LED_B_PIN, b); #if ENABLED(RGBW_LED) WRITE(RGB_LED_W_PIN, w ? HIGH : LOW); analogWrite(RGB_LED_W_PIN, w); #endif #endif } #endif // HAS_COLOR_LEDS void gcode_line_error(const char* err, bool doFlush = true) { SERIAL_ERROR_START; serialprintPGM(err); SERIAL_ERRORLN(gcode_LastN); //Serial.println(gcode_N); if (doFlush) FlushSerialRequestResend(); serial_count = 0; } /** * Get all commands waiting on the serial port and queue them. * Exit when the buffer is full or when no more characters are * left on the serial port. */ inline void get_serial_commands() { static char serial_line_buffer[MAX_CMD_SIZE]; static bool serial_comment_mode = false; // If the command buffer is empty for too long, // send "wait" to indicate Marlin is still waiting. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0 static millis_t last_command_time = 0; const millis_t ms = millis(); if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) { SERIAL_ECHOLNPGM(MSG_WAIT); last_command_time = ms; } #endif /** * Loop while serial characters are incoming and the queue is not full */ while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) { char serial_char = MYSERIAL.read(); /** * If the character ends the line */ if (serial_char == '\n' || serial_char == '\r') { serial_comment_mode = false; // end of line == end of comment if (!serial_count) continue; // skip empty lines serial_line_buffer[serial_count] = 0; // terminate string serial_count = 0; //reset buffer char* command = serial_line_buffer; while (*command == ' ') command++; // skip any leading spaces char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line char* apos = strchr(command, '*'); if (npos) { bool M110 = strstr_P(command, PSTR("M110")) != NULL; if (M110) { char* n2pos = strchr(command + 4, 'N'); if (n2pos) npos = n2pos; } gcode_N = strtol(npos + 1, NULL, 10); if (gcode_N != gcode_LastN + 1 && !M110) { gcode_line_error(PSTR(MSG_ERR_LINE_NO)); return; } if (apos) { byte checksum = 0, count = 0; while (command[count] != '*') checksum ^= command[count++]; if (strtol(apos + 1, NULL, 10) != checksum) { gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH)); return; } // if no errors, continue parsing } else { gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM)); return; } gcode_LastN = gcode_N; // if no errors, continue parsing } else if (apos) { // No '*' without 'N' gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false); return; } // Movement commands alert when stopped if (IsStopped()) { char* gpos = strchr(command, 'G'); if (gpos) { const int codenum = strtol(gpos + 1, NULL, 10); switch (codenum) { case 0: case 1: case 2: case 3: SERIAL_ERRORLNPGM(MSG_ERR_STOPPED); LCD_MESSAGEPGM(MSG_STOPPED); break; } } } #if DISABLED(EMERGENCY_PARSER) // If command was e-stop process now if (strcmp(command, "M108") == 0) { wait_for_heatup = false; #if ENABLED(ULTIPANEL) wait_for_user = false; #endif } if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED)); if (strcmp(command, "M410") == 0) { quickstop_stepper(); } #endif #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0 last_command_time = ms; #endif // Add the command to the queue _enqueuecommand(serial_line_buffer, true); } else if (serial_count >= MAX_CMD_SIZE - 1) { // Keep fetching, but ignore normal characters beyond the max length // The command will be injected when EOL is reached } else if (serial_char == '\\') { // Handle escapes if (MYSERIAL.available() > 0) { // if we have one more character, copy it over serial_char = MYSERIAL.read(); if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char; } // otherwise do nothing } else { // it's not a newline, carriage return or escape char if (serial_char == ';') serial_comment_mode = true; if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char; } } // queue has space, serial has data } #if ENABLED(SDSUPPORT) /** * Get commands from the SD Card until the command buffer is full * or until the end of the file is reached. The special character '#' * can also interrupt buffering. */ inline void get_sdcard_commands() { static bool stop_buffering = false, sd_comment_mode = false; if (!card.sdprinting) return; /** * '#' stops reading from SD to the buffer prematurely, so procedural * macro calls are possible. If it occurs, stop_buffering is triggered * and the buffer is run dry; this character _can_ occur in serial com * due to checksums, however, no checksums are used in SD printing. */ if (commands_in_queue == 0) stop_buffering = false; uint16_t sd_count = 0; bool card_eof = card.eof(); while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) { const int16_t n = card.get(); char sd_char = (char)n; card_eof = card.eof(); if (card_eof || n == -1 || sd_char == '\n' || sd_char == '\r' || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode) ) { if (card_eof) { SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED); card.printingHasFinished(); #if ENABLED(PRINTER_EVENT_LEDS) LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS); set_led_color(0, 255, 0); // Green #if HAS_RESUME_CONTINUE KEEPALIVE_STATE(PAUSED_FOR_USER); wait_for_user = true; while (wait_for_user) idle(); KEEPALIVE_STATE(IN_HANDLER); #else safe_delay(1000); #endif set_led_color(0, 0, 0); // OFF #endif card.checkautostart(true); } else if (n == -1) { SERIAL_ERROR_START; SERIAL_ECHOLNPGM(MSG_SD_ERR_READ); } if (sd_char == '#') stop_buffering = true; sd_comment_mode = false; // for new command if (!sd_count) continue; // skip empty lines (and comment lines) command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string sd_count = 0; // clear sd line buffer _commit_command(false); } else if (sd_count >= MAX_CMD_SIZE - 1) { /** * Keep fetching, but ignore normal characters beyond the max length * The command will be injected when EOL is reached */ } else { if (sd_char == ';') sd_comment_mode = true; if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char; } } } #endif // SDSUPPORT /** * Add to the circular command queue the next command from: * - The command-injection queue (injected_commands_P) * - The active serial input (usually USB) * - The SD card file being actively printed */ void get_available_commands() { // if any immediate commands remain, don't get other commands yet if (drain_injected_commands_P()) return; get_serial_commands(); #if ENABLED(SDSUPPORT) get_sdcard_commands(); #endif } inline bool code_has_value() { int i = 1; char c = seen_pointer[i]; while (c == ' ') c = seen_pointer[++i]; if (c == '-' || c == '+') c = seen_pointer[++i]; if (c == '.') c = seen_pointer[++i]; return NUMERIC(c); } inline float code_value_float() { char* e = strchr(seen_pointer, 'E'); if (!e) return strtod(seen_pointer + 1, NULL); *e = 0; float ret = strtod(seen_pointer + 1, NULL); *e = 'E'; return ret; } inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); } inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); } inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); } inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); } inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); } inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; } #if ENABLED(INCH_MODE_SUPPORT) inline void set_input_linear_units(LinearUnit units) { switch (units) { case LINEARUNIT_INCH: linear_unit_factor = 25.4; break; case LINEARUNIT_MM: default: linear_unit_factor = 1.0; break; } volumetric_unit_factor = pow(linear_unit_factor, 3.0); } inline float axis_unit_factor(const AxisEnum axis) { return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor); } inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; } inline float code_value_axis_units(const AxisEnum axis) { return code_value_float() * axis_unit_factor(axis); } inline float code_value_per_axis_unit(const AxisEnum axis) { return code_value_float() / axis_unit_factor(axis); } #endif #if ENABLED(TEMPERATURE_UNITS_SUPPORT) inline void set_input_temp_units(TempUnit units) { input_temp_units = units; } int16_t code_value_temp_abs() { switch (input_temp_units) { case TEMPUNIT_F: return (code_value_float() - 32) * 0.5555555556; case TEMPUNIT_K: return code_value_float() - 273.15; case TEMPUNIT_C: default: return code_value_int(); } } int16_t code_value_temp_diff() { switch (input_temp_units) { case TEMPUNIT_C: case TEMPUNIT_K: return code_value_float(); case TEMPUNIT_F: return code_value_float() * 0.5555555556; default: return code_value_float(); } } #else int16_t code_value_temp_abs() { return code_value_int(); } int16_t code_value_temp_diff() { return code_value_int(); } #endif FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); } inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; } bool code_seen(char code) { seen_pointer = strchr(current_command_args, code); return (seen_pointer != NULL); // Return TRUE if the code-letter was found } /** * Set target_extruder from the T parameter or the active_extruder * * Returns TRUE if the target is invalid */ bool get_target_extruder_from_command(int code) { if (code_seen('T')) { if (code_value_byte() >= EXTRUDERS) { SERIAL_ECHO_START; SERIAL_CHAR('M'); SERIAL_ECHO(code); SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte()); return true; } target_extruder = code_value_byte(); } else target_extruder = active_extruder; return false; } #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE) bool extruder_duplication_enabled = false; // Used in Dual X mode 2 #endif #if ENABLED(DUAL_X_CARRIAGE) static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE; static float x_home_pos(const int extruder) { if (extruder == 0) return LOGICAL_X_POSITION(base_home_pos(X_AXIS)); else /** * In dual carriage mode the extruder offset provides an override of the * second X-carriage position when homed - otherwise X2_HOME_POS is used. * This allows soft recalibration of the second extruder home position * without firmware reflash (through the M218 command). */ return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS); } static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; } static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1 static bool active_extruder_parked = false; // used in mode 1 & 2 static float raised_parked_position[XYZE]; // used in mode 1 static millis_t delayed_move_time = 0; // used in mode 1 static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2 static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2 #endif // DUAL_X_CARRIAGE #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) /** * Software endstops can be used to monitor the open end of * an axis that has a hardware endstop on the other end. Or * they can prevent axes from moving past endstops and grinding. * * To keep doing their job as the coordinate system changes, * the software endstop positions must be refreshed to remain * at the same positions relative to the machine. */ void update_software_endstops(const AxisEnum axis) { const float offs = 0.0 #if HAS_HOME_OFFSET + home_offset[axis] #endif #if HAS_POSITION_SHIFT + position_shift[axis] #endif ; #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT workspace_offset[axis] = offs; #endif #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS) { // In Dual X mode hotend_offset[X] is T1's home position float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS); if (active_extruder != 0) { // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger) soft_endstop_min[X_AXIS] = X2_MIN_POS + offs; soft_endstop_max[X_AXIS] = dual_max_x + offs; } else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) { // In Duplication Mode, T0 can move as far left as X_MIN_POS // but not so far to the right that T1 would move past the end soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs; soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs; } else { // In other modes, T0 can move from X_MIN_POS to X_MAX_POS soft_endstop_min[axis] = base_min_pos(axis) + offs; soft_endstop_max[axis] = base_max_pos(axis) + offs; } } #else soft_endstop_min[axis] = base_min_pos(axis) + offs; soft_endstop_max[axis] = base_max_pos(axis) + offs; #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("For ", axis_codes[axis]); #if HAS_HOME_OFFSET SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]); #endif #if HAS_POSITION_SHIFT SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]); #endif SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]); SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]); } #endif #if ENABLED(DELTA) if (axis == Z_AXIS) delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top(); #endif } #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE #if HAS_M206_COMMAND /** * Change the home offset for an axis, update the current * position and the software endstops to retain the same * relative distance to the new home. * * Since this changes the current_position, code should * call sync_plan_position soon after this. */ static void set_home_offset(const AxisEnum axis, const float v) { current_position[axis] += v - home_offset[axis]; home_offset[axis] = v; update_software_endstops(axis); } #endif // HAS_M206_COMMAND /** * Set an axis' current position to its home position (after homing). * * For Core and Cartesian robots this applies one-to-one when an * individual axis has been homed. * * DELTA should wait until all homing is done before setting the XYZ * current_position to home, because homing is a single operation. * In the case where the axis positions are already known and previously * homed, DELTA could home to X or Y individually by moving either one * to the center. However, homing Z always homes XY and Z. * * SCARA should wait until all XY homing is done before setting the XY * current_position to home, because neither X nor Y is at home until * both are at home. Z can however be homed individually. * * Callers must sync the planner position after calling this! */ static void set_axis_is_at_home(AxisEnum axis) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL; } #endif axis_known_position[axis] = axis_homed[axis] = true; #if HAS_POSITION_SHIFT position_shift[axis] = 0; update_software_endstops(axis); #endif #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) { current_position[X_AXIS] = x_home_pos(active_extruder); return; } #endif #if ENABLED(MORGAN_SCARA) /** * Morgan SCARA homes XY at the same time */ if (axis == X_AXIS || axis == Y_AXIS) { float homeposition[XYZ]; LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i); // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]); // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]); /** * Get Home position SCARA arm angles using inverse kinematics, * and calculate homing offset using forward kinematics */ inverse_kinematics(homeposition); forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]); // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]); // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]); current_position[axis] = LOGICAL_POSITION(cartes[axis], axis); /** * SCARA home positions are based on configuration since the actual * limits are determined by the inverse kinematic transform. */ soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis)); soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis)); } else #endif { current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis); } /** * Z Probe Z Homing? Account for the probe's Z offset. */ #if HAS_BED_PROBE && Z_HOME_DIR < 0 if (axis == Z_AXIS) { #if HOMING_Z_WITH_PROBE current_position[Z_AXIS] -= zprobe_zoffset; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***"); SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset); } #endif #elif ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***"); #endif } #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { #if HAS_HOME_OFFSET SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]); SERIAL_ECHOLNPAIR("] = ", home_offset[axis]); #endif DEBUG_POS("", current_position); SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL; } #endif } /** * Some planner shorthand inline functions */ inline float get_homing_bump_feedrate(AxisEnum axis) { int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR; int hbd = homing_bump_divisor[axis]; if (hbd < 1) { hbd = 10; SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1"); } return homing_feedrate_mm_s[axis] / hbd; } // // line_to_current_position // Move the planner to the current position from wherever it last moved // (or from wherever it has been told it is located). // inline void line_to_current_position() { planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder); } // // line_to_destination // Move the planner, not necessarily synced with current_position // inline void line_to_destination(float fr_mm_s) { planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder); } inline void line_to_destination() { line_to_destination(feedrate_mm_s); } inline void set_current_to_destination() { COPY(current_position, destination); } inline void set_destination_to_current() { COPY(destination, current_position); } #if IS_KINEMATIC /** * Calculate delta, start a line, and set current_position to destination */ void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination); #endif if ( current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS] && current_position[Z_AXIS] == destination[Z_AXIS] && current_position[E_AXIS] == destination[E_AXIS] ) return; refresh_cmd_timeout(); planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder); set_current_to_destination(); } #endif // IS_KINEMATIC /** * Plan a move to (X, Y, Z) and set the current_position * The final current_position may not be the one that was requested */ void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) { const float old_feedrate_mm_s = feedrate_mm_s; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z); #endif #if ENABLED(DELTA) feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S; set_destination_to_current(); // sync destination at the start #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination); #endif // when in the danger zone if (current_position[Z_AXIS] > delta_clip_start_height) { if (z > delta_clip_start_height) { // staying in the danger zone destination[X_AXIS] = x; // move directly (uninterpolated) destination[Y_AXIS] = y; destination[Z_AXIS] = z; prepare_uninterpolated_move_to_destination(); // set_current_to_destination #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position); #endif return; } else { destination[Z_AXIS] = delta_clip_start_height; prepare_uninterpolated_move_to_destination(); // set_current_to_destination #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position); #endif } } if (z > current_position[Z_AXIS]) { // raising? destination[Z_AXIS] = z; prepare_uninterpolated_move_to_destination(); // set_current_to_destination #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position); #endif } destination[X_AXIS] = x; destination[Y_AXIS] = y; prepare_move_to_destination(); // set_current_to_destination #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position); #endif if (z < current_position[Z_AXIS]) { // lowering? destination[Z_AXIS] = z; prepare_uninterpolated_move_to_destination(); // set_current_to_destination #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position); #endif } #elif IS_SCARA set_destination_to_current(); // If Z needs to raise, do it before moving XY if (destination[Z_AXIS] < z) { destination[Z_AXIS] = z; prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]); } destination[X_AXIS] = x; destination[Y_AXIS] = y; prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S); // If Z needs to lower, do it after moving XY if (destination[Z_AXIS] > z) { destination[Z_AXIS] = z; prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]); } #else // If Z needs to raise, do it before moving XY if (current_position[Z_AXIS] < z) { feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]; current_position[Z_AXIS] = z; line_to_current_position(); } feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S; current_position[X_AXIS] = x; current_position[Y_AXIS] = y; line_to_current_position(); // If Z needs to lower, do it after moving XY if (current_position[Z_AXIS] > z) { feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]; current_position[Z_AXIS] = z; line_to_current_position(); } #endif stepper.synchronize(); feedrate_mm_s = old_feedrate_mm_s; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to"); #endif } void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) { do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s); } void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s); } void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) { do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s); } // // Prepare to do endstop or probe moves // with custom feedrates. // // - Save current feedrates // - Reset the rate multiplier // - Reset the command timeout // - Enable the endstops (for endstop moves) // static void setup_for_endstop_or_probe_move() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position); #endif saved_feedrate_mm_s = feedrate_mm_s; saved_feedrate_percentage = feedrate_percentage; feedrate_percentage = 100; refresh_cmd_timeout(); } static void clean_up_after_endstop_or_probe_move() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position); #endif feedrate_mm_s = saved_feedrate_mm_s; feedrate_percentage = saved_feedrate_percentage; refresh_cmd_timeout(); } #if HAS_BED_PROBE /** * Raise Z to a minimum height to make room for a probe to move */ inline void do_probe_raise(float z_raise) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("do_probe_raise(", z_raise); SERIAL_CHAR(')'); SERIAL_EOL; } #endif float z_dest = LOGICAL_Z_POSITION(z_raise); if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset; #if ENABLED(DELTA) z_dest -= home_offset[Z_AXIS]; #endif if (z_dest > current_position[Z_AXIS]) do_blocking_move_to_z(z_dest); } #endif //HAS_BED_PROBE #if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION) bool axis_unhomed_error(const bool x, const bool y, const bool z) { const bool xx = x && !axis_homed[X_AXIS], yy = y && !axis_homed[Y_AXIS], zz = z && !axis_homed[Z_AXIS]; if (xx || yy || zz) { SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_HOME " "); if (xx) SERIAL_ECHOPGM(MSG_X); if (yy) SERIAL_ECHOPGM(MSG_Y); if (zz) SERIAL_ECHOPGM(MSG_Z); SERIAL_ECHOLNPGM(" " MSG_FIRST); #if ENABLED(ULTRA_LCD) lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : ""); #endif return true; } return false; } #endif #if ENABLED(Z_PROBE_SLED) #ifndef SLED_DOCKING_OFFSET #define SLED_DOCKING_OFFSET 0 #endif /** * Method to dock/undock a sled designed by Charles Bell. * * stow[in] If false, move to MAX_X and engage the solenoid * If true, move to MAX_X and release the solenoid */ static void dock_sled(bool stow) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("dock_sled(", stow); SERIAL_CHAR(')'); SERIAL_EOL; } #endif // Dock sled a bit closer to ensure proper capturing do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0)); #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID) WRITE(SOL1_PIN, !stow); // switch solenoid #endif } #elif ENABLED(Z_PROBE_ALLEN_KEY) void run_deploy_moves_script() { #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z) #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)); #endif #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)); #endif #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z) #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE)); #endif #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z) #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE)); #endif #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z) #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE)); #endif } void run_stow_moves_script() { #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z) #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)); #endif #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z) #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)); #endif #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z) #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE)); #endif #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z) #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE)); #endif #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z) #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE)); #endif } #endif #if HAS_BED_PROBE // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST) #if ENABLED(Z_MIN_PROBE_ENDSTOP) #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING) #else #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) #endif #endif #if ENABLED(BLTOUCH) void bltouch_command(int angle) { servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait safe_delay(BLTOUCH_DELAY); } /** * BLTouch probes have a Hall effect sensor. The high currents switching * on and off cause a magnetic field that can affect the repeatability of the * sensor. So for BLTouch probes, heaters are turned off during the probe, * then quickly turned back on after the point is sampled. */ #if ENABLED(BLTOUCH_HEATERS_OFF) void set_heaters_for_bltouch(const bool deploy) { static bool heaters_were_disabled = false; static millis_t next_emi_protection = 0; static int16_t temps_at_entry[HOTENDS]; #if HAS_TEMP_BED static int16_t bed_temp_at_entry; #endif // If called out of order or far apart something is seriously wrong if (deploy == heaters_were_disabled || (next_emi_protection && ELAPSED(millis(), next_emi_protection))) kill(PSTR(MSG_KILLED)); if (deploy) { next_emi_protection = millis() + 20 * 1000UL; HOTEND_LOOP() { temps_at_entry[e] = thermalManager.degTargetHotend(e); thermalManager.setTargetHotend(0, e); } #if HAS_TEMP_BED bed_temp_at_entry = thermalManager.degTargetBed(); thermalManager.setTargetBed(0); #endif } else { next_emi_protection = 0; HOTEND_LOOP() thermalManager.setTargetHotend(temps_at_entry[e], e); #if HAS_TEMP_BED thermalManager.setTargetBed(bed_temp_at_entry); #endif } heaters_were_disabled = deploy; } #endif // BLTOUCH_HEATERS_OFF void set_bltouch_deployed(const bool deploy) { if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered bltouch_command(BLTOUCH_RESET); // try to reset it. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to bltouch_command(BLTOUCH_STOW); // clear the triggered condition. safe_delay(1500); // Wait for internal self-test to complete. // (Measured completion time was 0.65 seconds // after reset, deploy, and stow sequence) if (TEST_BLTOUCH()) { // If it still claims to be triggered... SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH); stop(); // punt! } } #if ENABLED(BLTOUCH_HEATERS_OFF) set_heaters_for_bltouch(deploy); #endif bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy); SERIAL_CHAR(')'); SERIAL_EOL; } #endif } #endif // BLTOUCH // returns false for ok and true for failure bool set_probe_deployed(bool deploy) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { DEBUG_POS("set_probe_deployed", current_position); SERIAL_ECHOLNPAIR("deploy: ", deploy); } #endif if (endstops.z_probe_enabled == deploy) return false; // Make room for probe do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE); // When deploying make sure BLTOUCH is not already triggered #if ENABLED(BLTOUCH) if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered bltouch_command(BLTOUCH_RESET); // try to reset it. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to bltouch_command(BLTOUCH_STOW); // clear the triggered condition. safe_delay(1500); // wait for internal self test to complete // measured completion time was 0.65 seconds // after reset, deploy & stow sequence if (TEST_BLTOUCH()) { // If it still claims to be triggered... SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH); stop(); // punt! return true; } } #elif ENABLED(Z_PROBE_SLED) if (axis_unhomed_error(true, false, false)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED); stop(); return true; } #elif ENABLED(Z_PROBE_ALLEN_KEY) if (axis_unhomed_error(true, true, true )) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED); stop(); return true; } #endif const float oldXpos = current_position[X_AXIS], oldYpos = current_position[Y_AXIS]; #ifdef _TRIGGERED_WHEN_STOWED_TEST // If endstop is already false, the Z probe is deployed if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions. // Would a goto be less ugly? //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity // for a triggered when stowed manual probe. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early // otherwise an Allen-Key probe can't be stowed. #endif #if ENABLED(SOLENOID_PROBE) #if HAS_SOLENOID_1 WRITE(SOL1_PIN, deploy); #endif #elif ENABLED(Z_PROBE_SLED) dock_sled(!deploy); #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH) servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]); #elif ENABLED(Z_PROBE_ALLEN_KEY) deploy ? run_deploy_moves_script() : run_stow_moves_script(); #endif #ifdef _TRIGGERED_WHEN_STOWED_TEST } // _TRIGGERED_WHEN_STOWED_TEST == deploy if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed? if (IsRunning()) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Z-Probe failed"); LCD_ALERTMESSAGEPGM("Err: ZPROBE"); } stop(); return true; } // _TRIGGERED_WHEN_STOWED_TEST == deploy #endif do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy endstops.enable_z_probe(deploy); return false; } static void do_probe_move(float z, float fr_mm_m) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position); #endif // Deploy BLTouch at the start of any probe #if ENABLED(BLTOUCH) set_bltouch_deployed(true); #endif // Move down until probe triggered do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m)); // Retract BLTouch immediately after a probe #if ENABLED(BLTOUCH) set_bltouch_deployed(false); #endif // Clear endstop flags endstops.hit_on_purpose(); // Get Z where the steppers were interrupted set_current_from_steppers_for_axis(Z_AXIS); // Tell the planner where we actually are SYNC_PLAN_POSITION_KINEMATIC(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position); #endif } // Do a single Z probe and return with current_position[Z_AXIS] // at the height where the probe triggered. static float run_z_probe() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position); #endif // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding refresh_cmd_timeout(); #if ENABLED(PROBE_DOUBLE_TOUCH) // Do a first probe at the fast speed do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST); #if ENABLED(DEBUG_LEVELING_FEATURE) float first_probe_z = current_position[Z_AXIS]; if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z); #endif // move up by the bump distance do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST)); #else // If the nozzle is above the travel height then // move down quickly before doing the slow probe float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES); if (zprobe_zoffset < 0) z -= zprobe_zoffset; #if ENABLED(DELTA) z -= home_offset[Z_AXIS]; #endif if (z < current_position[Z_AXIS]) do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST)); #endif // move down slowly to find bed do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position); #endif // Debug: compare probe heights #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]); SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]); } #endif return current_position[Z_AXIS] + zprobe_zoffset; } /** * - Move to the given XY * - Deploy the probe, if not already deployed * - Probe the bed, get the Z position * - Depending on the 'stow' flag * - Stow the probe, or * - Raise to the BETWEEN height * - Return the probed Z position */ float probe_pt(const float x, const float y, const bool stow/*=true*/, const int verbose_level/*=1*/) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> probe_pt(", x); SERIAL_ECHOPAIR(", ", y); SERIAL_ECHOPAIR(", ", stow ? "" : "no "); SERIAL_ECHOLNPGM("stow)"); DEBUG_POS("", current_position); } #endif const float old_feedrate_mm_s = feedrate_mm_s; #if ENABLED(DELTA) if (current_position[Z_AXIS] > delta_clip_start_height) do_blocking_move_to_z(delta_clip_start_height); #endif // Ensure a minimum height before moving the probe do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES); feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S; // Move the probe to the given XY do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER)); if (DEPLOY_PROBE()) return NAN; const float measured_z = run_z_probe(); if (!stow) do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES); else if (STOW_PROBE()) return NAN; if (verbose_level > 2) { SERIAL_PROTOCOLPGM("Bed X: "); SERIAL_PROTOCOL_F(x, 3); SERIAL_PROTOCOLPGM(" Y: "); SERIAL_PROTOCOL_F(y, 3); SERIAL_PROTOCOLPGM(" Z: "); SERIAL_PROTOCOL_F(measured_z, 3); SERIAL_EOL; } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt"); #endif feedrate_mm_s = old_feedrate_mm_s; return measured_z; } #endif // HAS_BED_PROBE #if HAS_LEVELING /** * Turn bed leveling on or off, fixing the current * position as-needed. * * Disable: Current position = physical position * Enable: Current position = "unleveled" physical position */ void set_bed_leveling_enabled(bool enable/*=true*/) { #if ENABLED(MESH_BED_LEVELING) if (enable != mbl.active()) { if (!enable) planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]); mbl.set_active(enable && mbl.has_mesh()); if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position); } #elif ENABLED(AUTO_BED_LEVELING_UBL) ubl.state.active = enable; //set_current_from_steppers_for_axis(Z_AXIS); #else #if ENABLED(AUTO_BED_LEVELING_BILINEAR) const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1])); #else constexpr bool can_change = true; #endif if (can_change && enable != planner.abl_enabled) { #if ENABLED(AUTO_BED_LEVELING_BILINEAR) // Force bilinear_z_offset to re-calculate next time const float reset[XYZ] = { -9999.999, -9999.999, 0 }; (void)bilinear_z_offset(reset); #endif planner.abl_enabled = enable; if (!enable) set_current_from_steppers_for_axis( #if ABL_PLANAR ALL_AXES #else Z_AXIS #endif ); else planner.unapply_leveling(current_position); } #endif } #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) void set_z_fade_height(const float zfh) { planner.z_fade_height = zfh; planner.inverse_z_fade_height = RECIPROCAL(zfh); if ( #if ENABLED(MESH_BED_LEVELING) mbl.active() #else planner.abl_enabled #endif ) { set_current_from_steppers_for_axis( #if ABL_PLANAR ALL_AXES #else Z_AXIS #endif ); } } #endif // LEVELING_FADE_HEIGHT /** * Reset calibration results to zero. */ void reset_bed_level() { set_bed_leveling_enabled(false); #if ENABLED(MESH_BED_LEVELING) if (mbl.has_mesh()) { mbl.reset(); mbl.set_has_mesh(false); } #else #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level"); #endif #if ABL_PLANAR planner.bed_level_matrix.set_to_identity(); #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] = bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0; for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) z_values[x][y] = NAN; #elif ENABLED(AUTO_BED_LEVELING_UBL) ubl.reset(); #endif #endif } #endif // HAS_LEVELING #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING) /** * Enable to produce output in JSON format suitable * for SCAD or JavaScript mesh visualizers. * * Visualize meshes in OpenSCAD using the included script. * * buildroot/shared/scripts/MarlinMesh.scad */ //#define SCAD_MESH_OUTPUT /** * Print calibration results for plotting or manual frame adjustment. */ static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) { #ifndef SCAD_MESH_OUTPUT for (uint8_t x = 0; x < sx; x++) { for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++) SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOL((int)x); } SERIAL_EOL; #endif #ifdef SCAD_MESH_OUTPUT SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array #endif for (uint8_t y = 0; y < sy; y++) { #ifdef SCAD_MESH_OUTPUT SERIAL_PROTOCOLLNPGM(" ["); // open sub-array #else if (y < 10) SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOL((int)y); #endif for (uint8_t x = 0; x < sx; x++) { SERIAL_PROTOCOLCHAR(' '); const float offset = fn(x, y); if (!isnan(offset)) { if (offset >= 0) SERIAL_PROTOCOLCHAR('+'); SERIAL_PROTOCOL_F(offset, precision); } else { #ifdef SCAD_MESH_OUTPUT for (uint8_t i = 3; i < precision + 3; i++) SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOLPGM("NAN"); #else for (uint8_t i = 0; i < precision + 3; i++) SERIAL_PROTOCOLCHAR(i ? '=' : ' '); #endif } #ifdef SCAD_MESH_OUTPUT if (x < sx - 1) SERIAL_PROTOCOLCHAR(','); #endif } #ifdef SCAD_MESH_OUTPUT SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOLCHAR(']'); // close sub-array if (y < sy - 1) SERIAL_PROTOCOLCHAR(','); #endif SERIAL_EOL; } #ifdef SCAD_MESH_OUTPUT SERIAL_PROTOCOLPGM("\n];"); // close 2D array #endif SERIAL_EOL; } #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) /** * Extrapolate a single point from its neighbors */ static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPGM("Extrapolate ["); if (x < 10) SERIAL_CHAR(' '); SERIAL_ECHO((int)x); SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' '); SERIAL_CHAR(' '); if (y < 10) SERIAL_CHAR(' '); SERIAL_ECHO((int)y); SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' '); SERIAL_CHAR(']'); } #endif if (!isnan(z_values[x][y])) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)"); #endif return; // Don't overwrite good values. } SERIAL_EOL; // Get X neighbors, Y neighbors, and XY neighbors const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir; float a1 = z_values[x1][y ], a2 = z_values[x2][y ], b1 = z_values[x ][y1], b2 = z_values[x ][y2], c1 = z_values[x1][y1], c2 = z_values[x2][y2]; // Treat far unprobed points as zero, near as equal to far if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2; if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2; if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2; const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2; // Take the average instead of the median z_values[x][y] = (a + b + c) / 3.0; // Median is robust (ignores outliers). // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c) // : ((c < b) ? b : (a < c) ? a : c); } //Enable this if your SCARA uses 180° of total area //#define EXTRAPOLATE_FROM_EDGE #if ENABLED(EXTRAPOLATE_FROM_EDGE) #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y #define HALF_IN_X #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X #define HALF_IN_Y #endif #endif /** * Fill in the unprobed points (corners of circular print surface) * using linear extrapolation, away from the center. */ static void extrapolate_unprobed_bed_level() { #ifdef HALF_IN_X constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1; #else constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center xlen = ctrx1; #endif #ifdef HALF_IN_Y constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1; #else constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center ylen = ctry1; #endif for (uint8_t xo = 0; xo <= xlen; xo++) for (uint8_t yo = 0; yo <= ylen; yo++) { uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo; #ifndef HALF_IN_X const uint8_t x1 = ctrx1 - xo; #endif #ifndef HALF_IN_Y const uint8_t y1 = ctry1 - yo; #ifndef HALF_IN_X extrapolate_one_point(x1, y1, +1, +1); // left-below + + #endif extrapolate_one_point(x2, y1, -1, +1); // right-below - + #endif #ifndef HALF_IN_X extrapolate_one_point(x1, y2, +1, -1); // left-above + - #endif extrapolate_one_point(x2, y2, -1, -1); // right-above - - } } static void print_bilinear_leveling_grid() { SERIAL_ECHOLNPGM("Bilinear Leveling Grid:"); print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3, [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; } ); } #if ENABLED(ABL_BILINEAR_SUBDIVISION) #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1 #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1 #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2) #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2) float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y]; int bilinear_grid_spacing_virt[2] = { 0 }; float bilinear_grid_factor_virt[2] = { 0 }; static void bed_level_virt_print() { SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:"); print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5, [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; } ); } #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I)) float bed_level_virt_coord(const uint8_t x, const uint8_t y) { uint8_t ep = 0, ip = 1; if (!x || x == ABL_TEMP_POINTS_X - 1) { if (x) { ep = GRID_MAX_POINTS_X - 1; ip = GRID_MAX_POINTS_X - 2; } if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2)) return LINEAR_EXTRAPOLATION( z_values[ep][y - 1], z_values[ip][y - 1] ); else return LINEAR_EXTRAPOLATION( bed_level_virt_coord(ep + 1, y), bed_level_virt_coord(ip + 1, y) ); } if (!y || y == ABL_TEMP_POINTS_Y - 1) { if (y) { ep = GRID_MAX_POINTS_Y - 1; ip = GRID_MAX_POINTS_Y - 2; } if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2)) return LINEAR_EXTRAPOLATION( z_values[x - 1][ep], z_values[x - 1][ip] ); else return LINEAR_EXTRAPOLATION( bed_level_virt_coord(x, ep + 1), bed_level_virt_coord(x, ip + 1) ); } return z_values[x - 1][y - 1]; } static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) { return ( p[i-1] * -t * sq(1 - t) + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t)) + p[i+1] * t * (1 + 4 * t - 3 * sq(t)) - p[i+2] * sq(t) * (1 - t) ) * 0.5; } static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) { float row[4], column[4]; for (uint8_t i = 0; i < 4; i++) { for (uint8_t j = 0; j < 4; j++) { column[j] = bed_level_virt_coord(i + x - 1, j + y - 1); } row[i] = bed_level_virt_cmr(column, 1, ty); } return bed_level_virt_cmr(row, 1, tx); } void bed_level_virt_interpolate() { bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS); bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS); bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]); bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]); for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++) for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) { if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1)) continue; z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] = bed_level_virt_2cmr( x + 1, y + 1, (float)tx / (BILINEAR_SUBDIVISIONS), (float)ty / (BILINEAR_SUBDIVISIONS) ); } } #endif // ABL_BILINEAR_SUBDIVISION // Refresh after other values have been updated void refresh_bed_level() { bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]); bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]); #if ENABLED(ABL_BILINEAR_SUBDIVISION) bed_level_virt_interpolate(); #endif } #endif // AUTO_BED_LEVELING_BILINEAR /** * Home an individual linear axis */ static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]); SERIAL_ECHOPAIR(", ", distance); SERIAL_ECHOPAIR(", ", fr_mm_s); SERIAL_CHAR(')'); SERIAL_EOL; } #endif #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH) const bool deploy_bltouch = (axis == Z_AXIS && distance < 0); if (deploy_bltouch) set_bltouch_deployed(true); #endif // Tell the planner we're at Z=0 current_position[axis] = 0; #if IS_SCARA SYNC_PLAN_POSITION_KINEMATIC(); current_position[axis] = distance; inverse_kinematics(current_position); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder); #else sync_plan_position(); current_position[axis] = distance; planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder); #endif stepper.synchronize(); #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH) if (deploy_bltouch) set_bltouch_deployed(false); #endif endstops.hit_on_purpose(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL; } #endif } /** * TMC2130 specific sensorless homing using stallGuard2. * stallGuard2 only works when in spreadCycle mode. * spreadCycle and stealthChop are mutually exclusive. */ #if ENABLED(SENSORLESS_HOMING) void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) { #if ENABLED(STEALTHCHOP) if (enable) { st.coolstep_min_speed(1024UL * 1024UL - 1UL); st.stealthChop(0); } else { st.coolstep_min_speed(0); st.stealthChop(1); } #endif st.diag1_stall(enable ? 1 : 0); } #endif /** * Home an individual "raw axis" to its endstop. * This applies to XYZ on Cartesian and Core robots, and * to the individual ABC steppers on DELTA and SCARA. * * At the end of the procedure the axis is marked as * homed and the current position of that axis is updated. * Kinematic robots should wait till all axes are homed * before updating the current position. */ #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS) static void homeaxis(const AxisEnum axis) { #if IS_SCARA // Only Z homing (with probe) is permitted if (axis != Z_AXIS) { BUZZ(100, 880); return; } #else #define CAN_HOME(A) \ (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0))) if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return; #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL; } #endif const int axis_home_dir = #if ENABLED(DUAL_X_CARRIAGE) (axis == X_AXIS) ? x_home_dir(active_extruder) : #endif home_dir(axis); // Homing Z towards the bed? Deploy the Z probe or endstop. #if HOMING_Z_WITH_PROBE if (axis == Z_AXIS && DEPLOY_PROBE()) return; #endif // Set a flag for Z motor locking #if ENABLED(Z_DUAL_ENDSTOPS) if (axis == Z_AXIS) stepper.set_homing_flag(true); #endif // Disable stealthChop if used. Enable diag1 pin on driver. #if ENABLED(SENSORLESS_HOMING) #if ENABLED(X_IS_TMC2130) if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX); #endif #if ENABLED(Y_IS_TMC2130) if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY); #endif #endif // Fast move towards endstop until triggered #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:"); #endif do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir); // When homing Z with probe respect probe clearance const float bump = axis_home_dir * ( #if HOMING_Z_WITH_PROBE (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) : #endif home_bump_mm(axis) ); // If a second homing move is configured... if (bump) { // Move away from the endstop by the axis HOME_BUMP_MM #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:"); #endif do_homing_move(axis, -bump); // Slow move towards endstop until triggered #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:"); #endif do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis)); } #if ENABLED(Z_DUAL_ENDSTOPS) if (axis == Z_AXIS) { float adj = fabs(z_endstop_adj); bool lockZ1; if (axis_home_dir > 0) { adj = -adj; lockZ1 = (z_endstop_adj > 0); } else lockZ1 = (z_endstop_adj < 0); if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true); // Move to the adjusted endstop height do_homing_move(axis, adj); if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false); stepper.set_homing_flag(false); } // Z_AXIS #endif #if IS_SCARA set_axis_is_at_home(axis); SYNC_PLAN_POSITION_KINEMATIC(); #elif ENABLED(DELTA) // Delta has already moved all three towers up in G28 // so here it re-homes each tower in turn. // Delta homing treats the axes as normal linear axes. // retrace by the amount specified in endstop_adj if (endstop_adj[axis] * Z_HOME_DIR < 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:"); #endif do_homing_move(axis, endstop_adj[axis]); } #else // For cartesian/core machines, // set the axis to its home position set_axis_is_at_home(axis); sync_plan_position(); destination[axis] = current_position[axis]; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position); #endif #endif // Re-enable stealthChop if used. Disable diag1 pin on driver. #if ENABLED(SENSORLESS_HOMING) #if ENABLED(X_IS_TMC2130) if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false); #endif #if ENABLED(Y_IS_TMC2130) if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false); #endif #endif // Put away the Z probe #if HOMING_Z_WITH_PROBE if (axis == Z_AXIS && STOW_PROBE()) return; #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL; } #endif } // homeaxis() #if ENABLED(FWRETRACT) void retract(const bool retracting, const bool swapping = false) { static float hop_height; if (retracting == retracted[active_extruder]) return; const float old_feedrate_mm_s = feedrate_mm_s; set_destination_to_current(); if (retracting) { feedrate_mm_s = retract_feedrate_mm_s; current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder]; sync_plan_position_e(); prepare_move_to_destination(); if (retract_zlift > 0.01) { hop_height = current_position[Z_AXIS]; // Pretend current position is lower current_position[Z_AXIS] -= retract_zlift; SYNC_PLAN_POSITION_KINEMATIC(); // Raise up to the old current_position prepare_move_to_destination(); } } else { // If the height hasn't been altered, undo the Z hop if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) { // Pretend current position is higher. Z will lower on the next move current_position[Z_AXIS] += retract_zlift; SYNC_PLAN_POSITION_KINEMATIC(); } feedrate_mm_s = retract_recover_feedrate_mm_s; const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length; current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder]; sync_plan_position_e(); // Lower Z and recover E prepare_move_to_destination(); } feedrate_mm_s = old_feedrate_mm_s; retracted[active_extruder] = retracting; } // retract() #endif // FWRETRACT #if ENABLED(MIXING_EXTRUDER) void normalize_mix() { float mix_total = 0.0; for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]); // Scale all values if they don't add up to ~1.0 if (!NEAR(mix_total, 1.0)) { SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling."); for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total; } } #if ENABLED(DIRECT_MIXING_IN_G1) // Get mixing parameters from the GCode // The total "must" be 1.0 (but it will be normalized) // If no mix factors are given, the old mix is preserved void gcode_get_mix() { const char* mixing_codes = "ABCDHI"; byte mix_bits = 0; for (uint8_t i = 0; i < MIXING_STEPPERS; i++) { if (code_seen(mixing_codes[i])) { SBI(mix_bits, i); float v = code_value_float(); NOLESS(v, 0.0); mixing_factor[i] = RECIPROCAL(v); } } // If any mixing factors were included, clear the rest // If none were included, preserve the last mix if (mix_bits) { for (uint8_t i = 0; i < MIXING_STEPPERS; i++) if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0; normalize_mix(); } } #endif #endif /** * *************************************************************************** * ***************************** G-CODE HANDLING ***************************** * *************************************************************************** */ /** * Set XYZE destination and feedrate from the current GCode command * * - Set destination from included axis codes * - Set to current for missing axis codes * - Set the feedrate, if included */ void gcode_get_destination() { LOOP_XYZE(i) { if (code_seen(axis_codes[i])) destination[i] = code_value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0); else destination[i] = current_position[i]; } if (code_seen('F') && code_value_linear_units() > 0.0) feedrate_mm_s = MMM_TO_MMS(code_value_linear_units()); #if ENABLED(PRINTCOUNTER) if (!DEBUGGING(DRYRUN)) print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]); #endif // Get ABCDHI mixing factors #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1) gcode_get_mix(); #endif } void unknown_command_error() { SERIAL_ECHO_START; SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command); SERIAL_CHAR('"'); SERIAL_EOL; } #if ENABLED(HOST_KEEPALIVE_FEATURE) /** * Output a "busy" message at regular intervals * while the machine is not accepting commands. */ void host_keepalive() { const millis_t ms = millis(); if (host_keepalive_interval && busy_state != NOT_BUSY) { if (PENDING(ms, next_busy_signal_ms)) return; switch (busy_state) { case IN_HANDLER: case IN_PROCESS: SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING); break; case PAUSED_FOR_USER: SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER); break; case PAUSED_FOR_INPUT: SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT); break; default: break; } } next_busy_signal_ms = ms + host_keepalive_interval * 1000UL; } #endif //HOST_KEEPALIVE_FEATURE bool position_is_reachable(const float target[XYZ] #if HAS_BED_PROBE , bool by_probe=false #endif ) { float dx = RAW_X_POSITION(target[X_AXIS]), dy = RAW_Y_POSITION(target[Y_AXIS]); #if HAS_BED_PROBE if (by_probe) { dx -= X_PROBE_OFFSET_FROM_EXTRUDER; dy -= Y_PROBE_OFFSET_FROM_EXTRUDER; } #endif #if IS_SCARA #if MIDDLE_DEAD_ZONE_R > 0 const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y); return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2); #else return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2); #endif #elif ENABLED(DELTA) return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS)); #else const float dz = RAW_Z_POSITION(target[Z_AXIS]); return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001) && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001) && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001); #endif } /************************************************** ***************** GCode Handlers ***************** **************************************************/ /** * G0, G1: Coordinated movement of X Y Z E axes */ inline void gcode_G0_G1( #if IS_SCARA bool fast_move=false #endif ) { if (IsRunning()) { gcode_get_destination(); // For X Y Z E F #if ENABLED(FWRETRACT) if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) { const float echange = destination[E_AXIS] - current_position[E_AXIS]; // Is this move an attempt to retract or recover? if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) { current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations sync_plan_position_e(); // AND from the planner retract(!retracted[active_extruder]); return; } } #endif //FWRETRACT #if IS_SCARA fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination(); #else prepare_move_to_destination(); #endif } } /** * G2: Clockwise Arc * G3: Counterclockwise Arc * * This command has two forms: IJ-form and R-form. * * - I specifies an X offset. J specifies a Y offset. * At least one of the IJ parameters is required. * X and Y can be omitted to do a complete circle. * The given XY is not error-checked. The arc ends * based on the angle of the destination. * Mixing I or J with R will throw an error. * * - R specifies the radius. X or Y is required. * Omitting both X and Y will throw an error. * X or Y must differ from the current XY. * Mixing R with I or J will throw an error. * * Examples: * * G2 I10 ; CW circle centered at X+10 * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12 */ #if ENABLED(ARC_SUPPORT) inline void gcode_G2_G3(bool clockwise) { if (IsRunning()) { #if ENABLED(SF_ARC_FIX) const bool relative_mode_backup = relative_mode; relative_mode = true; #endif gcode_get_destination(); #if ENABLED(SF_ARC_FIX) relative_mode = relative_mode_backup; #endif float arc_offset[2] = { 0.0, 0.0 }; if (code_seen('R')) { const float r = code_value_linear_units(), x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS], x2 = destination[X_AXIS], y2 = destination[Y_AXIS]; if (r && (x2 != x1 || y2 != y1)) { const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1 dx = x2 - x1, dy = y2 - y1, // X and Y differences d = HYPOT(dx, dy), // Linear distance between the points h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc arc_offset[X_AXIS] = cx - x1; arc_offset[Y_AXIS] = cy - y1; } } else { if (code_seen('I')) arc_offset[X_AXIS] = code_value_linear_units(); if (code_seen('J')) arc_offset[Y_AXIS] = code_value_linear_units(); } if (arc_offset[0] || arc_offset[1]) { // Send an arc to the planner plan_arc(destination, arc_offset, clockwise); refresh_cmd_timeout(); } else { // Bad arguments SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS); } } } #endif /** * G4: Dwell S or P */ inline void gcode_G4() { millis_t dwell_ms = 0; if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait stepper.synchronize(); refresh_cmd_timeout(); dwell_ms += previous_cmd_ms; // keep track of when we started waiting if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL); while (PENDING(millis(), dwell_ms)) idle(); } #if ENABLED(BEZIER_CURVE_SUPPORT) /** * Parameters interpreted according to: * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline * However I, J omission is not supported at this point; all * parameters can be omitted and default to zero. */ /** * G5: Cubic B-spline */ inline void gcode_G5() { if (IsRunning()) { gcode_get_destination(); const float offset[] = { code_seen('I') ? code_value_linear_units() : 0.0, code_seen('J') ? code_value_linear_units() : 0.0, code_seen('P') ? code_value_linear_units() : 0.0, code_seen('Q') ? code_value_linear_units() : 0.0 }; plan_cubic_move(offset); } } #endif // BEZIER_CURVE_SUPPORT #if ENABLED(FWRETRACT) /** * G10 - Retract filament according to settings of M207 * G11 - Recover filament according to settings of M208 */ inline void gcode_G10_G11(bool doRetract=false) { #if EXTRUDERS > 1 if (doRetract) { retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument } #endif retract(doRetract #if EXTRUDERS > 1 , retracted_swap[active_extruder] #endif ); } #endif //FWRETRACT #if ENABLED(NOZZLE_CLEAN_FEATURE) /** * G12: Clean the nozzle */ inline void gcode_G12() { // Don't allow nozzle cleaning without homing first if (axis_unhomed_error(true, true, true)) return; const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0, strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES, objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES; const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS; Nozzle::clean(pattern, strokes, radius, objects); } #endif #if ENABLED(INCH_MODE_SUPPORT) /** * G20: Set input mode to inches */ inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); } /** * G21: Set input mode to millimeters */ inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); } #endif #if ENABLED(NOZZLE_PARK_FEATURE) /** * G27: Park the nozzle */ inline void gcode_G27() { // Don't allow nozzle parking without homing first if (axis_unhomed_error(true, true, true)) return; Nozzle::park(code_seen('P') ? code_value_ushort() : 0); } #endif // NOZZLE_PARK_FEATURE #if ENABLED(QUICK_HOME) static void quick_home_xy() { // Pretend the current position is 0,0 current_position[X_AXIS] = current_position[Y_AXIS] = 0.0; sync_plan_position(); const int x_axis_home_dir = #if ENABLED(DUAL_X_CARRIAGE) x_home_dir(active_extruder) #else home_dir(X_AXIS) #endif ; const float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS), mlratio = mlx > mly ? mly / mlx : mlx / mly, fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0); do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s); endstops.hit_on_purpose(); // clear endstop hit flags current_position[X_AXIS] = current_position[Y_AXIS] = 0.0; } #endif // QUICK_HOME #if ENABLED(DEBUG_LEVELING_FEATURE) void log_machine_info() { SERIAL_ECHOPGM("Machine Type: "); #if ENABLED(DELTA) SERIAL_ECHOLNPGM("Delta"); #elif IS_SCARA SERIAL_ECHOLNPGM("SCARA"); #elif IS_CORE SERIAL_ECHOLNPGM("Core"); #else SERIAL_ECHOLNPGM("Cartesian"); #endif SERIAL_ECHOPGM("Probe: "); #if ENABLED(PROBE_MANUALLY) SERIAL_ECHOLNPGM("PROBE_MANUALLY"); #elif ENABLED(FIX_MOUNTED_PROBE) SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE"); #elif ENABLED(BLTOUCH) SERIAL_ECHOLNPGM("BLTOUCH"); #elif HAS_Z_SERVO_ENDSTOP SERIAL_ECHOLNPGM("SERVO PROBE"); #elif ENABLED(Z_PROBE_SLED) SERIAL_ECHOLNPGM("Z_PROBE_SLED"); #elif ENABLED(Z_PROBE_ALLEN_KEY) SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY"); #else SERIAL_ECHOLNPGM("NONE"); #endif #if HAS_BED_PROBE SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER); SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER); SERIAL_ECHOPAIR(" Z:", zprobe_zoffset); #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0) SERIAL_ECHOPGM(" (Right"); #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0) SERIAL_ECHOPGM(" (Left"); #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0) SERIAL_ECHOPGM(" (Middle"); #else SERIAL_ECHOPGM(" (Aligned With"); #endif #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0) SERIAL_ECHOPGM("-Back"); #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0) SERIAL_ECHOPGM("-Front"); #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0) SERIAL_ECHOPGM("-Center"); #endif if (zprobe_zoffset < 0) SERIAL_ECHOPGM(" & Below"); else if (zprobe_zoffset > 0) SERIAL_ECHOPGM(" & Above"); else SERIAL_ECHOPGM(" & Same Z as"); SERIAL_ECHOLNPGM(" Nozzle)"); #endif #if HAS_ABL SERIAL_ECHOPGM("Auto Bed Leveling: "); #if ENABLED(AUTO_BED_LEVELING_LINEAR) SERIAL_ECHOPGM("LINEAR"); #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) SERIAL_ECHOPGM("BILINEAR"); #elif ENABLED(AUTO_BED_LEVELING_3POINT) SERIAL_ECHOPGM("3POINT"); #elif ENABLED(AUTO_BED_LEVELING_UBL) SERIAL_ECHOPGM("UBL"); #endif if (planner.abl_enabled) { SERIAL_ECHOLNPGM(" (enabled)"); #if ABL_PLANAR float diff[XYZ] = { stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS], stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS], stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS] }; SERIAL_ECHOPGM("ABL Adjustment X"); if (diff[X_AXIS] > 0) SERIAL_CHAR('+'); SERIAL_ECHO(diff[X_AXIS]); SERIAL_ECHOPGM(" Y"); if (diff[Y_AXIS] > 0) SERIAL_CHAR('+'); SERIAL_ECHO(diff[Y_AXIS]); SERIAL_ECHOPGM(" Z"); if (diff[Z_AXIS] > 0) SERIAL_CHAR('+'); SERIAL_ECHO(diff[Z_AXIS]); #elif ENABLED(AUTO_BED_LEVELING_UBL) SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]); #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position)); #endif } else SERIAL_ECHOLNPGM(" (disabled)"); SERIAL_EOL; #elif ENABLED(MESH_BED_LEVELING) SERIAL_ECHOPGM("Mesh Bed Leveling"); if (mbl.active()) { float lz = current_position[Z_AXIS]; planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz); SERIAL_ECHOLNPGM(" (enabled)"); SERIAL_ECHOPAIR("MBL Adjustment Z", lz); } else SERIAL_ECHOPGM(" (disabled)"); SERIAL_EOL; #endif // MESH_BED_LEVELING } #endif // DEBUG_LEVELING_FEATURE #if ENABLED(DELTA) /** * A delta can only safely home all axes at the same time * This is like quick_home_xy() but for 3 towers. */ inline void home_delta() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position); #endif // Init the current position of all carriages to 0,0,0 ZERO(current_position); sync_plan_position(); // Move all carriages together linearly until an endstop is hit. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10); feedrate_mm_s = homing_feedrate_mm_s[X_AXIS]; line_to_current_position(); stepper.synchronize(); endstops.hit_on_purpose(); // clear endstop hit flags // At least one carriage has reached the top. // Now re-home each carriage separately. HOMEAXIS(A); HOMEAXIS(B); HOMEAXIS(C); // Set all carriages to their home positions // Do this here all at once for Delta, because // XYZ isn't ABC. Applying this per-tower would // give the impression that they are the same. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i); SYNC_PLAN_POSITION_KINEMATIC(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position); #endif } #endif // DELTA #if ENABLED(Z_SAFE_HOMING) inline void home_z_safely() { // Disallow Z homing if X or Y are unknown if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) { LCD_MESSAGEPGM(MSG_ERR_Z_HOMING); SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING); return; } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>"); #endif SYNC_PLAN_POSITION_KINEMATIC(); /** * Move the Z probe (or just the nozzle) to the safe homing point */ destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT); destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT); destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height if (position_is_reachable( destination #if HOMING_Z_WITH_PROBE , true #endif ) ) { #if HOMING_Z_WITH_PROBE destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER; destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER; #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination); #endif // This causes the carriage on Dual X to unpark #if ENABLED(DUAL_X_CARRIAGE) active_extruder_parked = false; #endif do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]); HOMEAXIS(Z); } else { LCD_MESSAGEPGM(MSG_ZPROBE_OUT); SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT); } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING"); #endif } #endif // Z_SAFE_HOMING #if ENABLED(PROBE_MANUALLY) bool g29_in_progress = false; #else constexpr bool g29_in_progress = false; #endif /** * G28: Home all axes according to settings * * Parameters * * None Home to all axes with no parameters. * With QUICK_HOME enabled XY will home together, then Z. * * Cartesian parameters * * X Home to the X endstop * Y Home to the Y endstop * Z Home to the Z endstop * */ inline void gcode_G28() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM(">>> gcode_G28"); log_machine_info(); } #endif // Wait for planner moves to finish! stepper.synchronize(); // Cancel the active G29 session #if ENABLED(PROBE_MANUALLY) g29_in_progress = false; #endif // Disable the leveling matrix before homing #if HAS_LEVELING set_bed_leveling_enabled(false); #endif // Always home with tool 0 active #if HOTENDS > 1 const uint8_t old_tool_index = active_extruder; tool_change(0, 0, true); #endif #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE) extruder_duplication_enabled = false; #endif setup_for_endstop_or_probe_move(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)"); #endif endstops.enable(true); // Enable endstops for next homing move #if ENABLED(DELTA) home_delta(); #else // NOT DELTA const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'), home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ); set_destination_to_current(); #if Z_HOME_DIR > 0 // If homing away from BED do Z first if (home_all_axis || homeZ) { HOMEAXIS(Z); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position); #endif } #else if (home_all_axis || homeX || homeY) { // Raise Z before homing any other axes and z is not already high enough (never lower z) destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT); if (destination[Z_AXIS] > current_position[Z_AXIS]) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]); #endif do_blocking_move_to_z(destination[Z_AXIS]); } } #endif #if ENABLED(QUICK_HOME) if (home_all_axis || (homeX && homeY)) quick_home_xy(); #endif #if ENABLED(HOME_Y_BEFORE_X) // Home Y if (home_all_axis || homeY) { HOMEAXIS(Y); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position); #endif } #endif // Home X if (home_all_axis || homeX) { #if ENABLED(DUAL_X_CARRIAGE) // Always home the 2nd (right) extruder first active_extruder = 1; HOMEAXIS(X); // Remember this extruder's position for later tool change inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]); // Home the 1st (left) extruder active_extruder = 0; HOMEAXIS(X); // Consider the active extruder to be parked COPY(raised_parked_position, current_position); delayed_move_time = 0; active_extruder_parked = true; #else HOMEAXIS(X); #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position); #endif } #if DISABLED(HOME_Y_BEFORE_X) // Home Y if (home_all_axis || homeY) { HOMEAXIS(Y); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position); #endif } #endif // Home Z last if homing towards the bed #if Z_HOME_DIR < 0 if (home_all_axis || homeZ) { #if ENABLED(Z_SAFE_HOMING) home_z_safely(); #else HOMEAXIS(Z); #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position); #endif } // home_all_axis || homeZ #endif // Z_HOME_DIR < 0 SYNC_PLAN_POSITION_KINEMATIC(); #endif // !DELTA (gcode_G28) endstops.not_homing(); #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE) // move to a height where we can use the full xy-area do_blocking_move_to_z(delta_clip_start_height); #endif clean_up_after_endstop_or_probe_move(); // Restore the active tool after homing #if HOTENDS > 1 tool_change(old_tool_index, 0, true); #endif report_current_position(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28"); #endif } // G28 void home_all_axes() { gcode_G28(); } #if HAS_PROBING_PROCEDURE void out_of_range_error(const char* p_edge) { SERIAL_PROTOCOLPGM("?Probe "); serialprintPGM(p_edge); SERIAL_PROTOCOLLNPGM(" position out of range."); } #endif #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY) inline void _manual_goto_xy(const float &x, const float &y) { const float old_feedrate_mm_s = feedrate_mm_s; #if MANUAL_PROBE_HEIGHT > 0 feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS]; current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT; line_to_current_position(); #endif feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED); current_position[X_AXIS] = LOGICAL_X_POSITION(x); current_position[Y_AXIS] = LOGICAL_Y_POSITION(y); line_to_current_position(); #if MANUAL_PROBE_HEIGHT > 0 feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS]; current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed line_to_current_position(); #endif feedrate_mm_s = old_feedrate_mm_s; stepper.synchronize(); } #endif #if ENABLED(MESH_BED_LEVELING) // Save 130 bytes with non-duplication of PSTR void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); } void mbl_mesh_report() { SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y)); SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5); SERIAL_PROTOCOLLNPGM("\nMeasured points:"); print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5, [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; } ); } void mesh_probing_done() { mbl.set_has_mesh(true); home_all_axes(); set_bed_leveling_enabled(true); #if ENABLED(MESH_G28_REST_ORIGIN) current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS); set_destination_to_current(); line_to_destination(homing_feedrate_mm_s[Z_AXIS]); stepper.synchronize(); #endif } /** * G29: Mesh-based Z probe, probes a grid and produces a * mesh to compensate for variable bed height * * Parameters With MESH_BED_LEVELING: * * S0 Produce a mesh report * S1 Start probing mesh points * S2 Probe the next mesh point * S3 Xn Yn Zn.nn Manually modify a single point * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed. * S5 Reset and disable mesh * * The S0 report the points as below * * +----> X-axis 1-n * | * | * v Y-axis 1-n * */ inline void gcode_G29() { static int mbl_probe_index = -1; #if HAS_SOFTWARE_ENDSTOPS static bool enable_soft_endstops; #endif const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport; if (!WITHIN(state, 0, 5)) { SERIAL_PROTOCOLLNPGM("S out of range (0-5)."); return; } int8_t px, py; switch (state) { case MeshReport: if (mbl.has_mesh()) { SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF); mbl_mesh_report(); } else SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data."); break; case MeshStart: mbl.reset(); mbl_probe_index = 0; enqueue_and_echo_commands_P(PSTR("G28\nG29 S2")); break; case MeshNext: if (mbl_probe_index < 0) { SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first."); return; } // For each G29 S2... if (mbl_probe_index == 0) { #if HAS_SOFTWARE_ENDSTOPS // For the initial G29 S2 save software endstop state enable_soft_endstops = soft_endstops_enabled; #endif } else { // For G29 S2 after adjusting Z. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]); #if HAS_SOFTWARE_ENDSTOPS soft_endstops_enabled = enable_soft_endstops; #endif } // If there's another point to sample, move there with optional lift. if (mbl_probe_index < (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)) { mbl.zigzag(mbl_probe_index, px, py); _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]); #if HAS_SOFTWARE_ENDSTOPS // Disable software endstops to allow manual adjustment // If G29 is not completed, they will not be re-enabled soft_endstops_enabled = false; #endif mbl_probe_index++; } else { // One last "return to the bed" (as originally coded) at completion current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT; line_to_current_position(); stepper.synchronize(); // After recording the last point, activate home and activate mbl_probe_index = -1; SERIAL_PROTOCOLLNPGM("Mesh probing done."); BUZZ(100, 659); BUZZ(100, 698); mesh_probing_done(); } break; case MeshSet: if (code_seen('X')) { px = code_value_int() - 1; if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) { SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ")."); return; } } else { SERIAL_CHAR('X'); say_not_entered(); return; } if (code_seen('Y')) { py = code_value_int() - 1; if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) { SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ")."); return; } } else { SERIAL_CHAR('Y'); say_not_entered(); return; } if (code_seen('Z')) { mbl.z_values[px][py] = code_value_linear_units(); } else { SERIAL_CHAR('Z'); say_not_entered(); return; } break; case MeshSetZOffset: if (code_seen('Z')) { mbl.z_offset = code_value_linear_units(); } else { SERIAL_CHAR('Z'); say_not_entered(); return; } break; case MeshReset: reset_bed_level(); break; } // switch(state) report_current_position(); } #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL) #if ABL_GRID #if ENABLED(PROBE_Y_FIRST) #define PR_OUTER_VAR xCount #define PR_OUTER_END abl_grid_points_x #define PR_INNER_VAR yCount #define PR_INNER_END abl_grid_points_y #else #define PR_OUTER_VAR yCount #define PR_OUTER_END abl_grid_points_y #define PR_INNER_VAR xCount #define PR_INNER_END abl_grid_points_x #endif #endif /** * G29: Detailed Z probe, probes the bed at 3 or more points. * Will fail if the printer has not been homed with G28. * * Enhanced G29 Auto Bed Leveling Probe Routine * * D Dry-Run mode. Just evaluate the bed Topology - Don't apply * or alter the bed level data. Useful to check the topology * after a first run of G29. * * J Jettison current bed leveling data * * V Set the verbose level (0-4). Example: "G29 V3" * * Parameters With LINEAR leveling only: * * P Set the size of the grid that will be probed (P x P points). * Example: "G29 P4" * * X Set the X size of the grid that will be probed (X x Y points). * Example: "G29 X7 Y5" * * Y Set the Y size of the grid that will be probed (X x Y points). * * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report. * This is useful for manual bed leveling and finding flaws in the bed (to * assist with part placement). * Not supported by non-linear delta printer bed leveling. * * Parameters With LINEAR and BILINEAR leveling only: * * S Set the XY travel speed between probe points (in units/min) * * F Set the Front limit of the probing grid * B Set the Back limit of the probing grid * L Set the Left limit of the probing grid * R Set the Right limit of the probing grid * * Parameters with DEBUG_LEVELING_FEATURE only: * * C Make a totally fake grid with no actual probing. * For use in testing when no probing is possible. * * Parameters with BILINEAR leveling only: * * Z Supply an additional Z probe offset * * Extra parameters with PROBE_MANUALLY: * * To do manual probing simply repeat G29 until the procedure is complete. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort. * * Q Query leveling and G29 state * * A Abort current leveling procedure * * W Write a mesh point. (Ignored during leveling.) * X Required X for mesh point * Y Required Y for mesh point * Z Required Z for mesh point * * Without PROBE_MANUALLY: * * E By default G29 will engage the Z probe, test the bed, then disengage. * Include "E" to engage/disengage the Z probe for each sample. * There's no extra effect if you have a fixed Z probe. * */ inline void gcode_G29() { // G29 Q is also available if debugging #if ENABLED(DEBUG_LEVELING_FEATURE) const bool query = code_seen('Q'); const uint8_t old_debug_flags = marlin_debug_flags; if (query) marlin_debug_flags |= DEBUG_LEVELING; if (DEBUGGING(LEVELING)) { DEBUG_POS(">>> gcode_G29", current_position); log_machine_info(); } marlin_debug_flags = old_debug_flags; #if DISABLED(PROBE_MANUALLY) if (query) return; #endif #endif #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY) const bool faux = code_seen('C') && code_value_bool(); #else bool constexpr faux = false; #endif // Don't allow auto-leveling without homing first if (axis_unhomed_error(true, true, true)) return; // Define local vars 'static' for manual probing, 'auto' otherwise #if ENABLED(PROBE_MANUALLY) #define ABL_VAR static #else #define ABL_VAR #endif ABL_VAR int verbose_level; ABL_VAR float xProbe, yProbe, measured_z; ABL_VAR bool dryrun, abl_should_enable; #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR) ABL_VAR int abl_probe_index; #endif #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY) ABL_VAR bool enable_soft_endstops = true; #endif #if ABL_GRID #if ENABLED(PROBE_MANUALLY) ABL_VAR uint8_t PR_OUTER_VAR; ABL_VAR int8_t PR_INNER_VAR; #endif ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position; ABL_VAR float xGridSpacing, yGridSpacing; #define ABL_GRID_MAX (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y) #if ABL_PLANAR ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X, abl_grid_points_y = GRID_MAX_POINTS_Y; ABL_VAR bool do_topography_map; #else // 3-point uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X, abl_grid_points_y = GRID_MAX_POINTS_Y; #endif #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY) #if ABL_PLANAR ABL_VAR int abl2; #else // 3-point int constexpr abl2 = ABL_GRID_MAX; #endif #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) ABL_VAR float zoffset; #elif ENABLED(AUTO_BED_LEVELING_LINEAR) ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations eqnBVector[ABL_GRID_MAX], // "B" vector of Z points mean; #endif #elif ENABLED(AUTO_BED_LEVELING_3POINT) // Probe at 3 arbitrary points ABL_VAR vector_3 points[3] = { vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0), vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0), vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0) }; #endif // AUTO_BED_LEVELING_3POINT /** * On the initial G29 fetch command parameters. */ if (!g29_in_progress) { #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR) abl_probe_index = 0; #endif abl_should_enable = planner.abl_enabled; #if ENABLED(AUTO_BED_LEVELING_BILINEAR) if (code_seen('W')) { if (!bilinear_grid_spacing[X_AXIS]) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("No bilinear grid"); return; } const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999; if (!WITHIN(z, -10, 10)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Bad Z value"); return; } const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999, y = code_seen('Y') && code_has_value() ? code_value_float() : 99999; int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1, j = code_seen('J') && code_has_value() ? code_value_byte() : -1; if (x < 99998 && y < 99998) { // Get nearest i / j from x / y i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing; j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing; i = constrain(i, 0, GRID_MAX_POINTS_X - 1); j = constrain(j, 0, GRID_MAX_POINTS_Y - 1); } if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) { set_bed_leveling_enabled(false); z_values[i][j] = z; #if ENABLED(ABL_BILINEAR_SUBDIVISION) bed_level_virt_interpolate(); #endif set_bed_leveling_enabled(abl_should_enable); } return; } // code_seen('W') #endif #if HAS_LEVELING // Jettison bed leveling data if (code_seen('J')) { reset_bed_level(); return; } #endif verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0; if (!WITHIN(verbose_level, 0, 4)) { SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4)."); return; } dryrun = code_seen('D') && code_value_bool(); #if ENABLED(AUTO_BED_LEVELING_LINEAR) do_topography_map = verbose_level > 2 || code_seen('T'); // X and Y specify points in each direction, overriding the default // These values may be saved with the completed mesh abl_grid_points_x = code_seen('X') ? code_value_int() : GRID_MAX_POINTS_X; abl_grid_points_y = code_seen('Y') ? code_value_int() : GRID_MAX_POINTS_Y; if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int(); if (abl_grid_points_x < 2 || abl_grid_points_y < 2) { SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum)."); return; } abl2 = abl_grid_points_x * abl_grid_points_y; #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) zoffset = code_seen('Z') ? code_value_linear_units() : 0; #endif #if ABL_GRID xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED); left_probe_bed_position = code_seen('L') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION); right_probe_bed_position = code_seen('R') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION); front_probe_bed_position = code_seen('F') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION); back_probe_bed_position = code_seen('B') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION); const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X), left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE), right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X), right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE, front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y), front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE), back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y), back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE; if (left_out || right_out || front_out || back_out) { if (left_out) { out_of_range_error(PSTR("(L)eft")); left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE); } if (right_out) { out_of_range_error(PSTR("(R)ight")); right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE; } if (front_out) { out_of_range_error(PSTR("(F)ront")); front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE); } if (back_out) { out_of_range_error(PSTR("(B)ack")); back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE; } return; } // probe at the points of a lattice grid xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1); yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1); #endif // ABL_GRID if (verbose_level > 0) { SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling"); if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode"); } stepper.synchronize(); // Disable auto bed leveling during G29 planner.abl_enabled = false; if (!dryrun) { // Re-orient the current position without leveling // based on where the steppers are positioned. set_current_from_steppers_for_axis(ALL_AXES); // Sync the planner to where the steppers stopped SYNC_PLAN_POSITION_KINEMATIC(); } if (!faux) setup_for_endstop_or_probe_move(); //xProbe = yProbe = measured_z = 0; #if HAS_BED_PROBE // Deploy the probe. Probe will raise if needed. if (DEPLOY_PROBE()) { planner.abl_enabled = abl_should_enable; return; } #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) if ( xGridSpacing != bilinear_grid_spacing[X_AXIS] || yGridSpacing != bilinear_grid_spacing[Y_AXIS] || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS]) || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) ) { if (dryrun) { // Before reset bed level, re-enable to correct the position planner.abl_enabled = abl_should_enable; } // Reset grid to 0.0 or "not probed". (Also disables ABL) reset_bed_level(); // Initialize a grid with the given dimensions bilinear_grid_spacing[X_AXIS] = xGridSpacing; bilinear_grid_spacing[Y_AXIS] = yGridSpacing; bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position); bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position); // Can't re-enable (on error) until the new grid is written abl_should_enable = false; } #elif ENABLED(AUTO_BED_LEVELING_LINEAR) mean = 0.0; #endif // AUTO_BED_LEVELING_LINEAR #if ENABLED(AUTO_BED_LEVELING_3POINT) #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling"); #endif // Probe at 3 arbitrary points points[0].z = points[1].z = points[2].z = 0; #endif // AUTO_BED_LEVELING_3POINT } // !g29_in_progress #if ENABLED(PROBE_MANUALLY) // Abort current G29 procedure, go back to ABLStart if (code_seen('A') && g29_in_progress) { SERIAL_PROTOCOLLNPGM("Manual G29 aborted"); #if HAS_SOFTWARE_ENDSTOPS soft_endstops_enabled = enable_soft_endstops; #endif planner.abl_enabled = abl_should_enable; g29_in_progress = false; } // Query G29 status if (code_seen('Q')) { if (!g29_in_progress) SERIAL_PROTOCOLLNPGM("Manual G29 idle"); else { SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1); SERIAL_PROTOCOLLNPAIR(" of ", abl2); } } if (code_seen('A') || code_seen('Q')) return; // Fall through to probe the first point g29_in_progress = true; if (abl_probe_index == 0) { // For the initial G29 save software endstop state #if HAS_SOFTWARE_ENDSTOPS enable_soft_endstops = soft_endstops_enabled; #endif } else { // For G29 after adjusting Z. // Save the previous Z before going to the next point measured_z = current_position[Z_AXIS]; #if ENABLED(AUTO_BED_LEVELING_LINEAR) mean += measured_z; eqnBVector[abl_probe_index] = measured_z; eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe; eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe; eqnAMatrix[abl_probe_index + 2 * abl2] = 1; #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) z_values[xCount][yCount] = measured_z + zoffset; #elif ENABLED(AUTO_BED_LEVELING_3POINT) points[i].z = measured_z; #endif } // // If there's another point to sample, move there with optional lift. // #if ABL_GRID // Find a next point to probe // On the first G29 this will be the first probe point while (abl_probe_index < abl2) { // Set xCount, yCount based on abl_probe_index, with zig-zag PR_OUTER_VAR = abl_probe_index / PR_INNER_END; PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END); bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1); if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR; const float xBase = left_probe_bed_position + xGridSpacing * xCount, yBase = front_probe_bed_position + yGridSpacing * yCount; xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5)); yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5)); #if ENABLED(AUTO_BED_LEVELING_LINEAR) indexIntoAB[xCount][yCount] = abl_probe_index; #endif float pos[XYZ] = { xProbe, yProbe, 0 }; if (position_is_reachable(pos)) break; ++abl_probe_index; } // Is there a next point to move to? if (abl_probe_index < abl2) { _manual_goto_xy(xProbe, yProbe); // Can be used here too! ++abl_probe_index; #if HAS_SOFTWARE_ENDSTOPS // Disable software endstops to allow manual adjustment // If G29 is not completed, they will not be re-enabled soft_endstops_enabled = false; #endif return; } else { // Then leveling is done! // G29 finishing code goes here // After recording the last point, activate abl SERIAL_PROTOCOLLNPGM("Grid probing done."); g29_in_progress = false; // Re-enable software endstops, if needed #if HAS_SOFTWARE_ENDSTOPS soft_endstops_enabled = enable_soft_endstops; #endif } #elif ENABLED(AUTO_BED_LEVELING_3POINT) // Probe at 3 arbitrary points if (abl_probe_index < 3) { xProbe = LOGICAL_X_POSITION(points[i].x); yProbe = LOGICAL_Y_POSITION(points[i].y); ++abl_probe_index; #if HAS_SOFTWARE_ENDSTOPS // Disable software endstops to allow manual adjustment // If G29 is not completed, they will not be re-enabled soft_endstops_enabled = false; #endif return; } else { SERIAL_PROTOCOLLNPGM("3-point probing done."); g29_in_progress = false; // Re-enable software endstops, if needed #if HAS_SOFTWARE_ENDSTOPS soft_endstops_enabled = enable_soft_endstops; #endif if (!dryrun) { vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal(); if (planeNormal.z < 0) { planeNormal.x *= -1; planeNormal.y *= -1; planeNormal.z *= -1; } planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal); // Can't re-enable (on error) until the new grid is written abl_should_enable = false; } } #endif // AUTO_BED_LEVELING_3POINT #else // !PROBE_MANUALLY bool stow_probe_after_each = code_seen('E'); #if ABL_GRID bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION // Outer loop is Y with PROBE_Y_FIRST disabled for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) { int8_t inStart, inStop, inInc; if (zig) { // away from origin inStart = 0; inStop = PR_INNER_END; inInc = 1; } else { // towards origin inStart = PR_INNER_END - 1; inStop = -1; inInc = -1; } zig ^= true; // zag // Inner loop is Y with PROBE_Y_FIRST enabled for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) { float xBase = left_probe_bed_position + xGridSpacing * xCount, yBase = front_probe_bed_position + yGridSpacing * yCount; xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5)); yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5)); #if ENABLED(AUTO_BED_LEVELING_LINEAR) indexIntoAB[xCount][yCount] = ++abl_probe_index; #endif #if IS_KINEMATIC // Avoid probing outside the round or hexagonal area const float pos[XYZ] = { xProbe, yProbe, 0 }; if (!position_is_reachable(pos, true)) continue; #endif measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level); if (isnan(measured_z)) { planner.abl_enabled = abl_should_enable; return; } #if ENABLED(AUTO_BED_LEVELING_LINEAR) mean += measured_z; eqnBVector[abl_probe_index] = measured_z; eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe; eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe; eqnAMatrix[abl_probe_index + 2 * abl2] = 1; #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) z_values[xCount][yCount] = measured_z + zoffset; #endif abl_should_enable = false; idle(); } // inner } // outer #elif ENABLED(AUTO_BED_LEVELING_3POINT) // Probe at 3 arbitrary points for (uint8_t i = 0; i < 3; ++i) { // Retain the last probe position xProbe = LOGICAL_X_POSITION(points[i].x); yProbe = LOGICAL_Y_POSITION(points[i].y); measured_z = points[i].z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level); } if (isnan(measured_z)) { planner.abl_enabled = abl_should_enable; return; } if (!dryrun) { vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal(); if (planeNormal.z < 0) { planeNormal.x *= -1; planeNormal.y *= -1; planeNormal.z *= -1; } planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal); // Can't re-enable (on error) until the new grid is written abl_should_enable = false; } #endif // AUTO_BED_LEVELING_3POINT // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe. if (STOW_PROBE()) { planner.abl_enabled = abl_should_enable; return; } #endif // !PROBE_MANUALLY // // G29 Finishing Code // // Unless this is a dry run, auto bed leveling will // definitely be enabled after this point // // Restore state after probing if (!faux) clean_up_after_endstop_or_probe_move(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position); #endif // Calculate leveling, print reports, correct the position #if ENABLED(AUTO_BED_LEVELING_BILINEAR) if (!dryrun) extrapolate_unprobed_bed_level(); print_bilinear_leveling_grid(); refresh_bed_level(); #if ENABLED(ABL_BILINEAR_SUBDIVISION) bed_level_virt_print(); #endif #elif ENABLED(AUTO_BED_LEVELING_LINEAR) // For LINEAR leveling calculate matrix, print reports, correct the position /** * solve the plane equation ax + by + d = z * A is the matrix with rows [x y 1] for all the probed points * B is the vector of the Z positions * the normal vector to the plane is formed by the coefficients of the * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0 * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z */ float plane_equation_coefficients[3]; qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector); mean /= abl2; if (verbose_level) { SERIAL_PROTOCOLPGM("Eqn coefficients: a: "); SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8); SERIAL_PROTOCOLPGM(" b: "); SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8); SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8); SERIAL_EOL; if (verbose_level > 2) { SERIAL_PROTOCOLPGM("Mean of sampled points: "); SERIAL_PROTOCOL_F(mean, 8); SERIAL_EOL; } } // Create the matrix but don't correct the position yet if (!dryrun) { planner.bed_level_matrix = matrix_3x3::create_look_at( vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) ); } // Show the Topography map if enabled if (do_topography_map) { SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n" " +--- BACK --+\n" " | |\n" " L | (+) | R\n" " E | | I\n" " F | (-) N (+) | G\n" " T | | H\n" " | (-) | T\n" " | |\n" " O-- FRONT --+\n" " (0,0)"); float min_diff = 999; for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) { for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) { int ind = indexIntoAB[xx][yy]; float diff = eqnBVector[ind] - mean, x_tmp = eqnAMatrix[ind + 0 * abl2], y_tmp = eqnAMatrix[ind + 1 * abl2], z_tmp = 0; apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp); NOMORE(min_diff, eqnBVector[ind] - z_tmp); if (diff >= 0.0) SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment else SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOL_F(diff, 5); } // xx SERIAL_EOL; } // yy SERIAL_EOL; if (verbose_level > 3) { SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:"); for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) { for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) { int ind = indexIntoAB[xx][yy]; float x_tmp = eqnAMatrix[ind + 0 * abl2], y_tmp = eqnAMatrix[ind + 1 * abl2], z_tmp = 0; apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp); float diff = eqnBVector[ind] - z_tmp - min_diff; if (diff >= 0.0) SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment else SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOL_F(diff, 5); } // xx SERIAL_EOL; } // yy SERIAL_EOL; } } //do_topography_map #endif // AUTO_BED_LEVELING_LINEAR #if ABL_PLANAR // For LINEAR and 3POINT leveling correct the current position if (verbose_level > 0) planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:")); if (!dryrun) { // // Correct the current XYZ position based on the tilted plane. // #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position); #endif float converted[XYZ]; COPY(converted, current_position); planner.abl_enabled = true; planner.unapply_leveling(converted); // use conversion machinery planner.abl_enabled = false; // Use the last measured distance to the bed, if possible if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER)) && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER)) ) { float simple_z = current_position[Z_AXIS] - measured_z; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("Z from Probe:", simple_z); SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]); SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]); } #endif converted[Z_AXIS] = simple_z; } // The rotated XY and corrected Z are now current_position COPY(current_position, converted); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position); #endif } #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) if (!dryrun) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]); #endif // Unapply the offset because it is going to be immediately applied // and cause compensation movement in Z current_position[Z_AXIS] -= bilinear_z_offset(current_position); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]); #endif } #endif // ABL_PLANAR #ifdef Z_PROBE_END_SCRIPT #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT); #endif enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT)); stepper.synchronize(); #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29"); #endif report_current_position(); KEEPALIVE_STATE(IN_HANDLER); // Auto Bed Leveling is complete! Enable if possible. planner.abl_enabled = dryrun ? abl_should_enable : true; if (planner.abl_enabled) SYNC_PLAN_POSITION_KINEMATIC(); } #endif // HAS_ABL && !AUTO_BED_LEVELING_UBL #if HAS_BED_PROBE /** * G30: Do a single Z probe at the current XY * * Parameters: * * X Probe X position (default current X) * Y Probe Y position (default current Y) * S0 Leave the probe deployed */ inline void gcode_G30() { const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER, ypos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER, pos[XYZ] = { xpos, ypos, LOGICAL_Z_POSITION(0) }; if (!position_is_reachable(pos, true)) return; // Disable leveling so the planner won't mess with us #if HAS_LEVELING set_bed_leveling_enabled(false); #endif setup_for_endstop_or_probe_move(); const float measured_z = probe_pt(xpos, ypos, !code_seen('S') || code_value_bool(), 1); SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos)); SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos)); SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z)); clean_up_after_endstop_or_probe_move(); report_current_position(); } #if ENABLED(Z_PROBE_SLED) /** * G31: Deploy the Z probe */ inline void gcode_G31() { DEPLOY_PROBE(); } /** * G32: Stow the Z probe */ inline void gcode_G32() { STOW_PROBE(); } #endif // Z_PROBE_SLED #if ENABLED(DELTA_AUTO_CALIBRATION) /** * G33 - Delta '1-4-7-point' Auto-Calibration * Calibrate height, endstops, delta radius, and tower angles. * * Parameters: * * P Number of probe points: * * P1 Probe center and set height only. * P2 Probe center and towers. Set height, endstops, and delta radius. * P3 Probe all positions: center, towers and opposite towers. Set all. * P4-P7 Probe all positions at different locations and average them. * * A Abort delta height calibration after 1 probe (only P1) * * O Use opposite tower points instead of tower points (only P2) * * T Don't calibrate tower angle corrections (P3-P7) * * V Verbose level: * * V0 Dry-run mode. Report settings and probe results. No calibration. * V1 Report settings * V2 Report settings and probe results */ inline void gcode_G33() { const int8_t probe_points = code_seen('P') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS; if (!WITHIN(probe_points, 1, 7)) { SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (1 to 7)."); return; } const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1; if (!WITHIN(verbose_level, 0, 2)) { SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-2)."); return; } const bool do_height_only = probe_points == 1, do_center_and_towers = probe_points == 2, do_all_positions = probe_points == 3, do_circle_x2 = probe_points == 5, do_circle_x3 = probe_points == 6, do_circle_x4 = probe_points == 7, probe_center_plus_3 = probe_points >= 3, point_averaging = probe_points >= 4, probe_center_plus_6 = probe_points >= 5; const char negating_parameter = do_height_only ? 'A' : do_center_and_towers ? 'O' : 'T'; int8_t probe_mode = code_seen(negating_parameter) && code_value_bool() ? -probe_points : probe_points; SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate"); #if HAS_LEVELING set_bed_leveling_enabled(false); #endif home_all_axes(); const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h"; float test_precision, zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end e_old[XYZ] = { endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS] }, dr_old = delta_radius, zh_old = home_offset[Z_AXIS], alpha_old = delta_tower_angle_trim[A_AXIS], beta_old = delta_tower_angle_trim[B_AXIS]; // print settings SERIAL_PROTOCOLPGM("Checking... AC"); if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)"); SERIAL_EOL; LCD_MESSAGEPGM("Checking... AC"); SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); if (!do_height_only) { SERIAL_PROTOCOLPGM(" Ex:"); if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2); SERIAL_PROTOCOLPGM(" Ey:"); if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2); SERIAL_PROTOCOLPGM(" Ez:"); if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2); SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); } SERIAL_EOL; if (probe_mode > 2) { // negative disables tower angles SERIAL_PROTOCOLPGM(".Tower angle : Tx:"); if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2); SERIAL_PROTOCOLPGM(" Ty:"); if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2); SERIAL_PROTOCOLPGM(" Tz:+0.00"); SERIAL_EOL; } #if ENABLED(Z_PROBE_SLED) DEPLOY_PROBE(); #endif int8_t iterations = 0; do { float z_at_pt[13] = { 0 }, S1 = 0.0, S2 = 0.0; int16_t N = 0; test_precision = zero_std_dev; iterations++; // Probe the points if (!do_all_positions && !do_circle_x3) { // probe the center setup_for_endstop_or_probe_move(); z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1); clean_up_after_endstop_or_probe_move(); } if (probe_center_plus_3) { // probe extra center points for (int8_t axis = probe_center_plus_6 ? 11 : 9; axis > 0; axis -= probe_center_plus_6 ? 2 : 4) { setup_for_endstop_or_probe_move(); z_at_pt[0] += probe_pt( cos(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), sin(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), true, 1); clean_up_after_endstop_or_probe_move(); } z_at_pt[0] /= float(do_circle_x2 ? 7 : probe_points); } if (!do_height_only) { // probe the radius bool zig_zag = true; for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13; axis += (do_center_and_towers ? 4 : do_all_positions ? 2 : 1)) { float offset_circles = (do_circle_x4 ? (zig_zag ? 1.5 : 1.0) : do_circle_x3 ? (zig_zag ? 1.0 : 0.5) : do_circle_x2 ? (zig_zag ? 0.5 : 0.0) : 0); for (float circles = -offset_circles ; circles <= offset_circles; circles++) { setup_for_endstop_or_probe_move(); z_at_pt[axis] += probe_pt( cos(RADIANS(180 + 30 * axis)) * delta_calibration_radius * (1 + circles * 0.1 * (zig_zag ? 1 : -1)), sin(RADIANS(180 + 30 * axis)) * delta_calibration_radius * (1 + circles * 0.1 * (zig_zag ? 1 : -1)), true, 1); clean_up_after_endstop_or_probe_move(); } zig_zag = !zig_zag; z_at_pt[axis] /= (2 * offset_circles + 1); } } if (point_averaging) // average intermediates to tower and opposites for (uint8_t axis = 1; axis <= 11; axis += 2) z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; S1 += z_at_pt[0]; S2 += sq(z_at_pt[0]); N++; if (!do_height_only) // std dev from zero plane for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13; axis += (do_center_and_towers ? 4 : 2)) { S1 += z_at_pt[axis]; S2 += sq(z_at_pt[axis]); N++; } zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // Solve matrices if (zero_std_dev < test_precision) { COPY(e_old, endstop_adj); dr_old = delta_radius; zh_old = home_offset[Z_AXIS]; alpha_old = delta_tower_angle_trim[A_AXIS]; beta_old = delta_tower_angle_trim[B_AXIS]; float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0; const float r_diff = delta_radius - delta_calibration_radius, h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm #define ZP(N,I) ((N) * z_at_pt[I]) #define Z1000(I) ZP(1.00, I) #define Z1050(I) ZP(h_factor, I) #define Z0700(I) ZP(h_factor * 2.0 / 3.00, I) #define Z0350(I) ZP(h_factor / 3.00, I) #define Z0175(I) ZP(h_factor / 6.00, I) #define Z2250(I) ZP(r_factor, I) #define Z0750(I) ZP(r_factor / 3.00, I) #define Z0375(I) ZP(r_factor / 6.00, I) #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I) #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I) switch (probe_mode) { case -1: test_precision = 0.00; case 1: LOOP_XYZ(i) e_delta[i] = Z1000(0); break; case 2: e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9); e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9); e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9); r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9); break; case -2: e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3); e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3); e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3); r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3); break; default: e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3); e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3); e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3); r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3); if (probe_mode > 0) { // negative disables tower angles t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3); t_beta = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3); } break; } LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis]; delta_radius += r_delta; delta_tower_angle_trim[A_AXIS] += t_alpha; delta_tower_angle_trim[B_AXIS] -= t_beta; // adjust delta_height and endstops by the max amount const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]); home_offset[Z_AXIS] -= z_temp; LOOP_XYZ(i) endstop_adj[i] -= z_temp; recalc_delta_settings(delta_radius, delta_diagonal_rod); } else { // step one back COPY(endstop_adj, e_old); delta_radius = dr_old; home_offset[Z_AXIS] = zh_old; delta_tower_angle_trim[A_AXIS] = alpha_old; delta_tower_angle_trim[B_AXIS] = beta_old; recalc_delta_settings(delta_radius, delta_diagonal_rod); } // print report if (verbose_level != 1) { SERIAL_PROTOCOLPGM(". c:"); if (z_at_pt[0] > 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[0], 2); if (probe_mode == 2 || probe_center_plus_3) { SERIAL_PROTOCOLPGM(" x:"); if (z_at_pt[1] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[1], 2); SERIAL_PROTOCOLPGM(" y:"); if (z_at_pt[5] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[5], 2); SERIAL_PROTOCOLPGM(" z:"); if (z_at_pt[9] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[9], 2); } if (probe_mode != -2) SERIAL_EOL; if (probe_mode == -2 || probe_center_plus_3) { if (probe_center_plus_3) { SERIAL_CHAR('.'); SERIAL_PROTOCOL_SP(13); } SERIAL_PROTOCOLPGM(" yz:"); if (z_at_pt[7] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[7], 2); SERIAL_PROTOCOLPGM(" zx:"); if (z_at_pt[11] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[11], 2); SERIAL_PROTOCOLPGM(" xy:"); if (z_at_pt[3] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[3], 2); SERIAL_EOL; } } if (test_precision != 0.0) { // !forced end if (zero_std_dev >= test_precision) { // end iterations SERIAL_PROTOCOLPGM("Calibration OK"); SERIAL_PROTOCOL_SP(36); SERIAL_PROTOCOLPGM("rolling back."); SERIAL_EOL; LCD_MESSAGEPGM("Calibration OK"); } else { // !end iterations char mess[15] = "No convergence"; if (iterations < 31) sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations); SERIAL_PROTOCOL(mess); SERIAL_PROTOCOL_SP(36); SERIAL_PROTOCOLPGM("std dev:"); SERIAL_PROTOCOL_F(zero_std_dev, 3); SERIAL_EOL; lcd_setstatus(mess); } SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); if (!do_height_only) { SERIAL_PROTOCOLPGM(" Ex:"); if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2); SERIAL_PROTOCOLPGM(" Ey:"); if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2); SERIAL_PROTOCOLPGM(" Ez:"); if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2); SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); } SERIAL_EOL; if (probe_mode > 2) { // negative disables tower angles SERIAL_PROTOCOLPGM(".Tower angle : Tx:"); if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2); SERIAL_PROTOCOLPGM(" Ty:"); if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2); SERIAL_PROTOCOLPGM(" Tz:+0.00"); SERIAL_EOL; } if (zero_std_dev >= test_precision) serialprintPGM(save_message); SERIAL_EOL; } else { // forced end if (verbose_level == 0) { SERIAL_PROTOCOLPGM("End DRY-RUN"); SERIAL_PROTOCOL_SP(39); SERIAL_PROTOCOLPGM("std dev:"); SERIAL_PROTOCOL_F(zero_std_dev, 3); SERIAL_EOL; } else { SERIAL_PROTOCOLLNPGM("Calibration OK"); LCD_MESSAGEPGM("Calibration OK"); SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); SERIAL_EOL; serialprintPGM(save_message); SERIAL_EOL; } } stepper.synchronize(); home_all_axes(); } while (zero_std_dev < test_precision && iterations < 31); #if ENABLED(Z_PROBE_SLED) RETRACT_PROBE(); #endif } #endif // DELTA_AUTO_CALIBRATION #endif // HAS_BED_PROBE #if ENABLED(G38_PROBE_TARGET) static bool G38_run_probe() { bool G38_pass_fail = false; // Get direction of move and retract float retract_mm[XYZ]; LOOP_XYZ(i) { float dist = destination[i] - current_position[i]; retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1); } stepper.synchronize(); // wait until the machine is idle // Move until destination reached or target hit endstops.enable(true); G38_move = true; G38_endstop_hit = false; prepare_move_to_destination(); stepper.synchronize(); G38_move = false; endstops.hit_on_purpose(); set_current_from_steppers_for_axis(ALL_AXES); SYNC_PLAN_POSITION_KINEMATIC(); if (G38_endstop_hit) { G38_pass_fail = true; #if ENABLED(PROBE_DOUBLE_TOUCH) // Move away by the retract distance set_destination_to_current(); LOOP_XYZ(i) destination[i] += retract_mm[i]; endstops.enable(false); prepare_move_to_destination(); stepper.synchronize(); feedrate_mm_s /= 4; // Bump the target more slowly LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2; endstops.enable(true); G38_move = true; prepare_move_to_destination(); stepper.synchronize(); G38_move = false; set_current_from_steppers_for_axis(ALL_AXES); SYNC_PLAN_POSITION_KINEMATIC(); #endif } endstops.hit_on_purpose(); endstops.not_homing(); return G38_pass_fail; } /** * G38.2 - probe toward workpiece, stop on contact, signal error if failure * G38.3 - probe toward workpiece, stop on contact * * Like G28 except uses Z min probe for all axes */ inline void gcode_G38(bool is_38_2) { // Get X Y Z E F gcode_get_destination(); setup_for_endstop_or_probe_move(); // If any axis has enough movement, do the move LOOP_XYZ(i) if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) { if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i]; // If G38.2 fails throw an error if (!G38_run_probe() && is_38_2) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Failed to reach target"); } break; } clean_up_after_endstop_or_probe_move(); } #endif // G38_PROBE_TARGET /** * G92: Set current position to given X Y Z E */ inline void gcode_G92() { bool didXYZ = false, didE = code_seen('E'); if (!didE) stepper.synchronize(); LOOP_XYZE(i) { if (code_seen(axis_codes[i])) { #if IS_SCARA current_position[i] = code_value_axis_units((AxisEnum)i); if (i != E_AXIS) didXYZ = true; #else #if HAS_POSITION_SHIFT const float p = current_position[i]; #endif float v = code_value_axis_units((AxisEnum)i); current_position[i] = v; if (i != E_AXIS) { didXYZ = true; #if HAS_POSITION_SHIFT position_shift[i] += v - p; // Offset the coordinate space update_software_endstops((AxisEnum)i); #endif } #endif } } if (didXYZ) SYNC_PLAN_POSITION_KINEMATIC(); else if (didE) sync_plan_position_e(); report_current_position(); } #if HAS_RESUME_CONTINUE /** * M0: Unconditional stop - Wait for user button press on LCD * M1: Conditional stop - Wait for user button press on LCD */ inline void gcode_M0_M1() { const char * const args = current_command_args; millis_t codenum = 0; bool hasP = false, hasS = false; if (code_seen('P')) { codenum = code_value_millis(); // milliseconds to wait hasP = codenum > 0; } if (code_seen('S')) { codenum = code_value_millis_from_seconds(); // seconds to wait hasS = codenum > 0; } #if ENABLED(ULTIPANEL) if (!hasP && !hasS && *args != '\0') lcd_setstatus(args, true); else { LCD_MESSAGEPGM(MSG_USERWAIT); #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0 dontExpireStatus(); #endif } #else if (!hasP && !hasS && *args != '\0') { SERIAL_ECHO_START; SERIAL_ECHOLN(args); } #endif KEEPALIVE_STATE(PAUSED_FOR_USER); wait_for_user = true; stepper.synchronize(); refresh_cmd_timeout(); if (codenum > 0) { codenum += previous_cmd_ms; // wait until this time for a click while (PENDING(millis(), codenum) && wait_for_user) idle(); } else { #if ENABLED(ULTIPANEL) if (lcd_detected()) { while (wait_for_user) idle(); IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG); } #else while (wait_for_user) idle(); #endif } wait_for_user = false; KEEPALIVE_STATE(IN_HANDLER); } #endif // HAS_RESUME_CONTINUE /** * M17: Enable power on all stepper motors */ inline void gcode_M17() { LCD_MESSAGEPGM(MSG_NO_MOVE); enable_all_steppers(); } #if IS_KINEMATIC #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder) #else #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S) #endif #if ENABLED(PARK_HEAD_ON_PAUSE) float resume_position[XYZE]; bool move_away_flag = false; inline void move_back_on_resume() { if (!move_away_flag) return; move_away_flag = false; // Set extruder to saved position destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS]; planner.set_e_position_mm(current_position[E_AXIS]); #if IS_KINEMATIC // Move XYZ to starting position planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); #else // Move XY to starting position, then Z destination[X_AXIS] = resume_position[X_AXIS]; destination[Y_AXIS] = resume_position[Y_AXIS]; RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE); destination[Z_AXIS] = resume_position[Z_AXIS]; RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE); #endif stepper.synchronize(); #if ENABLED(FILAMENT_RUNOUT_SENSOR) filament_ran_out = false; #endif set_current_to_destination(); } #endif // PARK_HEAD_ON_PAUSE #if ENABLED(SDSUPPORT) /** * M20: List SD card to serial output */ inline void gcode_M20() { SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST); card.ls(); SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST); } /** * M21: Init SD Card */ inline void gcode_M21() { card.initsd(); } /** * M22: Release SD Card */ inline void gcode_M22() { card.release(); } /** * M23: Open a file */ inline void gcode_M23() { card.openFile(current_command_args, true); } /** * M24: Start or Resume SD Print */ inline void gcode_M24() { #if ENABLED(PARK_HEAD_ON_PAUSE) move_back_on_resume(); #endif card.startFileprint(); print_job_timer.start(); } /** * M25: Pause SD Print */ inline void gcode_M25() { card.pauseSDPrint(); print_job_timer.pause(); #if ENABLED(PARK_HEAD_ON_PAUSE) enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer #endif } /** * M26: Set SD Card file index */ inline void gcode_M26() { if (card.cardOK && code_seen('S')) card.setIndex(code_value_long()); } /** * M27: Get SD Card status */ inline void gcode_M27() { card.getStatus(); } /** * M28: Start SD Write */ inline void gcode_M28() { card.openFile(current_command_args, false); } /** * M29: Stop SD Write * Processed in write to file routine above */ inline void gcode_M29() { // card.saving = false; } /** * M30 : Delete SD Card file */ inline void gcode_M30() { if (card.cardOK) { card.closefile(); card.removeFile(current_command_args); } } #endif // SDSUPPORT /** * M31: Get the time since the start of SD Print (or last M109) */ inline void gcode_M31() { char buffer[21]; duration_t elapsed = print_job_timer.duration(); elapsed.toString(buffer); lcd_setstatus(buffer); SERIAL_ECHO_START; SERIAL_ECHOLNPAIR("Print time: ", buffer); } #if ENABLED(SDSUPPORT) /** * M32: Select file and start SD Print */ inline void gcode_M32() { if (card.sdprinting) stepper.synchronize(); char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start. if (!namestartpos) namestartpos = current_command_args; // Default name position, 4 letters after the M else namestartpos++; //to skip the '!' bool call_procedure = code_seen('P') && (seen_pointer < namestartpos); if (card.cardOK) { card.openFile(namestartpos, true, call_procedure); if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!) card.setIndex(code_value_long()); card.startFileprint(); // Procedure calls count as normal print time. if (!call_procedure) print_job_timer.start(); } } #if ENABLED(LONG_FILENAME_HOST_SUPPORT) /** * M33: Get the long full path of a file or folder * * Parameters: * Case-insensitive DOS-style path to a file or folder * * Example: * M33 miscel~1/armchair/armcha~1.gco * * Output: * /Miscellaneous/Armchair/Armchair.gcode */ inline void gcode_M33() { card.printLongPath(current_command_args); } #endif #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE) /** * M34: Set SD Card Sorting Options */ inline void gcode_M34() { if (code_seen('S')) card.setSortOn(code_value_bool()); if (code_seen('F')) { int v = code_value_long(); card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0); } //if (code_seen('R')) card.setSortReverse(code_value_bool()); } #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE /** * M928: Start SD Write */ inline void gcode_M928() { card.openLogFile(current_command_args); } #endif // SDSUPPORT /** * Sensitive pin test for M42, M226 */ static bool pin_is_protected(uint8_t pin) { static const int sensitive_pins[] = SENSITIVE_PINS; for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) if (sensitive_pins[i] == pin) return true; return false; } /** * M42: Change pin status via GCode * * P Pin number (LED if omitted) * S Pin status from 0 - 255 */ inline void gcode_M42() { if (!code_seen('S')) return; int pin_status = code_value_int(); if (!WITHIN(pin_status, 0, 255)) return; int pin_number = code_seen('P') ? code_value_int() : LED_PIN; if (pin_number < 0) return; if (pin_is_protected(pin_number)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN); return; } pinMode(pin_number, OUTPUT); digitalWrite(pin_number, pin_status); analogWrite(pin_number, pin_status); #if FAN_COUNT > 0 switch (pin_number) { #if HAS_FAN0 case FAN_PIN: fanSpeeds[0] = pin_status; break; #endif #if HAS_FAN1 case FAN1_PIN: fanSpeeds[1] = pin_status; break; #endif #if HAS_FAN2 case FAN2_PIN: fanSpeeds[2] = pin_status; break; #endif } #endif } #if ENABLED(PINS_DEBUGGING) #include "pinsDebug.h" inline void toggle_pins() { const bool I_flag = code_seen('I') && code_value_bool(); const int repeat = code_seen('R') ? code_value_int() : 1, start = code_seen('S') ? code_value_int() : 0, end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1, wait = code_seen('W') ? code_value_int() : 500; for (uint8_t pin = start; pin <= end; pin++) { if (!I_flag && pin_is_protected(pin)) { SERIAL_ECHOPAIR("Sensitive Pin: ", pin); SERIAL_ECHOLNPGM(" untouched."); } else { SERIAL_ECHOPAIR("Pulsing Pin: ", pin); pinMode(pin, OUTPUT); for (int16_t j = 0; j < repeat; j++) { digitalWrite(pin, 0); safe_delay(wait); digitalWrite(pin, 1); safe_delay(wait); digitalWrite(pin, 0); safe_delay(wait); } } SERIAL_CHAR('\n'); } SERIAL_ECHOLNPGM("Done."); } // toggle_pins inline void servo_probe_test() { #if !(NUM_SERVOS > 0 && HAS_SERVO_0) SERIAL_ERROR_START; SERIAL_ERRORLNPGM("SERVO not setup"); #elif !HAS_Z_SERVO_ENDSTOP SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup"); #else const uint8_t probe_index = code_seen('P') ? code_value_byte() : Z_ENDSTOP_SERVO_NR; SERIAL_PROTOCOLLNPGM("Servo probe test"); SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index); SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]); SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]); bool probe_inverting; #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) #define PROBE_TEST_PIN Z_MIN_PIN SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN); SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)"); SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: "); #if Z_MIN_ENDSTOP_INVERTING SERIAL_PROTOCOLLNPGM("true"); #else SERIAL_PROTOCOLLNPGM("false"); #endif probe_inverting = Z_MIN_ENDSTOP_INVERTING; #elif ENABLED(Z_MIN_PROBE_ENDSTOP) #define PROBE_TEST_PIN Z_MIN_PROBE_PIN SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN); SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)"); SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: "); #if Z_MIN_PROBE_ENDSTOP_INVERTING SERIAL_PROTOCOLLNPGM("true"); #else SERIAL_PROTOCOLLNPGM("false"); #endif probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING; #endif SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times"); pinMode(PROBE_TEST_PIN, INPUT_PULLUP); bool deploy_state; bool stow_state; for (uint8_t i = 0; i < 4; i++) { servo[probe_index].move(z_servo_angle[0]); //deploy safe_delay(500); deploy_state = digitalRead(PROBE_TEST_PIN); servo[probe_index].move(z_servo_angle[1]); //stow safe_delay(500); stow_state = digitalRead(PROBE_TEST_PIN); } if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards"); refresh_cmd_timeout(); if (deploy_state != stow_state) { SERIAL_PROTOCOLLNPGM("BLTouch clone detected"); if (deploy_state) { SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)"); SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)"); } else { SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)"); SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)"); } #if ENABLED(BLTOUCH) SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true."); #endif } else { // measure active signal length servo[probe_index].move(z_servo_angle[0]); // deploy safe_delay(500); SERIAL_PROTOCOLLNPGM("please trigger probe"); uint16_t probe_counter = 0; // Allow 30 seconds max for operator to trigger probe for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) { safe_delay(2); if (0 == j % (500 * 1)) // keep cmd_timeout happy refresh_cmd_timeout(); if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered for (probe_counter = 1; probe_counter < 50 && deploy_state != digitalRead(PROBE_TEST_PIN); ++probe_counter) safe_delay(2); if (probe_counter == 50) SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time else if (probe_counter >= 2) SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse else SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse servo[probe_index].move(z_servo_angle[1]); //stow } // pulse detected } // for loop waiting for trigger if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected"); } // measure active signal length #endif } // servo_probe_test /** * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report * * M43 - report name and state of pin(s) * P Pin to read or watch. If omitted, reads all pins. * I Flag to ignore Marlin's pin protection. * * M43 W - Watch pins -reporting changes- until reset, click, or M108. * P Pin to read or watch. If omitted, read/watch all pins. * I Flag to ignore Marlin's pin protection. * * M43 E - Enable / disable background endstop monitoring * - Machine continues to operate * - Reports changes to endstops * - Toggles LED when an endstop changes * - Can not reliably catch the 5mS pulse from BLTouch type probes * * M43 T - Toggle pin(s) and report which pin is being toggled * S - Start Pin number. If not given, will default to 0 * L - End Pin number. If not given, will default to last pin defined for this board * I - Flag to ignore Marlin's pin protection. Use with caution!!!! * R - Repeat pulses on each pin this number of times before continueing to next pin * W - Wait time (in miliseconds) between pulses. If not given will default to 500 * * M43 S - Servo probe test * P - Probe index (optional - defaults to 0 */ inline void gcode_M43() { if (code_seen('T')) { // must be first ot else it's "S" and "E" parameters will execute endstop or servo test toggle_pins(); return; } // Enable or disable endstop monitoring if (code_seen('E')) { endstop_monitor_flag = code_value_bool(); SERIAL_PROTOCOLPGM("endstop monitor "); SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis"); SERIAL_PROTOCOLLNPGM("abled"); return; } if (code_seen('S')) { servo_probe_test(); return; } // Get the range of pins to test or watch const uint8_t first_pin = code_seen('P') ? code_value_byte() : 0, last_pin = code_seen('P') ? first_pin : NUM_DIGITAL_PINS - 1; if (first_pin > last_pin) return; const bool ignore_protection = code_seen('I') && code_value_bool(); // Watch until click, M108, or reset if (code_seen('W') && code_value_bool()) { SERIAL_PROTOCOLLNPGM("Watching pins"); byte pin_state[last_pin - first_pin + 1]; for (int8_t pin = first_pin; pin <= last_pin; pin++) { if (pin_is_protected(pin) && !ignore_protection) continue; pinMode(pin, INPUT_PULLUP); /* if (IS_ANALOG(pin)) pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...] else //*/ pin_state[pin - first_pin] = digitalRead(pin); } #if HAS_RESUME_CONTINUE wait_for_user = true; KEEPALIVE_STATE(PAUSED_FOR_USER); #endif for (;;) { for (int8_t pin = first_pin; pin <= last_pin; pin++) { if (pin_is_protected(pin)) continue; const byte val = /* IS_ANALOG(pin) ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val : //*/ digitalRead(pin); if (val != pin_state[pin - first_pin]) { report_pin_state(pin); pin_state[pin - first_pin] = val; } } #if HAS_RESUME_CONTINUE if (!wait_for_user) { KEEPALIVE_STATE(IN_HANDLER); break; } #endif safe_delay(500); } return; } // Report current state of selected pin(s) for (uint8_t pin = first_pin; pin <= last_pin; pin++) report_pin_state_extended(pin, ignore_protection); } #endif // PINS_DEBUGGING #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST) /** * M48: Z probe repeatability measurement function. * * Usage: * M48 * P = Number of sampled points (4-50, default 10) * X = Sample X position * Y = Sample Y position * V = Verbose level (0-4, default=1) * E = Engage Z probe for each reading * L = Number of legs of movement before probe * S = Schizoid (Or Star if you prefer) * * This function assumes the bed has been homed. Specifically, that a G28 command * as been issued prior to invoking the M48 Z probe repeatability measurement function. * Any information generated by a prior G29 Bed leveling command will be lost and need to be * regenerated. */ inline void gcode_M48() { if (axis_unhomed_error(true, true, true)) return; const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1; if (!WITHIN(verbose_level, 0, 4)) { SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4)."); return; } if (verbose_level > 0) SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test"); int8_t n_samples = code_seen('P') ? code_value_byte() : 10; if (!WITHIN(n_samples, 4, 50)) { SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50)."); return; } float X_current = current_position[X_AXIS], Y_current = current_position[Y_AXIS]; bool stow_probe_after_each = code_seen('E'); float X_probe_location = code_seen('X') ? code_value_linear_units() : X_current + X_PROBE_OFFSET_FROM_EXTRUDER; #if DISABLED(DELTA) if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) { out_of_range_error(PSTR("X")); return; } #endif float Y_probe_location = code_seen('Y') ? code_value_linear_units() : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER; #if DISABLED(DELTA) if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) { out_of_range_error(PSTR("Y")); return; } #else float pos[XYZ] = { X_probe_location, Y_probe_location, 0 }; if (!position_is_reachable(pos, true)) { SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius."); return; } #endif bool seen_L = code_seen('L'); uint8_t n_legs = seen_L ? code_value_byte() : 0; if (n_legs > 15) { SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15)."); return; } if (n_legs == 1) n_legs = 2; bool schizoid_flag = code_seen('S'); if (schizoid_flag && !seen_L) n_legs = 7; /** * Now get everything to the specified probe point So we can safely do a * probe to get us close to the bed. If the Z-Axis is far from the bed, * we don't want to use that as a starting point for each probe. */ if (verbose_level > 2) SERIAL_PROTOCOLLNPGM("Positioning the probe..."); // Disable bed level correction in M48 because we want the raw data when we probe #if HAS_LEVELING const bool was_enabled = #if ENABLED(AUTO_BED_LEVELING_UBL) ubl.state.active #elif ENABLED(MESH_BED_LEVELING) mbl.active() #else planner.abl_enabled #endif ; set_bed_leveling_enabled(false); #endif setup_for_endstop_or_probe_move(); // Move to the first point, deploy, and probe probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level); randomSeed(millis()); double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples]; for (uint8_t n = 0; n < n_samples; n++) { if (n_legs) { int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise float angle = random(0.0, 360.0), radius = random( #if ENABLED(DELTA) DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3 #else 5, X_MAX_LENGTH / 8 #endif ); if (verbose_level > 3) { SERIAL_ECHOPAIR("Starting radius: ", radius); SERIAL_ECHOPAIR(" angle: ", angle); SERIAL_ECHOPGM(" Direction: "); if (dir > 0) SERIAL_ECHOPGM("Counter-"); SERIAL_ECHOLNPGM("Clockwise"); } for (uint8_t l = 0; l < n_legs - 1; l++) { double delta_angle; if (schizoid_flag) // The points of a 5 point star are 72 degrees apart. We need to // skip a point and go to the next one on the star. delta_angle = dir * 2.0 * 72.0; else // If we do this line, we are just trying to move further // around the circle. delta_angle = dir * (float) random(25, 45); angle += delta_angle; while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the angle -= 360.0; // Arduino documentation says the trig functions should not be given values while (angle < 0.0) // outside of this range. It looks like they behave correctly with angle += 360.0; // numbers outside of the range, but just to be safe we clamp them. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius; Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius; #if DISABLED(DELTA) X_current = constrain(X_current, X_MIN_POS, X_MAX_POS); Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS); #else // If we have gone out too far, we can do a simple fix and scale the numbers // back in closer to the origin. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) { X_current *= 0.8; Y_current *= 0.8; if (verbose_level > 3) { SERIAL_ECHOPAIR("Pulling point towards center:", X_current); SERIAL_ECHOLNPAIR(", ", Y_current); } } #endif if (verbose_level > 3) { SERIAL_PROTOCOLPGM("Going to:"); SERIAL_ECHOPAIR(" X", X_current); SERIAL_ECHOPAIR(" Y", Y_current); SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]); } do_blocking_move_to_xy(X_current, Y_current); } // n_legs loop } // n_legs // Probe a single point sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0); /** * Get the current mean for the data points we have so far */ double sum = 0.0; for (uint8_t j = 0; j <= n; j++) sum += sample_set[j]; mean = sum / (n + 1); NOMORE(min, sample_set[n]); NOLESS(max, sample_set[n]); /** * Now, use that mean to calculate the standard deviation for the * data points we have so far */ sum = 0.0; for (uint8_t j = 0; j <= n; j++) sum += sq(sample_set[j] - mean); sigma = sqrt(sum / (n + 1)); if (verbose_level > 0) { if (verbose_level > 1) { SERIAL_PROTOCOL(n + 1); SERIAL_PROTOCOLPGM(" of "); SERIAL_PROTOCOL((int)n_samples); SERIAL_PROTOCOLPGM(": z: "); SERIAL_PROTOCOL_F(sample_set[n], 3); if (verbose_level > 2) { SERIAL_PROTOCOLPGM(" mean: "); SERIAL_PROTOCOL_F(mean, 4); SERIAL_PROTOCOLPGM(" sigma: "); SERIAL_PROTOCOL_F(sigma, 6); SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL_F(min, 3); SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOL_F(max, 3); SERIAL_PROTOCOLPGM(" range: "); SERIAL_PROTOCOL_F(max-min, 3); } SERIAL_EOL; } } } // End of probe loop if (STOW_PROBE()) return; SERIAL_PROTOCOLPGM("Finished!"); SERIAL_EOL; if (verbose_level > 0) { SERIAL_PROTOCOLPGM("Mean: "); SERIAL_PROTOCOL_F(mean, 6); SERIAL_PROTOCOLPGM(" Min: "); SERIAL_PROTOCOL_F(min, 3); SERIAL_PROTOCOLPGM(" Max: "); SERIAL_PROTOCOL_F(max, 3); SERIAL_PROTOCOLPGM(" Range: "); SERIAL_PROTOCOL_F(max-min, 3); SERIAL_EOL; } SERIAL_PROTOCOLPGM("Standard Deviation: "); SERIAL_PROTOCOL_F(sigma, 6); SERIAL_EOL; SERIAL_EOL; clean_up_after_endstop_or_probe_move(); // Re-enable bed level correction if it had been on #if HAS_LEVELING set_bed_leveling_enabled(was_enabled); #endif report_current_position(); } #endif // Z_MIN_PROBE_REPEATABILITY_TEST #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING) inline void gcode_M49() { ubl.g26_debug_flag ^= true; SERIAL_PROTOCOLPGM("UBL Debug Flag turned "); serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off.")); } #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING /** * M75: Start print timer */ inline void gcode_M75() { print_job_timer.start(); } /** * M76: Pause print timer */ inline void gcode_M76() { print_job_timer.pause(); } /** * M77: Stop print timer */ inline void gcode_M77() { print_job_timer.stop(); } #if ENABLED(PRINTCOUNTER) /** * M78: Show print statistics */ inline void gcode_M78() { // "M78 S78" will reset the statistics if (code_seen('S') && code_value_int() == 78) print_job_timer.initStats(); else print_job_timer.showStats(); } #endif /** * M104: Set hot end temperature */ inline void gcode_M104() { if (get_target_extruder_from_command(104)) return; if (DEBUGGING(DRYRUN)) return; #if ENABLED(SINGLENOZZLE) if (target_extruder != active_extruder) return; #endif if (code_seen('S')) { const int16_t temp = code_value_temp_abs(); thermalManager.setTargetHotend(temp, target_extruder); #if ENABLED(DUAL_X_CARRIAGE) if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0) thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1); #endif #if ENABLED(PRINTJOB_TIMER_AUTOSTART) /** * Stop the timer at the end of print. Start is managed by 'heat and wait' M109. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot * standby mode, for instance in a dual extruder setup, without affecting * the running print timer. */ if (code_value_temp_abs() <= (EXTRUDE_MINTEMP) / 2) { print_job_timer.stop(); LCD_MESSAGEPGM(WELCOME_MSG); } #endif if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING); } #if ENABLED(AUTOTEMP) planner.autotemp_M104_M109(); #endif } #if HAS_TEMP_HOTEND || HAS_TEMP_BED void print_heaterstates() { #if HAS_TEMP_HOTEND SERIAL_PROTOCOLPGM(" T:"); SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1); SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1); #if ENABLED(SHOW_TEMP_ADC_VALUES) SERIAL_PROTOCOLPAIR(" (", thermalManager.rawHotendTemp(target_extruder) / OVERSAMPLENR); SERIAL_PROTOCOLCHAR(')'); #endif #endif #if HAS_TEMP_BED SERIAL_PROTOCOLPGM(" B:"); SERIAL_PROTOCOL_F(thermalManager.degBed(), 1); SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1); #if ENABLED(SHOW_TEMP_ADC_VALUES) SERIAL_PROTOCOLPAIR(" (", thermalManager.rawBedTemp() / OVERSAMPLENR); SERIAL_PROTOCOLCHAR(')'); #endif #endif #if HOTENDS > 1 HOTEND_LOOP() { SERIAL_PROTOCOLPAIR(" T", e); SERIAL_PROTOCOLCHAR(':'); SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1); SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1); #if ENABLED(SHOW_TEMP_ADC_VALUES) SERIAL_PROTOCOLPAIR(" (", thermalManager.rawHotendTemp(e) / OVERSAMPLENR); SERIAL_PROTOCOLCHAR(')'); #endif } #endif SERIAL_PROTOCOLPGM(" @:"); SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder)); #if HAS_TEMP_BED SERIAL_PROTOCOLPGM(" B@:"); SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1)); #endif #if HOTENDS > 1 HOTEND_LOOP() { SERIAL_PROTOCOLPAIR(" @", e); SERIAL_PROTOCOLCHAR(':'); SERIAL_PROTOCOL(thermalManager.getHeaterPower(e)); } #endif } #endif /** * M105: Read hot end and bed temperature */ inline void gcode_M105() { if (get_target_extruder_from_command(105)) return; #if HAS_TEMP_HOTEND || HAS_TEMP_BED SERIAL_PROTOCOLPGM(MSG_OK); print_heaterstates(); #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS); #endif SERIAL_EOL; } #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED) static uint8_t auto_report_temp_interval; static millis_t next_temp_report_ms; /** * M155: Set temperature auto-report interval. M155 S */ inline void gcode_M155() { if (code_seen('S')) { auto_report_temp_interval = code_value_byte(); NOMORE(auto_report_temp_interval, 60); next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval; } } inline void auto_report_temperatures() { if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) { next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval; print_heaterstates(); SERIAL_EOL; } } #endif // AUTO_REPORT_TEMPERATURES #if FAN_COUNT > 0 /** * M106: Set Fan Speed * * S Speed between 0-255 * P Fan index, if more than one fan */ inline void gcode_M106() { uint16_t s = code_seen('S') ? code_value_ushort() : 255, p = code_seen('P') ? code_value_ushort() : 0; NOMORE(s, 255); if (p < FAN_COUNT) fanSpeeds[p] = s; } /** * M107: Fan Off */ inline void gcode_M107() { uint16_t p = code_seen('P') ? code_value_ushort() : 0; if (p < FAN_COUNT) fanSpeeds[p] = 0; } #endif // FAN_COUNT > 0 #if DISABLED(EMERGENCY_PARSER) /** * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature. */ inline void gcode_M108() { wait_for_heatup = false; } /** * M112: Emergency Stop */ inline void gcode_M112() { kill(PSTR(MSG_KILLED)); } /** * M410: Quickstop - Abort all planned moves * * This will stop the carriages mid-move, so most likely they * will be out of sync with the stepper position after this. */ inline void gcode_M410() { quickstop_stepper(); } #endif /** * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling. */ #ifndef MIN_COOLING_SLOPE_DEG #define MIN_COOLING_SLOPE_DEG 1.50 #endif #ifndef MIN_COOLING_SLOPE_TIME #define MIN_COOLING_SLOPE_TIME 60 #endif inline void gcode_M109() { if (get_target_extruder_from_command(109)) return; if (DEBUGGING(DRYRUN)) return; #if ENABLED(SINGLENOZZLE) if (target_extruder != active_extruder) return; #endif const bool no_wait_for_cooling = code_seen('S'); if (no_wait_for_cooling || code_seen('R')) { const int16_t temp = code_value_temp_abs(); thermalManager.setTargetHotend(temp, target_extruder); #if ENABLED(DUAL_X_CARRIAGE) if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0) thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1); #endif #if ENABLED(PRINTJOB_TIMER_AUTOSTART) /** * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot * standby mode, (e.g., in a dual extruder setup) without affecting * the running print timer. */ if (code_value_temp_abs() <= (EXTRUDE_MINTEMP) / 2) { print_job_timer.stop(); LCD_MESSAGEPGM(WELCOME_MSG); } else print_job_timer.start(); #endif if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING); } else return; #if ENABLED(AUTOTEMP) planner.autotemp_M104_M109(); #endif #if TEMP_RESIDENCY_TIME > 0 millis_t residency_start_ms = 0; // Loop until the temperature has stabilized #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)) #else // Loop until the temperature is very close target #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder)) #endif float target_temp = -1.0, old_temp = 9999.0; bool wants_to_cool = false; wait_for_heatup = true; millis_t now, next_temp_ms = 0, next_cool_check_ms = 0; KEEPALIVE_STATE(NOT_BUSY); #if ENABLED(PRINTER_EVENT_LEDS) const float start_temp = thermalManager.degHotend(target_extruder); uint8_t old_blue = 0; #endif do { // Target temperature might be changed during the loop if (target_temp != thermalManager.degTargetHotend(target_extruder)) { wants_to_cool = thermalManager.isCoolingHotend(target_extruder); target_temp = thermalManager.degTargetHotend(target_extruder); // Exit if S, continue if S, R, or R if (no_wait_for_cooling && wants_to_cool) break; } now = millis(); if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting next_temp_ms = now + 1000UL; print_heaterstates(); #if TEMP_RESIDENCY_TIME > 0 SERIAL_PROTOCOLPGM(" W:"); if (residency_start_ms) { long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL; SERIAL_PROTOCOLLN(rem); } else { SERIAL_PROTOCOLLNPGM("?"); } #else SERIAL_EOL; #endif } idle(); refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out const float temp = thermalManager.degHotend(target_extruder); #if ENABLED(PRINTER_EVENT_LEDS) // Gradually change LED strip from violet to red as nozzle heats up if (!wants_to_cool) { const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0); if (blue != old_blue) set_led_color(255, 0, (old_blue = blue)); } #endif #if TEMP_RESIDENCY_TIME > 0 const float temp_diff = fabs(target_temp - temp); if (!residency_start_ms) { // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time. if (temp_diff < TEMP_WINDOW) residency_start_ms = now; } else if (temp_diff > TEMP_HYSTERESIS) { // Restart the timer whenever the temperature falls outside the hysteresis. residency_start_ms = now; } #endif // Prevent a wait-forever situation if R is misused i.e. M109 R0 if (wants_to_cool) { // break after MIN_COOLING_SLOPE_TIME seconds // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) { if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break; next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME; old_temp = temp; } } } while (wait_for_heatup && TEMP_CONDITIONS); if (wait_for_heatup) { LCD_MESSAGEPGM(MSG_HEATING_COMPLETE); #if ENABLED(PRINTER_EVENT_LEDS) #if ENABLED(RGBW_LED) set_led_color(0, 0, 0, 255); // Turn on the WHITE LED #else set_led_color(255, 255, 255); // Set LEDs All On #endif #endif } KEEPALIVE_STATE(IN_HANDLER); } #if HAS_TEMP_BED #ifndef MIN_COOLING_SLOPE_DEG_BED #define MIN_COOLING_SLOPE_DEG_BED 1.50 #endif #ifndef MIN_COOLING_SLOPE_TIME_BED #define MIN_COOLING_SLOPE_TIME_BED 60 #endif /** * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling */ inline void gcode_M190() { if (DEBUGGING(DRYRUN)) return; LCD_MESSAGEPGM(MSG_BED_HEATING); const bool no_wait_for_cooling = code_seen('S'); if (no_wait_for_cooling || code_seen('R')) { thermalManager.setTargetBed(code_value_temp_abs()); #if ENABLED(PRINTJOB_TIMER_AUTOSTART) if (code_value_temp_abs() > BED_MINTEMP) print_job_timer.start(); #endif } else return; #if TEMP_BED_RESIDENCY_TIME > 0 millis_t residency_start_ms = 0; // Loop until the temperature has stabilized #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL)) #else // Loop until the temperature is very close target #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed()) #endif float target_temp = -1.0, old_temp = 9999.0; bool wants_to_cool = false; wait_for_heatup = true; millis_t now, next_temp_ms = 0, next_cool_check_ms = 0; KEEPALIVE_STATE(NOT_BUSY); target_extruder = active_extruder; // for print_heaterstates #if ENABLED(PRINTER_EVENT_LEDS) const float start_temp = thermalManager.degBed(); uint8_t old_red = 255; #endif do { // Target temperature might be changed during the loop if (target_temp != thermalManager.degTargetBed()) { wants_to_cool = thermalManager.isCoolingBed(); target_temp = thermalManager.degTargetBed(); // Exit if S, continue if S, R, or R if (no_wait_for_cooling && wants_to_cool) break; } now = millis(); if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up. next_temp_ms = now + 1000UL; print_heaterstates(); #if TEMP_BED_RESIDENCY_TIME > 0 SERIAL_PROTOCOLPGM(" W:"); if (residency_start_ms) { long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL; SERIAL_PROTOCOLLN(rem); } else { SERIAL_PROTOCOLLNPGM("?"); } #else SERIAL_EOL; #endif } idle(); refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out const float temp = thermalManager.degBed(); #if ENABLED(PRINTER_EVENT_LEDS) // Gradually change LED strip from blue to violet as bed heats up if (!wants_to_cool) { const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255); if (red != old_red) set_led_color((old_red = red), 0, 255); } } #endif #if TEMP_BED_RESIDENCY_TIME > 0 const float temp_diff = fabs(target_temp - temp); if (!residency_start_ms) { // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now; } else if (temp_diff > TEMP_BED_HYSTERESIS) { // Restart the timer whenever the temperature falls outside the hysteresis. residency_start_ms = now; } #endif // TEMP_BED_RESIDENCY_TIME > 0 // Prevent a wait-forever situation if R is misused i.e. M190 R0 if (wants_to_cool) { // Break after MIN_COOLING_SLOPE_TIME_BED seconds // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) { if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break; next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED; old_temp = temp; } } } while (wait_for_heatup && TEMP_BED_CONDITIONS); if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE); KEEPALIVE_STATE(IN_HANDLER); } #endif // HAS_TEMP_BED /** * M110: Set Current Line Number */ inline void gcode_M110() { if (code_seen('N')) gcode_LastN = code_value_long(); } /** * M111: Set the debug level */ inline void gcode_M111() { marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t)DEBUG_NONE; const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO; const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO; const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS; const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN; const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION; #if ENABLED(DEBUG_LEVELING_FEATURE) const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING; #endif const static char* const debug_strings[] PROGMEM = { str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16, #if ENABLED(DEBUG_LEVELING_FEATURE) str_debug_32 #endif }; SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_DEBUG_PREFIX); if (marlin_debug_flags) { uint8_t comma = 0; for (uint8_t i = 0; i < COUNT(debug_strings); i++) { if (TEST(marlin_debug_flags, i)) { if (comma++) SERIAL_CHAR(','); serialprintPGM((char*)pgm_read_word(&debug_strings[i])); } } } else { SERIAL_ECHOPGM(MSG_DEBUG_OFF); } SERIAL_EOL; } #if ENABLED(HOST_KEEPALIVE_FEATURE) /** * M113: Get or set Host Keepalive interval (0 to disable) * * S Optional. Set the keepalive interval. */ inline void gcode_M113() { if (code_seen('S')) { host_keepalive_interval = code_value_byte(); NOMORE(host_keepalive_interval, 60); } else { SERIAL_ECHO_START; SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval); } } #endif #if ENABLED(BARICUDA) #if HAS_HEATER_1 /** * M126: Heater 1 valve open */ inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; } /** * M127: Heater 1 valve close */ inline void gcode_M127() { baricuda_valve_pressure = 0; } #endif #if HAS_HEATER_2 /** * M128: Heater 2 valve open */ inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; } /** * M129: Heater 2 valve close */ inline void gcode_M129() { baricuda_e_to_p_pressure = 0; } #endif #endif //BARICUDA /** * M140: Set bed temperature */ inline void gcode_M140() { if (DEBUGGING(DRYRUN)) return; if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs()); } #if ENABLED(ULTIPANEL) /** * M145: Set the heatup state for a material in the LCD menu * * S (0=PLA, 1=ABS) * H * B * F */ inline void gcode_M145() { uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0; if (material >= COUNT(lcd_preheat_hotend_temp)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX); } else { int v; if (code_seen('H')) { v = code_value_int(); lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15); } if (code_seen('F')) { v = code_value_int(); lcd_preheat_fan_speed[material] = constrain(v, 0, 255); } #if TEMP_SENSOR_BED != 0 if (code_seen('B')) { v = code_value_int(); lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15); } #endif } } #endif // ULTIPANEL #if ENABLED(TEMPERATURE_UNITS_SUPPORT) /** * M149: Set temperature units */ inline void gcode_M149() { if (code_seen('C')) set_input_temp_units(TEMPUNIT_C); else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K); else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F); } #endif #if HAS_POWER_SWITCH /** * M80: Turn on Power Supply */ inline void gcode_M80() { OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND /** * If you have a switch on suicide pin, this is useful * if you want to start another print with suicide feature after * a print without suicide... */ #if HAS_SUICIDE OUT_WRITE(SUICIDE_PIN, HIGH); #endif #if ENABLED(HAVE_TMC2130) delay(100); tmc2130_init(); // Settings only stick when the driver has power #endif #if ENABLED(ULTIPANEL) powersupply = true; LCD_MESSAGEPGM(WELCOME_MSG); #endif } #endif // HAS_POWER_SWITCH /** * M81: Turn off Power, including Power Supply, if there is one. * * This code should ALWAYS be available for EMERGENCY SHUTDOWN! */ inline void gcode_M81() { thermalManager.disable_all_heaters(); stepper.finish_and_disable(); #if FAN_COUNT > 0 #if FAN_COUNT > 1 for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0; #else fanSpeeds[0] = 0; #endif #endif safe_delay(1000); // Wait 1 second before switching off #if HAS_SUICIDE stepper.synchronize(); suicide(); #elif HAS_POWER_SWITCH OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP); #endif #if ENABLED(ULTIPANEL) #if HAS_POWER_SWITCH powersupply = false; #endif LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF "."); #endif } /** * M82: Set E codes absolute (default) */ inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; } /** * M83: Set E codes relative while in Absolute Coordinates (G90) mode */ inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; } /** * M18, M84: Disable all stepper motors */ inline void gcode_M18_M84() { if (code_seen('S')) { stepper_inactive_time = code_value_millis_from_seconds(); } else { bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E'))); if (all_axis) { stepper.finish_and_disable(); } else { stepper.synchronize(); if (code_seen('X')) disable_X(); if (code_seen('Y')) disable_Y(); if (code_seen('Z')) disable_Z(); #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS if (code_seen('E')) disable_e_steppers(); #endif } } } /** * M85: Set inactivity shutdown timer with parameter S. To disable set zero (default) */ inline void gcode_M85() { if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds(); } /** * Multi-stepper support for M92, M201, M203 */ #if ENABLED(DISTINCT_E_FACTORS) #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return #define TARGET_EXTRUDER target_extruder #else #define GET_TARGET_EXTRUDER(CMD) NOOP #define TARGET_EXTRUDER 0 #endif /** * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E. * (Follows the same syntax as G92) * * With multiple extruders use T to specify which one. */ inline void gcode_M92() { GET_TARGET_EXTRUDER(92); LOOP_XYZE(i) { if (code_seen(axis_codes[i])) { if (i == E_AXIS) { const float value = code_value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER)); if (value < 20.0) { float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab. planner.max_jerk[E_AXIS] *= factor; planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor; planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor; } planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value; } else { planner.axis_steps_per_mm[i] = code_value_per_axis_unit((AxisEnum)i); } } } planner.refresh_positioning(); } /** * Output the current position to serial */ static void report_current_position() { SERIAL_PROTOCOLPGM("X:"); SERIAL_PROTOCOL(current_position[X_AXIS]); SERIAL_PROTOCOLPGM(" Y:"); SERIAL_PROTOCOL(current_position[Y_AXIS]); SERIAL_PROTOCOLPGM(" Z:"); SERIAL_PROTOCOL(current_position[Z_AXIS]); SERIAL_PROTOCOLPGM(" E:"); SERIAL_PROTOCOL(current_position[E_AXIS]); stepper.report_positions(); #if IS_SCARA SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS)); SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS)); SERIAL_EOL; #endif } /** * M114: Output current position to serial port */ inline void gcode_M114() { stepper.synchronize(); report_current_position(); } /** * M115: Capabilities string */ inline void gcode_M115() { SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT); #if ENABLED(EXTENDED_CAPABILITIES_REPORT) // EEPROM (M500, M501) #if ENABLED(EEPROM_SETTINGS) SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1"); #else SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0"); #endif // AUTOREPORT_TEMP (M155) #if ENABLED(AUTO_REPORT_TEMPERATURES) SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1"); #else SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0"); #endif // PROGRESS (M530 S L, M531 , M532 X L) SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0"); // AUTOLEVEL (G29) #if HAS_ABL SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1"); #else SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0"); #endif // Z_PROBE (G30) #if HAS_BED_PROBE SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1"); #else SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0"); #endif // MESH_REPORT (M420 V) #if HAS_LEVELING SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1"); #else SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0"); #endif // SOFTWARE_POWER (G30) #if HAS_POWER_SWITCH SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1"); #else SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0"); #endif // TOGGLE_LIGHTS (M355) #if HAS_CASE_LIGHT SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1"); #else SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0"); #endif // EMERGENCY_PARSER (M108, M112, M410) #if ENABLED(EMERGENCY_PARSER) SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1"); #else SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0"); #endif #endif // EXTENDED_CAPABILITIES_REPORT } /** * M117: Set LCD Status Message */ inline void gcode_M117() { lcd_setstatus(current_command_args); } /** * M119: Output endstop states to serial output */ inline void gcode_M119() { endstops.M119(); } /** * M120: Enable endstops and set non-homing endstop state to "enabled" */ inline void gcode_M120() { endstops.enable_globally(true); } /** * M121: Disable endstops and set non-homing endstop state to "disabled" */ inline void gcode_M121() { endstops.enable_globally(false); } #if ENABLED(PARK_HEAD_ON_PAUSE) /** * M125: Store current position and move to filament change position. * Called on pause (by M25) to prevent material leaking onto the * object. On resume (M24) the head will be moved back and the * print will resume. * * If Marlin is compiled without SD Card support, M125 can be * used directly to pause the print and move to park position, * resuming with a button click or M108. * * L = override retract length * X = override X * Y = override Y * Z = override Z raise */ inline void gcode_M125() { if (move_away_flag) return; // already paused const bool job_running = print_job_timer.isRunning(); // there are blocks after this one, or sd printing move_away_flag = job_running || planner.blocks_queued() #if ENABLED(SDSUPPORT) || card.sdprinting #endif ; if (!move_away_flag) return; // nothing to pause // M125 can be used to pause a print too #if ENABLED(SDSUPPORT) card.pauseSDPrint(); #endif print_job_timer.pause(); // Save current position COPY(resume_position, current_position); set_destination_to_current(); // Initial retract before move to filament change position destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0 #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0 - (FILAMENT_CHANGE_RETRACT_LENGTH) #endif ; RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE); // Lift Z axis const float z_lift = code_seen('Z') ? code_value_linear_units() : #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0 FILAMENT_CHANGE_Z_ADD #else 0 #endif ; if (z_lift > 0) { destination[Z_AXIS] += z_lift; NOMORE(destination[Z_AXIS], Z_MAX_POS); RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE); } // Move XY axes to filament change position or given position destination[X_AXIS] = code_seen('X') ? code_value_linear_units() : 0 #ifdef FILAMENT_CHANGE_X_POS + FILAMENT_CHANGE_X_POS #endif ; destination[Y_AXIS] = code_seen('Y') ? code_value_linear_units() : 0 #ifdef FILAMENT_CHANGE_Y_POS + FILAMENT_CHANGE_Y_POS #endif ; #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE) if (active_extruder > 0) { if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder]; if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder]; } #endif clamp_to_software_endstops(destination); RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE); set_current_to_destination(); stepper.synchronize(); disable_e_steppers(); #if DISABLED(SDSUPPORT) // Wait for lcd click or M108 KEEPALIVE_STATE(PAUSED_FOR_USER); wait_for_user = true; while (wait_for_user) idle(); KEEPALIVE_STATE(IN_HANDLER); // Return to print position and continue move_back_on_resume(); if (job_running) print_job_timer.start(); move_away_flag = false; #endif } #endif // PARK_HEAD_ON_PAUSE #if HAS_COLOR_LEDS /** * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W * * Always sets all 3 or 4 components. If a component is left out, set to 0. * * Examples: * * M150 R255 ; Turn LED red * M150 R255 U127 ; Turn LED orange (PWM only) * M150 ; Turn LED off * M150 R U B ; Turn LED white * M150 W ; Turn LED white using a white LED * */ inline void gcode_M150() { set_led_color( code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0, code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0, code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0 #if ENABLED(RGBW_LED) , code_seen('W') ? (code_has_value() ? code_value_byte() : 255) : 0 #endif ); } #endif // BLINKM || RGB_LED /** * M200: Set filament diameter and set E axis units to cubic units * * T - Optional extruder number. Current extruder if omitted. * D - Diameter of the filament. Use "D0" to switch back to linear units on the E axis. */ inline void gcode_M200() { if (get_target_extruder_from_command(200)) return; if (code_seen('D')) { // setting any extruder filament size disables volumetric on the assumption that // slicers either generate in extruder values as cubic mm or as as filament feeds // for all extruders volumetric_enabled = (code_value_linear_units() != 0.0); if (volumetric_enabled) { filament_size[target_extruder] = code_value_linear_units(); // make sure all extruders have some sane value for the filament size for (uint8_t i = 0; i < COUNT(filament_size); i++) if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA; } } calculate_volumetric_multipliers(); } /** * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) * * With multiple extruders use T to specify which one. */ inline void gcode_M201() { GET_TARGET_EXTRUDER(201); LOOP_XYZE(i) { if (code_seen(axis_codes[i])) { const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0); planner.max_acceleration_mm_per_s2[a] = code_value_axis_units((AxisEnum)a); } } // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) planner.reset_acceleration_rates(); } #if 0 // Not used for Sprinter/grbl gen6 inline void gcode_M202() { LOOP_XYZE(i) { if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i]; } } #endif /** * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec * * With multiple extruders use T to specify which one. */ inline void gcode_M203() { GET_TARGET_EXTRUDER(203); LOOP_XYZE(i) if (code_seen(axis_codes[i])) { const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0); planner.max_feedrate_mm_s[a] = code_value_axis_units((AxisEnum)a); } } /** * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000) * * P = Printing moves * R = Retract only (no X, Y, Z) moves * T = Travel (non printing) moves * * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate */ inline void gcode_M204() { if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments. planner.travel_acceleration = planner.acceleration = code_value_linear_units(); SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration); } if (code_seen('P')) { planner.acceleration = code_value_linear_units(); SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration); } if (code_seen('R')) { planner.retract_acceleration = code_value_linear_units(); SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration); } if (code_seen('T')) { planner.travel_acceleration = code_value_linear_units(); SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration); } } /** * M205: Set Advanced Settings * * S = Min Feed Rate (units/s) * T = Min Travel Feed Rate (units/s) * B = Min Segment Time (µs) * X = Max X Jerk (units/sec^2) * Y = Max Y Jerk (units/sec^2) * Z = Max Z Jerk (units/sec^2) * E = Max E Jerk (units/sec^2) */ inline void gcode_M205() { if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units(); if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units(); if (code_seen('B')) planner.min_segment_time = code_value_millis(); if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_linear_units(); if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_linear_units(); if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_linear_units(); if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_linear_units(); } #if HAS_M206_COMMAND /** * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y */ inline void gcode_M206() { LOOP_XYZ(i) if (code_seen(axis_codes[i])) set_home_offset((AxisEnum)i, code_value_linear_units()); #if ENABLED(MORGAN_SCARA) if (code_seen('T')) set_home_offset(A_AXIS, code_value_linear_units()); // Theta if (code_seen('P')) set_home_offset(B_AXIS, code_value_linear_units()); // Psi #endif SYNC_PLAN_POSITION_KINEMATIC(); report_current_position(); } #endif // HAS_M206_COMMAND #if ENABLED(DELTA) /** * M665: Set delta configurations * * H = diagonal rod // AC-version * L = diagonal rod * R = delta radius * S = segments per second * A = Alpha (Tower 1) diagonal rod trim * B = Beta (Tower 2) diagonal rod trim * C = Gamma (Tower 3) diagonal rod trim */ inline void gcode_M665() { if (code_seen('H')) { home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT; current_position[Z_AXIS] += code_value_linear_units() - DELTA_HEIGHT - home_offset[Z_AXIS]; home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT; update_software_endstops(Z_AXIS); } if (code_seen('L')) delta_diagonal_rod = code_value_linear_units(); if (code_seen('R')) delta_radius = code_value_linear_units(); if (code_seen('S')) delta_segments_per_second = code_value_float(); if (code_seen('B')) delta_calibration_radius = code_value_float(); if (code_seen('X')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units(); if (code_seen('Y')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units(); if (code_seen('Z')) { // rotate all 3 axis for Z = 0 delta_tower_angle_trim[A_AXIS] -= code_value_linear_units(); delta_tower_angle_trim[B_AXIS] -= code_value_linear_units(); } recalc_delta_settings(delta_radius, delta_diagonal_rod); } /** * M666: Set delta endstop adjustment */ inline void gcode_M666() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM(">>> gcode_M666"); } #endif LOOP_XYZ(i) { if (code_seen(axis_codes[i])) { endstop_adj[i] = code_value_linear_units(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]); SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]); } #endif } } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("<<< gcode_M666"); } #endif // normalize endstops so all are <=0; set the residue to delta height const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]); home_offset[Z_AXIS] -= z_temp; LOOP_XYZ(i) endstop_adj[i] -= z_temp; } #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS) /** * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis. */ inline void gcode_M666() { if (code_seen('Z')) z_endstop_adj = code_value_linear_units(); SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj); } #endif // !DELTA && Z_DUAL_ENDSTOPS #if ENABLED(FWRETRACT) /** * M207: Set firmware retraction values * * S[+units] retract_length * W[+units] retract_length_swap (multi-extruder) * F[units/min] retract_feedrate_mm_s * Z[units] retract_zlift */ inline void gcode_M207() { if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS); if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS)); if (code_seen('Z')) retract_zlift = code_value_linear_units(); #if EXTRUDERS > 1 if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS); #endif } /** * M208: Set firmware un-retraction values * * S[+units] retract_recover_length (in addition to M207 S*) * W[+units] retract_recover_length_swap (multi-extruder) * F[units/min] retract_recover_feedrate_mm_s */ inline void gcode_M208() { if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS); if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS)); #if EXTRUDERS > 1 if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS); #endif } /** * M209: Enable automatic retract (M209 S1) * For slicers that don't support G10/11, reversed extrude-only * moves will be classified as retraction. */ inline void gcode_M209() { if (code_seen('S')) { autoretract_enabled = code_value_bool(); for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false; } } #endif // FWRETRACT /** * M211: Enable, Disable, and/or Report software endstops * * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report */ inline void gcode_M211() { SERIAL_ECHO_START; #if HAS_SOFTWARE_ENDSTOPS if (code_seen('S')) soft_endstops_enabled = code_value_bool(); SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS); serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF)); #else SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS); SERIAL_ECHOPGM(MSG_OFF); #endif SERIAL_ECHOPGM(MSG_SOFT_MIN); SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]); SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]); SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]); SERIAL_ECHOPGM(MSG_SOFT_MAX); SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]); SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]); SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]); } #if HOTENDS > 1 /** * M218 - set hotend offset (in linear units) * * T * X * Y * Z - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER */ inline void gcode_M218() { if (get_target_extruder_from_command(218) || target_extruder == 0) return; if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_linear_units(); if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_linear_units(); #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER) if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_linear_units(); #endif SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_HOTEND_OFFSET); HOTEND_LOOP() { SERIAL_CHAR(' '); SERIAL_ECHO(hotend_offset[X_AXIS][e]); SERIAL_CHAR(','); SERIAL_ECHO(hotend_offset[Y_AXIS][e]); #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER) SERIAL_CHAR(','); SERIAL_ECHO(hotend_offset[Z_AXIS][e]); #endif } SERIAL_EOL; } #endif // HOTENDS > 1 /** * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95) */ inline void gcode_M220() { if (code_seen('S')) feedrate_percentage = code_value_int(); } /** * M221: Set extrusion percentage (M221 T0 S95) */ inline void gcode_M221() { if (get_target_extruder_from_command(221)) return; if (code_seen('S')) flow_percentage[target_extruder] = code_value_int(); } /** * M226: Wait until the specified pin reaches the state required (M226 P S) */ inline void gcode_M226() { if (code_seen('P')) { int pin_number = code_value_int(), pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) { int target = LOW; stepper.synchronize(); pinMode(pin_number, INPUT); switch (pin_state) { case 1: target = HIGH; break; case 0: target = LOW; break; case -1: target = !digitalRead(pin_number); break; } while (digitalRead(pin_number) != target) idle(); } // pin_state -1 0 1 && pin_number > -1 } // code_seen('P') } #if ENABLED(EXPERIMENTAL_I2CBUS) /** * M260: Send data to a I2C slave device * * This is a PoC, the formating and arguments for the GCODE will * change to be more compatible, the current proposal is: * * M260 A ; Sets the I2C slave address the data will be sent to * * M260 B * M260 B * M260 B * * M260 S1 ; Send the buffered data and reset the buffer * M260 R1 ; Reset the buffer without sending data * */ inline void gcode_M260() { // Set the target address if (code_seen('A')) i2c.address(code_value_byte()); // Add a new byte to the buffer if (code_seen('B')) i2c.addbyte(code_value_byte()); // Flush the buffer to the bus if (code_seen('S')) i2c.send(); // Reset and rewind the buffer else if (code_seen('R')) i2c.reset(); } /** * M261: Request X bytes from I2C slave device * * Usage: M261 A B */ inline void gcode_M261() { if (code_seen('A')) i2c.address(code_value_byte()); uint8_t bytes = code_seen('B') ? code_value_byte() : 1; if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) { i2c.relay(bytes); } else { SERIAL_ERROR_START; SERIAL_ERRORLN("Bad i2c request"); } } #endif // EXPERIMENTAL_I2CBUS #if HAS_SERVOS /** * M280: Get or set servo position. P [S] */ inline void gcode_M280() { if (!code_seen('P')) return; int servo_index = code_value_int(); if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) { if (code_seen('S')) MOVE_SERVO(servo_index, code_value_int()); else { SERIAL_ECHO_START; SERIAL_ECHOPAIR(" Servo ", servo_index); SERIAL_ECHOLNPAIR(": ", servo[servo_index].read()); } } else { SERIAL_ERROR_START; SERIAL_ECHOPAIR("Servo ", servo_index); SERIAL_ECHOLNPGM(" out of range"); } } #endif // HAS_SERVOS #if HAS_BUZZER /** * M300: Play beep sound S P */ inline void gcode_M300() { uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260; uint16_t duration = code_seen('P') ? code_value_ushort() : 1000; // Limits the tone duration to 0-5 seconds. NOMORE(duration, 5000); BUZZ(duration, frequency); } #endif // HAS_BUZZER #if ENABLED(PIDTEMP) /** * M301: Set PID parameters P I D (and optionally C, L) * * P[float] Kp term * I[float] Ki term (unscaled) * D[float] Kd term (unscaled) * * With PID_EXTRUSION_SCALING: * * C[float] Kc term * L[float] LPQ length */ inline void gcode_M301() { // multi-extruder PID patch: M301 updates or prints a single extruder's PID values // default behaviour (omitting E parameter) is to update for extruder 0 only int e = code_seen('E') ? code_value_int() : 0; // extruder being updated if (e < HOTENDS) { // catch bad input value if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float(); if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float()); if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float()); #if ENABLED(PID_EXTRUSION_SCALING) if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float(); if (code_seen('L')) lpq_len = code_value_float(); NOMORE(lpq_len, LPQ_MAX_LEN); #endif thermalManager.updatePID(); SERIAL_ECHO_START; #if ENABLED(PID_PARAMS_PER_HOTEND) SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output #endif // PID_PARAMS_PER_HOTEND SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e)); SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e))); SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e))); #if ENABLED(PID_EXTRUSION_SCALING) //Kc does not have scaling applied above, or in resetting defaults SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e)); #endif SERIAL_EOL; } else { SERIAL_ERROR_START; SERIAL_ERRORLN(MSG_INVALID_EXTRUDER); } } #endif // PIDTEMP #if ENABLED(PIDTEMPBED) inline void gcode_M304() { if (code_seen('P')) thermalManager.bedKp = code_value_float(); if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float()); if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float()); thermalManager.updatePID(); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" p:", thermalManager.bedKp); SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi)); SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd)); } #endif // PIDTEMPBED #if defined(CHDK) || HAS_PHOTOGRAPH /** * M240: Trigger a camera by emulating a Canon RC-1 * See http://www.doc-diy.net/photo/rc-1_hacked/ */ inline void gcode_M240() { #ifdef CHDK OUT_WRITE(CHDK, HIGH); chdkHigh = millis(); chdkActive = true; #elif HAS_PHOTOGRAPH const uint8_t NUM_PULSES = 16; const float PULSE_LENGTH = 0.01524; for (int i = 0; i < NUM_PULSES; i++) { WRITE(PHOTOGRAPH_PIN, HIGH); _delay_ms(PULSE_LENGTH); WRITE(PHOTOGRAPH_PIN, LOW); _delay_ms(PULSE_LENGTH); } delay(7.33); for (int i = 0; i < NUM_PULSES; i++) { WRITE(PHOTOGRAPH_PIN, HIGH); _delay_ms(PULSE_LENGTH); WRITE(PHOTOGRAPH_PIN, LOW); _delay_ms(PULSE_LENGTH); } #endif // !CHDK && HAS_PHOTOGRAPH } #endif // CHDK || PHOTOGRAPH_PIN #if HAS_LCD_CONTRAST /** * M250: Read and optionally set the LCD contrast */ inline void gcode_M250() { if (code_seen('C')) set_lcd_contrast(code_value_int()); SERIAL_PROTOCOLPGM("lcd contrast value: "); SERIAL_PROTOCOL(lcd_contrast); SERIAL_EOL; } #endif // HAS_LCD_CONTRAST #if ENABLED(PREVENT_COLD_EXTRUSION) /** * M302: Allow cold extrudes, or set the minimum extrude temperature * * S sets the minimum extrude temperature * P enables (1) or disables (0) cold extrusion * * Examples: * * M302 ; report current cold extrusion state * M302 P0 ; enable cold extrusion checking * M302 P1 ; disables cold extrusion checking * M302 S0 ; always allow extrusion (disables checking) * M302 S170 ; only allow extrusion above 170 * M302 S170 P1 ; set min extrude temp to 170 but leave disabled */ inline void gcode_M302() { bool seen_S = code_seen('S'); if (seen_S) { thermalManager.extrude_min_temp = code_value_temp_abs(); thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0); } if (code_seen('P')) thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool(); else if (!seen_S) { // Report current state SERIAL_ECHO_START; SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis")); SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5)); SERIAL_ECHOLNPGM("C)"); } } #endif // PREVENT_COLD_EXTRUSION /** * M303: PID relay autotune * * S sets the target temperature. (default 150C) * E (-1 for the bed) (default 0) * C * U with a non-zero value will apply the result to current settings */ inline void gcode_M303() { #if HAS_PID_HEATING const int e = code_seen('E') ? code_value_int() : 0, c = code_seen('C') ? code_value_int() : 5; const bool u = code_seen('U') && code_value_bool(); int16_t temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70 : 150); if (WITHIN(e, 0, HOTENDS - 1)) target_extruder = e; KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output thermalManager.PID_autotune(temp, e, c, u); KEEPALIVE_STATE(IN_HANDLER); #else SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED); #endif } #if ENABLED(MORGAN_SCARA) bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) { if (IsRunning()) { forward_kinematics_SCARA(delta_a, delta_b); destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]); destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]); destination[Z_AXIS] = current_position[Z_AXIS]; prepare_move_to_destination(); return true; } return false; } /** * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration) */ inline bool gcode_M360() { SERIAL_ECHOLNPGM(" Cal: Theta 0"); return SCARA_move_to_cal(0, 120); } /** * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree) */ inline bool gcode_M361() { SERIAL_ECHOLNPGM(" Cal: Theta 90"); return SCARA_move_to_cal(90, 130); } /** * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration) */ inline bool gcode_M362() { SERIAL_ECHOLNPGM(" Cal: Psi 0"); return SCARA_move_to_cal(60, 180); } /** * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree) */ inline bool gcode_M363() { SERIAL_ECHOLNPGM(" Cal: Psi 90"); return SCARA_move_to_cal(50, 90); } /** * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position) */ inline bool gcode_M364() { SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90"); return SCARA_move_to_cal(45, 135); } #endif // SCARA #if ENABLED(EXT_SOLENOID) void enable_solenoid(const uint8_t num) { switch (num) { case 0: OUT_WRITE(SOL0_PIN, HIGH); break; #if HAS_SOLENOID_1 && EXTRUDERS > 1 case 1: OUT_WRITE(SOL1_PIN, HIGH); break; #endif #if HAS_SOLENOID_2 && EXTRUDERS > 2 case 2: OUT_WRITE(SOL2_PIN, HIGH); break; #endif #if HAS_SOLENOID_3 && EXTRUDERS > 3 case 3: OUT_WRITE(SOL3_PIN, HIGH); break; #endif #if HAS_SOLENOID_4 && EXTRUDERS > 4 case 4: OUT_WRITE(SOL4_PIN, HIGH); break; #endif default: SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID); break; } } void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); } void disable_all_solenoids() { OUT_WRITE(SOL0_PIN, LOW); #if HAS_SOLENOID_1 && EXTRUDERS > 1 OUT_WRITE(SOL1_PIN, LOW); #endif #if HAS_SOLENOID_2 && EXTRUDERS > 2 OUT_WRITE(SOL2_PIN, LOW); #endif #if HAS_SOLENOID_3 && EXTRUDERS > 3 OUT_WRITE(SOL3_PIN, LOW); #endif #if HAS_SOLENOID_4 && EXTRUDERS > 4 OUT_WRITE(SOL4_PIN, LOW); #endif } /** * M380: Enable solenoid on the active extruder */ inline void gcode_M380() { enable_solenoid_on_active_extruder(); } /** * M381: Disable all solenoids */ inline void gcode_M381() { disable_all_solenoids(); } #endif // EXT_SOLENOID /** * M400: Finish all moves */ inline void gcode_M400() { stepper.synchronize(); } #if HAS_BED_PROBE /** * M401: Engage Z Servo endstop if available */ inline void gcode_M401() { DEPLOY_PROBE(); } /** * M402: Retract Z Servo endstop if enabled */ inline void gcode_M402() { STOW_PROBE(); } #endif // HAS_BED_PROBE #if ENABLED(FILAMENT_WIDTH_SENSOR) /** * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0> */ inline void gcode_M404() { if (code_seen('W')) { filament_width_nominal = code_value_linear_units(); } else { SERIAL_PROTOCOLPGM("Filament dia (nominal mm):"); SERIAL_PROTOCOLLN(filament_width_nominal); } } /** * M405: Turn on filament sensor for control */ inline void gcode_M405() { // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than // everything else, it uses code_value_int() instead of code_value_linear_units(). if (code_seen('D')) meas_delay_cm = code_value_int(); NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY); if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup const int temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte for (uint8_t i = 0; i < COUNT(measurement_delay); ++i) measurement_delay[i] = temp_ratio; filwidth_delay_index[0] = filwidth_delay_index[1] = 0; } filament_sensor = true; //SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); //SERIAL_PROTOCOL(filament_width_meas); //SERIAL_PROTOCOLPGM("Extrusion ratio(%):"); //SERIAL_PROTOCOL(flow_percentage[active_extruder]); } /** * M406: Turn off filament sensor for control */ inline void gcode_M406() { filament_sensor = false; } /** * M407: Get measured filament diameter on serial output */ inline void gcode_M407() { SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); SERIAL_PROTOCOLLN(filament_width_meas); } #endif // FILAMENT_WIDTH_SENSOR void quickstop_stepper() { stepper.quick_stop(); stepper.synchronize(); set_current_from_steppers_for_axis(ALL_AXES); SYNC_PLAN_POSITION_KINEMATIC(); } #if HAS_LEVELING /** * M420: Enable/Disable Bed Leveling and/or set the Z fade height. * * S[bool] Turns leveling on or off * Z[height] Sets the Z fade height (0 or none to disable) * V[bool] Verbose - Print the leveling grid * * With AUTO_BED_LEVELING_UBL only: * * L[index] Load UBL mesh from index (0 is default) */ inline void gcode_M420() { #if ENABLED(AUTO_BED_LEVELING_UBL) // L to load a mesh from the EEPROM if (code_seen('L')) { const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot; const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values); if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); return; } ubl.load_mesh(storage_slot); ubl.state.eeprom_storage_slot = storage_slot; } #endif // AUTO_BED_LEVELING_UBL // V to print the matrix or mesh if (code_seen('V')) { #if ABL_PLANAR planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:")); #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) if (bilinear_grid_spacing[X_AXIS]) { print_bilinear_leveling_grid(); #if ENABLED(ABL_BILINEAR_SUBDIVISION) bed_level_virt_print(); #endif } #elif ENABLED(MESH_BED_LEVELING) if (mbl.has_mesh()) { SERIAL_ECHOLNPGM("Mesh Bed Level data:"); mbl_mesh_report(); } #endif } #if ENABLED(AUTO_BED_LEVELING_UBL) // L to load a mesh from the EEPROM if (code_seen('L') || code_seen('V')) { ubl.display_map(0); // Currently only supports one map type SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID); SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot); } #endif bool to_enable = false; if (code_seen('S')) { to_enable = code_value_bool(); set_bed_leveling_enabled(to_enable); } #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) if (code_seen('Z')) set_z_fade_height(code_value_linear_units()); #endif const bool new_status = #if ENABLED(MESH_BED_LEVELING) mbl.active() #elif ENABLED(AUTO_BED_LEVELING_UBL) ubl.state.active #else planner.abl_enabled #endif ; if (to_enable && !new_status) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED); } SERIAL_ECHO_START; SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF); } #endif #if ENABLED(MESH_BED_LEVELING) /** * M421: Set a single Mesh Bed Leveling Z coordinate * Use either 'M421 X Y Z' or 'M421 I J Z' */ inline void gcode_M421() { int8_t px = 0, py = 0; float z = 0; bool hasX, hasY, hasZ, hasI, hasJ; if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_linear_units()); if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_linear_units()); if ((hasI = code_seen('I'))) px = code_value_linear_units(); if ((hasJ = code_seen('J'))) py = code_value_linear_units(); if ((hasZ = code_seen('Z'))) z = code_value_linear_units(); if (hasX && hasY && hasZ) { if (px >= 0 && py >= 0) mbl.set_z(px, py, z); else { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY); } } else if (hasI && hasJ && hasZ) { if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) mbl.set_z(px, py, z); else { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY); } } else { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS); } } #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) /** * M421: Set a single Mesh Bed Leveling Z coordinate * * M421 I J Z */ inline void gcode_M421() { int8_t px = 0, py = 0; float z = 0; bool hasI, hasJ, hasZ; if ((hasI = code_seen('I'))) px = code_value_linear_units(); if ((hasJ = code_seen('J'))) py = code_value_linear_units(); if ((hasZ = code_seen('Z'))) z = code_value_linear_units(); if (hasI && hasJ && hasZ) { if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_X - 1)) { #if ENABLED(AUTO_BED_LEVELING_UBL) ubl.z_values[px][py] = z; #else z_values[px][py] = z; #if ENABLED(ABL_BILINEAR_SUBDIVISION) bed_level_virt_interpolate(); #endif #endif } else { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY); } } else { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS); } } #endif #if HAS_M206_COMMAND /** * M428: Set home_offset based on the distance between the * current_position and the nearest "reference point." * If an axis is past center its endstop position * is the reference-point. Otherwise it uses 0. This allows * the Z offset to be set near the bed when using a max endstop. * * M428 can't be used more than 2cm away from 0 or an endstop. * * Use M206 to set these values directly. */ inline void gcode_M428() { bool err = false; LOOP_XYZ(i) { if (axis_homed[i]) { float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0, diff = current_position[i] - LOGICAL_POSITION(base, i); if (WITHIN(diff, -20, 20)) { set_home_offset((AxisEnum)i, home_offset[i] - diff); } else { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR); LCD_ALERTMESSAGEPGM("Err: Too far!"); BUZZ(200, 40); err = true; break; } } } if (!err) { SYNC_PLAN_POSITION_KINEMATIC(); report_current_position(); LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED); BUZZ(100, 659); BUZZ(100, 698); } } #endif // HAS_M206_COMMAND /** * M500: Store settings in EEPROM */ inline void gcode_M500() { (void)settings.save(); } /** * M501: Read settings from EEPROM */ inline void gcode_M501() { (void)settings.load(); } /** * M502: Revert to default settings */ inline void gcode_M502() { (void)settings.reset(); } /** * M503: print settings currently in memory */ inline void gcode_M503() { (void)settings.report(code_seen('S') && !code_value_bool()); } #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) /** * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>) */ inline void gcode_M540() { if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool(); } #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED #if HAS_BED_PROBE void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) { static float last_zoffset = NAN; if (!isnan(last_zoffset)) { #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA) const float diff = zprobe_zoffset - last_zoffset; #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) // Correct bilinear grid for new probe offset if (diff) { for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) z_values[x][y] -= diff; } #if ENABLED(ABL_BILINEAR_SUBDIVISION) bed_level_virt_interpolate(); #endif #endif #if ENABLED(BABYSTEP_ZPROBE_OFFSET) if (!no_babystep && planner.abl_enabled) thermalManager.babystep_axis(Z_AXIS, -lround(diff * planner.axis_steps_per_mm[Z_AXIS])); #else UNUSED(no_babystep); #endif #if ENABLED(DELTA) // correct the delta_height home_offset[Z_AXIS] -= diff; #endif } last_zoffset = zprobe_zoffset; } inline void gcode_M851() { SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " "); if (code_seen('Z')) { const float value = code_value_linear_units(); if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) { zprobe_zoffset = value; refresh_zprobe_zoffset(); SERIAL_ECHO(zprobe_zoffset); } else SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX)); } else SERIAL_ECHOPAIR(": ", zprobe_zoffset); SERIAL_EOL; } #endif // HAS_BED_PROBE #if ENABLED(FILAMENT_CHANGE_FEATURE) void filament_change_beep(const bool init=false) { static millis_t next_buzz = 0; static uint16_t runout_beep = 0; if (init) next_buzz = runout_beep = 0; const millis_t ms = millis(); if (ELAPSED(ms, next_buzz)) { if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400); BUZZ(300, 2000); runout_beep++; } } } static bool busy_doing_M600 = false; /** * M600: Pause for filament change * * E[distance] - Retract the filament this far (negative value) * Z[distance] - Move the Z axis by this distance * X[position] - Move to this X position, with Y * Y[position] - Move to this Y position, with X * L[distance] - Retract distance for removal (manual reload) * * Default values are used for omitted arguments. * */ inline void gcode_M600() { if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600); return; } busy_doing_M600 = true; // Stepper Motors can't timeout when this is set // Pause the print job timer const bool job_running = print_job_timer.isRunning(); print_job_timer.pause(); // Show initial message and wait for synchronize steppers lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT); stepper.synchronize(); // Save current position of all axes float lastpos[XYZE]; COPY(lastpos, current_position); set_destination_to_current(); // Initial retract before move to filament change position destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0 #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0 - (FILAMENT_CHANGE_RETRACT_LENGTH) #endif ; RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE); // Lift Z axis float z_lift = code_seen('Z') ? code_value_linear_units() : #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0 FILAMENT_CHANGE_Z_ADD #else 0 #endif ; if (z_lift > 0) { destination[Z_AXIS] += z_lift; NOMORE(destination[Z_AXIS], Z_MAX_POS); RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE); } // Move XY axes to filament exchange position if (code_seen('X')) destination[X_AXIS] = code_value_linear_units(); #ifdef FILAMENT_CHANGE_X_POS else destination[X_AXIS] = FILAMENT_CHANGE_X_POS; #endif if (code_seen('Y')) destination[Y_AXIS] = code_value_linear_units(); #ifdef FILAMENT_CHANGE_Y_POS else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS; #endif RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE); stepper.synchronize(); lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD); idle(); // Unload filament destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0 #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0 - (FILAMENT_CHANGE_UNLOAD_LENGTH) #endif ; RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE); // Synchronize steppers and then disable extruders steppers for manual filament changing stepper.synchronize(); disable_e_steppers(); safe_delay(100); const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL; bool nozzle_timed_out = false; // Wait for filament insert by user and press button lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT); #if HAS_BUZZER filament_change_beep(true); #endif idle(); int16_t temps[HOTENDS]; HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps KEEPALIVE_STATE(PAUSED_FOR_USER); wait_for_user = true; // LCD click or M108 will clear this while (wait_for_user) { if (nozzle_timed_out) lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE); #if HAS_BUZZER filament_change_beep(); #endif if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) { nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE); } idle(true); } KEEPALIVE_STATE(IN_HANDLER); if (nozzle_timed_out) // Turn nozzles back on if they were turned off HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e); // Show "wait for heating" lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT); wait_for_heatup = true; while (wait_for_heatup) { idle(); wait_for_heatup = false; HOTEND_LOOP() { if (abs(thermalManager.degHotend(e) - temps[e]) > 3) { wait_for_heatup = true; break; } } } // Show "insert filament" if (nozzle_timed_out) lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT); #if HAS_BUZZER filament_change_beep(true); #endif KEEPALIVE_STATE(PAUSED_FOR_USER); wait_for_user = true; // LCD click or M108 will clear this while (wait_for_user && nozzle_timed_out) { #if HAS_BUZZER filament_change_beep(); #endif idle(true); } KEEPALIVE_STATE(IN_HANDLER); // Show "load" message lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD); // Load filament destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0 #if FILAMENT_CHANGE_LOAD_LENGTH > 0 + FILAMENT_CHANGE_LOAD_LENGTH #endif ; RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE); stepper.synchronize(); #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0 do { // "Wait for filament extrude" lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE); // Extrude filament to get into hotend destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH; RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE); stepper.synchronize(); // Show "Extrude More" / "Resume" menu and wait for reply KEEPALIVE_STATE(PAUSED_FOR_USER); wait_for_user = false; lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION); while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true); KEEPALIVE_STATE(IN_HANDLER); // Keep looping if "Extrude More" was selected } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE); #endif // "Wait for print to resume" lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME); // Set extruder to saved position destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS]; planner.set_e_position_mm(current_position[E_AXIS]); #if IS_KINEMATIC // Move XYZ to starting position planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); #else // Move XY to starting position, then Z destination[X_AXIS] = lastpos[X_AXIS]; destination[Y_AXIS] = lastpos[Y_AXIS]; RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE); destination[Z_AXIS] = lastpos[Z_AXIS]; RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE); #endif stepper.synchronize(); #if ENABLED(FILAMENT_RUNOUT_SENSOR) filament_ran_out = false; #endif // Show status screen lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS); // Resume the print job timer if it was running if (job_running) print_job_timer.start(); busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity } #endif // FILAMENT_CHANGE_FEATURE #if ENABLED(DUAL_X_CARRIAGE) /** * M605: Set dual x-carriage movement mode * * M605 S0: Full control mode. The slicer has full control over x-carriage movement * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn * units x-offset and an optional differential hotend temperature of * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate * the first with a spacing of 100mm in the x direction and 2 degrees hotter. * * Note: the X axis should be homed after changing dual x-carriage mode. */ inline void gcode_M605() { stepper.synchronize(); if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte(); switch (dual_x_carriage_mode) { case DXC_FULL_CONTROL_MODE: case DXC_AUTO_PARK_MODE: break; case DXC_DUPLICATION_MODE: if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_linear_units(), X2_MIN_POS - x_home_pos(0)); if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff(); SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_HOTEND_OFFSET); SERIAL_CHAR(' '); SERIAL_ECHO(hotend_offset[X_AXIS][0]); SERIAL_CHAR(','); SERIAL_ECHO(hotend_offset[Y_AXIS][0]); SERIAL_CHAR(' '); SERIAL_ECHO(duplicate_extruder_x_offset); SERIAL_CHAR(','); SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]); break; default: dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE; break; } active_extruder_parked = false; extruder_duplication_enabled = false; delayed_move_time = 0; } #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE) inline void gcode_M605() { stepper.synchronize(); extruder_duplication_enabled = code_seen('S') && code_value_int() == (int)DXC_DUPLICATION_MODE; SERIAL_ECHO_START; SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF); } #endif // DUAL_NOZZLE_DUPLICATION_MODE #if ENABLED(LIN_ADVANCE) /** * M900: Set and/or Get advance K factor and WH/D ratio * * K Set advance K factor * R Set ratio directly (overrides WH/D) * W H D Set ratio from WH/D */ inline void gcode_M900() { stepper.synchronize(); const float newK = code_seen('K') ? code_value_float() : -1; if (newK >= 0) planner.extruder_advance_k = newK; float newR = code_seen('R') ? code_value_float() : -1; if (newR < 0) { const float newD = code_seen('D') ? code_value_float() : -1, newW = code_seen('W') ? code_value_float() : -1, newH = code_seen('H') ? code_value_float() : -1; if (newD >= 0 && newW >= 0 && newH >= 0) newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0; } if (newR >= 0) planner.advance_ed_ratio = newR; SERIAL_ECHO_START; SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k); SERIAL_ECHOPGM(" E/D="); const float ratio = planner.advance_ed_ratio; if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto"); SERIAL_EOL; } #endif // LIN_ADVANCE #if ENABLED(HAVE_TMC2130) static void tmc2130_get_current(TMC2130Stepper &st, const char name) { SERIAL_CHAR(name); SERIAL_ECHOPGM(" axis driver current: "); SERIAL_ECHOLN(st.getCurrent()); } static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) { st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER); tmc2130_get_current(st, name); } static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) { SERIAL_CHAR(name); SERIAL_ECHOPGM(" axis temperature prewarn triggered: "); serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false")); SERIAL_EOL; } static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) { st.clear_otpw(); SERIAL_CHAR(name); SERIAL_ECHOLNPGM(" prewarn flag cleared"); } static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) { SERIAL_CHAR(name); SERIAL_ECHOPGM(" stealthChop max speed set to "); SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm)); } static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) { st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm)); tmc2130_get_pwmthrs(st, name, spmm); } static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) { SERIAL_CHAR(name); SERIAL_ECHOPGM(" driver homing sensitivity set to "); SERIAL_ECHOLN(st.sgt()); } static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) { st.sgt(sgt_val); tmc2130_get_sgt(st, name); } /** * M906: Set motor current in milliamps using axis codes X, Y, Z, E * Report driver currents when no axis specified * * S1: Enable automatic current control * S0: Disable */ inline void gcode_M906() { uint16_t values[XYZE]; LOOP_XYZE(i) values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0; #if ENABLED(X_IS_TMC2130) if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]); else tmc2130_get_current(stepperX, 'X'); #endif #if ENABLED(Y_IS_TMC2130) if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]); else tmc2130_get_current(stepperY, 'Y'); #endif #if ENABLED(Z_IS_TMC2130) if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]); else tmc2130_get_current(stepperZ, 'Z'); #endif #if ENABLED(E0_IS_TMC2130) if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]); else tmc2130_get_current(stepperE0, 'E'); #endif #if ENABLED(AUTOMATIC_CURRENT_CONTROL) if (code_seen('S')) auto_current_control = code_value_bool(); #endif } /** * M911: Report TMC2130 stepper driver overtemperature pre-warn flag * The flag is held by the library and persist until manually cleared by M912 */ inline void gcode_M911() { const bool reportX = code_seen('X'), reportY = code_seen('Y'), reportZ = code_seen('Z'), reportE = code_seen('E'), reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE); #if ENABLED(X_IS_TMC2130) if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X'); #endif #if ENABLED(Y_IS_TMC2130) if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y'); #endif #if ENABLED(Z_IS_TMC2130) if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z'); #endif #if ENABLED(E0_IS_TMC2130) if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E'); #endif } /** * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library */ inline void gcode_M912() { const bool clearX = code_seen('X'), clearY = code_seen('Y'), clearZ = code_seen('Z'), clearE = code_seen('E'), clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE); #if ENABLED(X_IS_TMC2130) if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X'); #endif #if ENABLED(Y_IS_TMC2130) if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y'); #endif #if ENABLED(Z_IS_TMC2130) if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z'); #endif #if ENABLED(E0_IS_TMC2130) if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E'); #endif } /** * M913: Set HYBRID_THRESHOLD speed. */ #if ENABLED(HYBRID_THRESHOLD) inline void gcode_M913() { uint16_t values[XYZE]; LOOP_XYZE(i) values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0; #if ENABLED(X_IS_TMC2130) if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]); else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]); #endif #if ENABLED(Y_IS_TMC2130) if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]); else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]); #endif #if ENABLED(Z_IS_TMC2130) if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]); else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]); #endif #if ENABLED(E0_IS_TMC2130) if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]); else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]); #endif } #endif // HYBRID_THRESHOLD /** * M914: Set SENSORLESS_HOMING sensitivity. */ #if ENABLED(SENSORLESS_HOMING) inline void gcode_M914() { #if ENABLED(X_IS_TMC2130) if (code_seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', code_value_int()); else tmc2130_get_sgt(stepperX, 'X'); #endif #if ENABLED(Y_IS_TMC2130) if (code_seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', code_value_int()); else tmc2130_get_sgt(stepperY, 'Y'); #endif } #endif // SENSORLESS_HOMING #endif // HAVE_TMC2130 /** * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S */ inline void gcode_M907() { #if HAS_DIGIPOTSS LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int()); if (code_seen('B')) stepper.digipot_current(4, code_value_int()); if (code_seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int()); #elif HAS_MOTOR_CURRENT_PWM #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY) if (code_seen('X')) stepper.digipot_current(0, code_value_int()); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) if (code_seen('Z')) stepper.digipot_current(1, code_value_int()); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_E) if (code_seen('E')) stepper.digipot_current(2, code_value_int()); #endif #endif #if ENABLED(DIGIPOT_I2C) // this one uses actual amps in floating point LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float()); // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...) for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float()); #endif #if ENABLED(DAC_STEPPER_CURRENT) if (code_seen('S')) { const float dac_percent = code_value_float(); for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent); } LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float()); #endif } #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT) /** * M908: Control digital trimpot directly (M908 P S) */ inline void gcode_M908() { #if HAS_DIGIPOTSS stepper.digitalPotWrite( code_seen('P') ? code_value_int() : 0, code_seen('S') ? code_value_int() : 0 ); #endif #ifdef DAC_STEPPER_CURRENT dac_current_raw( code_seen('P') ? code_value_byte() : -1, code_seen('S') ? code_value_ushort() : 0 ); #endif } #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF inline void gcode_M909() { dac_print_values(); } inline void gcode_M910() { dac_commit_eeprom(); } #endif #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT #if HAS_MICROSTEPS // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. inline void gcode_M350() { if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte()); LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte()); if (code_seen('B')) stepper.microstep_mode(4, code_value_byte()); stepper.microstep_readings(); } /** * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B * S# determines MS1 or MS2, X# sets the pin high/low. */ inline void gcode_M351() { if (code_seen('S')) switch (code_value_byte()) { case 1: LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1); if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1); break; case 2: LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte()); if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte()); break; } stepper.microstep_readings(); } #endif // HAS_MICROSTEPS #if HAS_CASE_LIGHT uint8_t case_light_brightness = 255; void update_case_light() { WRITE(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW); analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0); } #endif // HAS_CASE_LIGHT /** * M355: Turn case lights on/off and set brightness * * S Turn case light on or off * P Set case light brightness (PWM pin required) */ inline void gcode_M355() { #if HAS_CASE_LIGHT if (code_seen('P')) case_light_brightness = code_value_byte(); if (code_seen('S')) case_light_on = code_value_bool(); update_case_light(); SERIAL_ECHO_START; SERIAL_ECHOPGM("Case lights "); case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off"); #else SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE); #endif // HAS_CASE_LIGHT } #if ENABLED(MIXING_EXTRUDER) /** * M163: Set a single mix factor for a mixing extruder * This is called "weight" by some systems. * * S[index] The channel index to set * P[float] The mix value * */ inline void gcode_M163() { const int mix_index = code_seen('S') ? code_value_int() : 0; if (mix_index < MIXING_STEPPERS) { float mix_value = code_seen('P') ? code_value_float() : 0.0; NOLESS(mix_value, 0.0); mixing_factor[mix_index] = RECIPROCAL(mix_value); } } #if MIXING_VIRTUAL_TOOLS > 1 /** * M164: Store the current mix factors as a virtual tool. * * S[index] The virtual tool to store * */ inline void gcode_M164() { const int tool_index = code_seen('S') ? code_value_int() : 0; if (tool_index < MIXING_VIRTUAL_TOOLS) { normalize_mix(); for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i]; } } #endif #if ENABLED(DIRECT_MIXING_IN_G1) /** * M165: Set multiple mix factors for a mixing extruder. * Factors that are left out will be set to 0. * All factors together must add up to 1.0. * * A[factor] Mix factor for extruder stepper 1 * B[factor] Mix factor for extruder stepper 2 * C[factor] Mix factor for extruder stepper 3 * D[factor] Mix factor for extruder stepper 4 * H[factor] Mix factor for extruder stepper 5 * I[factor] Mix factor for extruder stepper 6 * */ inline void gcode_M165() { gcode_get_mix(); } #endif #endif // MIXING_EXTRUDER /** * M999: Restart after being stopped * * Default behaviour is to flush the serial buffer and request * a resend to the host starting on the last N line received. * * Sending "M999 S1" will resume printing without flushing the * existing command buffer. * */ inline void gcode_M999() { Running = true; lcd_reset_alert_level(); if (code_seen('S') && code_value_bool()) return; // gcode_LastN = Stopped_gcode_LastN; FlushSerialRequestResend(); } #if ENABLED(SWITCHING_EXTRUDER) inline void move_extruder_servo(uint8_t e) { const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES; MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]); safe_delay(500); } #endif inline void invalid_extruder_error(const uint8_t &e) { SERIAL_ECHO_START; SERIAL_CHAR('T'); SERIAL_ECHO_F(e, DEC); SERIAL_ECHOLN(MSG_INVALID_EXTRUDER); } /** * Perform a tool-change, which may result in moving the * previous tool out of the way and the new tool into place. */ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) { #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1 if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) return invalid_extruder_error(tmp_extruder); // T0-Tnnn: Switch virtual tool by changing the mix for (uint8_t j = 0; j < MIXING_STEPPERS; j++) mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j]; #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1 #if HOTENDS > 1 if (tmp_extruder >= EXTRUDERS) return invalid_extruder_error(tmp_extruder); const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s; feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S; if (tmp_extruder != active_extruder) { if (!no_move && axis_unhomed_error(true, true, true)) { SERIAL_ECHOLNPGM("No move on toolchange"); no_move = true; } // Save current position to destination, for use later set_destination_to_current(); #if ENABLED(DUAL_X_CARRIAGE) #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPGM("Dual X Carriage Mode "); switch (dual_x_carriage_mode) { case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break; case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break; case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break; } } #endif const float xhome = x_home_pos(active_extruder); if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() && (delayed_move_time || current_position[X_AXIS] != xhome) ) { float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT; #if ENABLED(MAX_SOFTWARE_ENDSTOPS) NOMORE(raised_z, soft_endstop_max[Z_AXIS]); #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPAIR("Raise to ", raised_z); SERIAL_ECHOLNPAIR("MoveX to ", xhome); SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]); } #endif // Park old head: 1) raise 2) move to park position 3) lower for (uint8_t i = 0; i < 3; i++) planner.buffer_line( i == 0 ? current_position[X_AXIS] : xhome, current_position[Y_AXIS], i == 2 ? current_position[Z_AXIS] : raised_z, current_position[E_AXIS], planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS], active_extruder ); stepper.synchronize(); } // Apply Y & Z extruder offset (X offset is used as home pos with Dual X) current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder]; current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder]; // Activate the new extruder active_extruder = tmp_extruder; // This function resets the max/min values - the current position may be overwritten below. set_axis_is_at_home(X_AXIS); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position); #endif // Only when auto-parking are carriages safe to move if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true; switch (dual_x_carriage_mode) { case DXC_FULL_CONTROL_MODE: // New current position is the position of the activated extruder current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos); // Save the inactive extruder's position (from the old current_position) inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]); break; case DXC_AUTO_PARK_MODE: // record raised toolhead position for use by unpark COPY(raised_parked_position, current_position); raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT; #if ENABLED(MAX_SOFTWARE_ENDSTOPS) NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]); #endif active_extruder_parked = true; delayed_move_time = 0; break; case DXC_DUPLICATION_MODE: // If the new extruder is the left one, set it "parked" // This triggers the second extruder to move into the duplication position active_extruder_parked = (active_extruder == 0); if (active_extruder_parked) current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos); else current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset; inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]); extruder_duplication_enabled = false; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos); SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled"); } #endif break; } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no"); DEBUG_POS("New extruder (parked)", current_position); } #endif // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together? #else // !DUAL_X_CARRIAGE #if ENABLED(SWITCHING_EXTRUDER) // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder], z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0); // Always raise by some amount (destination copied from current_position earlier) current_position[Z_AXIS] += z_raise; planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder); stepper.synchronize(); move_extruder_servo(active_extruder); #endif /** * Set current_position to the position of the new nozzle. * Offsets are based on linear distance, so we need to get * the resulting position in coordinate space. * * - With grid or 3-point leveling, offset XYZ by a tilted vector * - With mesh leveling, update Z for the new position * - Otherwise, just use the raw linear distance * * Software endstops are altered here too. Consider a case where: * E0 at X=0 ... E1 at X=10 * When we switch to E1 now X=10, but E1 can't move left. * To express this we apply the change in XY to the software endstops. * E1 can move farther right than E0, so the right limit is extended. * * Note that we don't adjust the Z software endstops. Why not? * Consider a case where Z=0 (here) and switching to E1 makes Z=1 * because the bed is 1mm lower at the new position. As long as * the first nozzle is out of the way, the carriage should be * allowed to move 1mm lower. This technically "breaks" the * Z software endstop. But this is technically correct (and * there is no viable alternative). */ #if ABL_PLANAR // Offset extruder, make sure to apply the bed level rotation matrix vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder], hotend_offset[Y_AXIS][tmp_extruder], 0), act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder], hotend_offset[Y_AXIS][active_extruder], 0), offset_vec = tmp_offset_vec - act_offset_vec; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { tmp_offset_vec.debug(PSTR("tmp_offset_vec")); act_offset_vec.debug(PSTR("act_offset_vec")); offset_vec.debug(PSTR("offset_vec (BEFORE)")); } #endif offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix)); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)")); #endif // Adjustments to the current position const float xydiff[2] = { offset_vec.x, offset_vec.y }; current_position[Z_AXIS] += offset_vec.z; #else // !ABL_PLANAR const float xydiff[2] = { hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder], hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder] }; #if ENABLED(MESH_BED_LEVELING) if (mbl.active()) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]); #endif float x2 = current_position[X_AXIS] + xydiff[X_AXIS], y2 = current_position[Y_AXIS] + xydiff[Y_AXIS], z1 = current_position[Z_AXIS], z2 = z1; planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1); planner.apply_leveling(x2, y2, z2); current_position[Z_AXIS] += z2 - z1; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]); #endif } #endif // MESH_BED_LEVELING #endif // !HAS_ABL #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]); SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]); SERIAL_ECHOLNPGM(" }"); } #endif // The newly-selected extruder XY is actually at... current_position[X_AXIS] += xydiff[X_AXIS]; current_position[Y_AXIS] += xydiff[Y_AXIS]; #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) { #if HAS_POSITION_SHIFT position_shift[i] += xydiff[i]; #endif update_software_endstops((AxisEnum)i); } #endif // Set the new active extruder active_extruder = tmp_extruder; #endif // !DUAL_X_CARRIAGE #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position); #endif // Tell the planner the new "current position" SYNC_PLAN_POSITION_KINEMATIC(); // Move to the "old position" (move the extruder into place) if (!no_move && IsRunning()) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination); #endif prepare_move_to_destination(); } #if ENABLED(SWITCHING_EXTRUDER) // Move back down, if needed. (Including when the new tool is higher.) if (z_raise != z_diff) { destination[Z_AXIS] += z_diff; feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; prepare_move_to_destination(); } #endif } // (tmp_extruder != active_extruder) stepper.synchronize(); #if ENABLED(EXT_SOLENOID) disable_all_solenoids(); enable_solenoid_on_active_extruder(); #endif // EXT_SOLENOID feedrate_mm_s = old_feedrate_mm_s; #else // HOTENDS <= 1 // Set the new active extruder active_extruder = tmp_extruder; UNUSED(fr_mm_s); UNUSED(no_move); #endif // HOTENDS <= 1 SERIAL_ECHO_START; SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder); #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1 } /** * T0-T3: Switch tool, usually switching extruders * * F[units/min] Set the movement feedrate * S1 Don't move the tool in XY after change */ inline void gcode_T(uint8_t tmp_extruder) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder); SERIAL_CHAR(')'); SERIAL_EOL; DEBUG_POS("BEFORE", current_position); } #endif #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1) tool_change(tmp_extruder); #elif HOTENDS > 1 tool_change( tmp_extruder, code_seen('F') ? MMM_TO_MMS(code_value_linear_units()) : 0.0, (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool()) ); #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { DEBUG_POS("AFTER", current_position); SERIAL_ECHOLNPGM("<<< gcode_T"); } #endif } /** * Process a single command and dispatch it to its handler * This is called from the main loop() */ void process_next_command() { current_command = command_queue[cmd_queue_index_r]; if (DEBUGGING(ECHO)) { SERIAL_ECHO_START; SERIAL_ECHOLN(current_command); #if ENABLED(M100_FREE_MEMORY_WATCHER) SERIAL_ECHOPAIR("slot:", cmd_queue_index_r); M100_dump_routine(" Command Queue:", &command_queue[0][0], &command_queue[BUFSIZE][MAX_CMD_SIZE]); #endif } // Sanitize the current command: // - Skip leading spaces // - Bypass N[-0-9][0-9]*[ ]* // - Overwrite * with nul to mark the end while (*current_command == ' ') ++current_command; if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) { current_command += 2; // skip N[-0-9] while (NUMERIC(*current_command)) ++current_command; // skip [0-9]* while (*current_command == ' ') ++current_command; // skip [ ]* } char* starpos = strchr(current_command, '*'); // * should always be the last parameter if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' ' char *cmd_ptr = current_command; // Get the command code, which must be G, M, or T char command_code = *cmd_ptr++; // Skip spaces to get the numeric part while (*cmd_ptr == ' ') cmd_ptr++; // Allow for decimal point in command #if ENABLED(G38_PROBE_TARGET) uint8_t subcode = 0; #endif uint16_t codenum = 0; // define ahead of goto // Bail early if there's no code bool code_is_good = NUMERIC(*cmd_ptr); if (!code_is_good) goto ExitUnknownCommand; // Get and skip the code number do { codenum = (codenum * 10) + (*cmd_ptr - '0'); cmd_ptr++; } while (NUMERIC(*cmd_ptr)); // Allow for decimal point in command #if ENABLED(G38_PROBE_TARGET) if (*cmd_ptr == '.') { cmd_ptr++; while (NUMERIC(*cmd_ptr)) subcode = (subcode * 10) + (*cmd_ptr++ - '0'); } #endif // Skip all spaces to get to the first argument, or nul while (*cmd_ptr == ' ') cmd_ptr++; // The command's arguments (if any) start here, for sure! current_command_args = cmd_ptr; KEEPALIVE_STATE(IN_HANDLER); // Handle a known G, M, or T switch (command_code) { case 'G': switch (codenum) { // G0, G1 case 0: case 1: #if IS_SCARA gcode_G0_G1(codenum == 0); #else gcode_G0_G1(); #endif break; // G2, G3 #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA) case 2: // G2 - CW ARC case 3: // G3 - CCW ARC gcode_G2_G3(codenum == 2); break; #endif // G4 Dwell case 4: gcode_G4(); break; #if ENABLED(BEZIER_CURVE_SUPPORT) // G5 case 5: // G5 - Cubic B_spline gcode_G5(); break; #endif // BEZIER_CURVE_SUPPORT #if ENABLED(FWRETRACT) case 10: // G10: retract case 11: // G11: retract_recover gcode_G10_G11(codenum == 10); break; #endif // FWRETRACT #if ENABLED(NOZZLE_CLEAN_FEATURE) case 12: gcode_G12(); // G12: Nozzle Clean break; #endif // NOZZLE_CLEAN_FEATURE #if ENABLED(INCH_MODE_SUPPORT) case 20: //G20: Inch Mode gcode_G20(); break; case 21: //G21: MM Mode gcode_G21(); break; #endif // INCH_MODE_SUPPORT #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING) case 26: // G26: Mesh Validation Pattern generation gcode_G26(); break; #endif // AUTO_BED_LEVELING_UBL #if ENABLED(NOZZLE_PARK_FEATURE) case 27: // G27: Nozzle Park gcode_G27(); break; #endif // NOZZLE_PARK_FEATURE case 28: // G28: Home all axes, one at a time gcode_G28(); break; #if HAS_LEVELING case 29: // G29 Detailed Z probe, probes the bed at 3 or more points, // or provides access to the UBL System if enabled. gcode_G29(); break; #endif // HAS_LEVELING #if HAS_BED_PROBE case 30: // G30 Single Z probe gcode_G30(); break; #if ENABLED(Z_PROBE_SLED) case 31: // G31: dock the sled gcode_G31(); break; case 32: // G32: undock the sled gcode_G32(); break; #endif // Z_PROBE_SLED #if ENABLED(DELTA_AUTO_CALIBRATION) case 33: // G33: Delta Auto-Calibration gcode_G33(); break; #endif // DELTA_AUTO_CALIBRATION #endif // HAS_BED_PROBE #if ENABLED(G38_PROBE_TARGET) case 38: // G38.2 & G38.3 if (subcode == 2 || subcode == 3) gcode_G38(subcode == 2); break; #endif case 90: // G90 relative_mode = false; break; case 91: // G91 relative_mode = true; break; case 92: // G92 gcode_G92(); break; } break; case 'M': switch (codenum) { #if HAS_RESUME_CONTINUE case 0: // M0: Unconditional stop - Wait for user button press on LCD case 1: // M1: Conditional stop - Wait for user button press on LCD gcode_M0_M1(); break; #endif // ULTIPANEL case 17: // M17: Enable all stepper motors gcode_M17(); break; #if ENABLED(SDSUPPORT) case 20: // M20: list SD card gcode_M20(); break; case 21: // M21: init SD card gcode_M21(); break; case 22: // M22: release SD card gcode_M22(); break; case 23: // M23: Select file gcode_M23(); break; case 24: // M24: Start SD print gcode_M24(); break; case 25: // M25: Pause SD print gcode_M25(); break; case 26: // M26: Set SD index gcode_M26(); break; case 27: // M27: Get SD status gcode_M27(); break; case 28: // M28: Start SD write gcode_M28(); break; case 29: // M29: Stop SD write gcode_M29(); break; case 30: // M30 Delete File gcode_M30(); break; case 32: // M32: Select file and start SD print gcode_M32(); break; #if ENABLED(LONG_FILENAME_HOST_SUPPORT) case 33: // M33: Get the long full path to a file or folder gcode_M33(); break; #endif #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE) case 34: //M34 - Set SD card sorting options gcode_M34(); break; #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE case 928: // M928: Start SD write gcode_M928(); break; #endif //SDSUPPORT case 31: // M31: Report time since the start of SD print or last M109 gcode_M31(); break; case 42: // M42: Change pin state gcode_M42(); break; #if ENABLED(PINS_DEBUGGING) case 43: // M43: Read pin state gcode_M43(); break; #endif #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST) case 48: // M48: Z probe repeatability test gcode_M48(); break; #endif // Z_MIN_PROBE_REPEATABILITY_TEST #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING) case 49: // M49: Turn on or off G26 debug flag for verbose output gcode_M49(); break; #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING case 75: // M75: Start print timer gcode_M75(); break; case 76: // M76: Pause print timer gcode_M76(); break; case 77: // M77: Stop print timer gcode_M77(); break; #if ENABLED(PRINTCOUNTER) case 78: // M78: Show print statistics gcode_M78(); break; #endif #if ENABLED(M100_FREE_MEMORY_WATCHER) case 100: // M100: Free Memory Report gcode_M100(); break; #endif case 104: // M104: Set hot end temperature gcode_M104(); break; case 110: // M110: Set Current Line Number gcode_M110(); break; case 111: // M111: Set debug level gcode_M111(); break; #if DISABLED(EMERGENCY_PARSER) case 108: // M108: Cancel Waiting gcode_M108(); break; case 112: // M112: Emergency Stop gcode_M112(); break; case 410: // M410 quickstop - Abort all the planned moves. gcode_M410(); break; #endif #if ENABLED(HOST_KEEPALIVE_FEATURE) case 113: // M113: Set Host Keepalive interval gcode_M113(); break; #endif case 140: // M140: Set bed temperature gcode_M140(); break; case 105: // M105: Report current temperature gcode_M105(); KEEPALIVE_STATE(NOT_BUSY); return; // "ok" already printed #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED) case 155: // M155: Set temperature auto-report interval gcode_M155(); break; #endif case 109: // M109: Wait for hotend temperature to reach target gcode_M109(); break; #if HAS_TEMP_BED case 190: // M190: Wait for bed temperature to reach target gcode_M190(); break; #endif // HAS_TEMP_BED #if FAN_COUNT > 0 case 106: // M106: Fan On gcode_M106(); break; case 107: // M107: Fan Off gcode_M107(); break; #endif // FAN_COUNT > 0 #if ENABLED(PARK_HEAD_ON_PAUSE) case 125: // M125: Store current position and move to filament change position gcode_M125(); break; #endif #if ENABLED(BARICUDA) // PWM for HEATER_1_PIN #if HAS_HEATER_1 case 126: // M126: valve open gcode_M126(); break; case 127: // M127: valve closed gcode_M127(); break; #endif // HAS_HEATER_1 // PWM for HEATER_2_PIN #if HAS_HEATER_2 case 128: // M128: valve open gcode_M128(); break; case 129: // M129: valve closed gcode_M129(); break; #endif // HAS_HEATER_2 #endif // BARICUDA #if HAS_POWER_SWITCH case 80: // M80: Turn on Power Supply gcode_M80(); break; #endif // HAS_POWER_SWITCH case 81: // M81: Turn off Power, including Power Supply, if possible gcode_M81(); break; case 82: // M83: Set E axis normal mode (same as other axes) gcode_M82(); break; case 83: // M83: Set E axis relative mode gcode_M83(); break; case 18: // M18 => M84 case 84: // M84: Disable all steppers or set timeout gcode_M18_M84(); break; case 85: // M85: Set inactivity stepper shutdown timeout gcode_M85(); break; case 92: // M92: Set the steps-per-unit for one or more axes gcode_M92(); break; case 114: // M114: Report current position gcode_M114(); break; case 115: // M115: Report capabilities gcode_M115(); break; case 117: // M117: Set LCD message text, if possible gcode_M117(); break; case 119: // M119: Report endstop states gcode_M119(); break; case 120: // M120: Enable endstops gcode_M120(); break; case 121: // M121: Disable endstops gcode_M121(); break; #if ENABLED(ULTIPANEL) case 145: // M145: Set material heatup parameters gcode_M145(); break; #endif #if ENABLED(TEMPERATURE_UNITS_SUPPORT) case 149: // M149: Set temperature units gcode_M149(); break; #endif #if HAS_COLOR_LEDS case 150: // M150: Set Status LED Color gcode_M150(); break; #endif // BLINKM #if ENABLED(MIXING_EXTRUDER) case 163: // M163: Set a component weight for mixing extruder gcode_M163(); break; #if MIXING_VIRTUAL_TOOLS > 1 case 164: // M164: Save current mix as a virtual extruder gcode_M164(); break; #endif #if ENABLED(DIRECT_MIXING_IN_G1) case 165: // M165: Set multiple mix weights gcode_M165(); break; #endif #endif case 200: // M200: Set filament diameter, E to cubic units gcode_M200(); break; case 201: // M201: Set max acceleration for print moves (units/s^2) gcode_M201(); break; #if 0 // Not used for Sprinter/grbl gen6 case 202: // M202 gcode_M202(); break; #endif case 203: // M203: Set max feedrate (units/sec) gcode_M203(); break; case 204: // M204: Set acceleration gcode_M204(); break; case 205: //M205: Set advanced settings gcode_M205(); break; #if HAS_M206_COMMAND case 206: // M206: Set home offsets gcode_M206(); break; #endif #if ENABLED(DELTA) case 665: // M665: Set delta configurations gcode_M665(); break; #endif #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS) case 666: // M666: Set delta or dual endstop adjustment gcode_M666(); break; #endif #if ENABLED(FWRETRACT) case 207: // M207: Set Retract Length, Feedrate, and Z lift gcode_M207(); break; case 208: // M208: Set Recover (unretract) Additional Length and Feedrate gcode_M208(); break; case 209: // M209: Turn Automatic Retract Detection on/off gcode_M209(); break; #endif // FWRETRACT case 211: // M211: Enable, Disable, and/or Report software endstops gcode_M211(); break; #if HOTENDS > 1 case 218: // M218: Set a tool offset gcode_M218(); break; #endif case 220: // M220: Set Feedrate Percentage: S ("FR" on your LCD) gcode_M220(); break; case 221: // M221: Set Flow Percentage gcode_M221(); break; case 226: // M226: Wait until a pin reaches a state gcode_M226(); break; #if HAS_SERVOS case 280: // M280: Set servo position absolute gcode_M280(); break; #endif // HAS_SERVOS #if HAS_BUZZER case 300: // M300: Play beep tone gcode_M300(); break; #endif // HAS_BUZZER #if ENABLED(PIDTEMP) case 301: // M301: Set hotend PID parameters gcode_M301(); break; #endif // PIDTEMP #if ENABLED(PIDTEMPBED) case 304: // M304: Set bed PID parameters gcode_M304(); break; #endif // PIDTEMPBED #if defined(CHDK) || HAS_PHOTOGRAPH case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/ gcode_M240(); break; #endif // CHDK || PHOTOGRAPH_PIN #if HAS_LCD_CONTRAST case 250: // M250: Set LCD contrast gcode_M250(); break; #endif // HAS_LCD_CONTRAST #if ENABLED(EXPERIMENTAL_I2CBUS) case 260: // M260: Send data to an i2c slave gcode_M260(); break; case 261: // M261: Request data from an i2c slave gcode_M261(); break; #endif // EXPERIMENTAL_I2CBUS #if ENABLED(PREVENT_COLD_EXTRUSION) case 302: // M302: Allow cold extrudes (set the minimum extrude temperature) gcode_M302(); break; #endif // PREVENT_COLD_EXTRUSION case 303: // M303: PID autotune gcode_M303(); break; #if ENABLED(MORGAN_SCARA) case 360: // M360: SCARA Theta pos1 if (gcode_M360()) return; break; case 361: // M361: SCARA Theta pos2 if (gcode_M361()) return; break; case 362: // M362: SCARA Psi pos1 if (gcode_M362()) return; break; case 363: // M363: SCARA Psi pos2 if (gcode_M363()) return; break; case 364: // M364: SCARA Psi pos3 (90 deg to Theta) if (gcode_M364()) return; break; #endif // SCARA case 400: // M400: Finish all moves gcode_M400(); break; #if HAS_BED_PROBE case 401: // M401: Deploy probe gcode_M401(); break; case 402: // M402: Stow probe gcode_M402(); break; #endif // HAS_BED_PROBE #if ENABLED(FILAMENT_WIDTH_SENSOR) case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width gcode_M404(); break; case 405: // M405: Turn on filament sensor for control gcode_M405(); break; case 406: // M406: Turn off filament sensor for control gcode_M406(); break; case 407: // M407: Display measured filament diameter gcode_M407(); break; #endif // FILAMENT_WIDTH_SENSOR #if HAS_LEVELING case 420: // M420: Enable/Disable Bed Leveling gcode_M420(); break; #endif #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR) case 421: // M421: Set a Mesh Bed Leveling Z coordinate gcode_M421(); break; #endif #if HAS_M206_COMMAND case 428: // M428: Apply current_position to home_offset gcode_M428(); break; #endif case 500: // M500: Store settings in EEPROM gcode_M500(); break; case 501: // M501: Read settings from EEPROM gcode_M501(); break; case 502: // M502: Revert to default settings gcode_M502(); break; case 503: // M503: print settings currently in memory gcode_M503(); break; #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) case 540: // M540: Set abort on endstop hit for SD printing gcode_M540(); break; #endif #if HAS_BED_PROBE case 851: // M851: Set Z Probe Z Offset gcode_M851(); break; #endif // HAS_BED_PROBE #if ENABLED(FILAMENT_CHANGE_FEATURE) case 600: // M600: Pause for filament change gcode_M600(); break; #endif // FILAMENT_CHANGE_FEATURE #if ENABLED(DUAL_X_CARRIAGE) case 605: // M605: Set Dual X Carriage movement mode gcode_M605(); break; #endif // DUAL_X_CARRIAGE #if ENABLED(LIN_ADVANCE) case 900: // M900: Set advance K factor. gcode_M900(); break; #endif #if ENABLED(HAVE_TMC2130) case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E gcode_M906(); break; #endif case 907: // M907: Set digital trimpot motor current using axis codes. gcode_M907(); break; #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT) case 908: // M908: Control digital trimpot directly. gcode_M908(); break; #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF case 909: // M909: Print digipot/DAC current value gcode_M909(); break; case 910: // M910: Commit digipot/DAC value to external EEPROM gcode_M910(); break; #endif #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT #if ENABLED(HAVE_TMC2130) case 911: // M911: Report TMC2130 prewarn triggered flags gcode_M911(); break; case 912: // M911: Clear TMC2130 prewarn triggered flags gcode_M912(); break; #if ENABLED(HYBRID_THRESHOLD) case 913: // M913: Set HYBRID_THRESHOLD speed. gcode_M913(); break; #endif #if ENABLED(SENSORLESS_HOMING) case 914: // M914: Set SENSORLESS_HOMING sensitivity. gcode_M914(); break; #endif #endif #if HAS_MICROSTEPS case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. gcode_M350(); break; case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low. gcode_M351(); break; #endif // HAS_MICROSTEPS case 355: // M355 Turn case lights on/off gcode_M355(); break; case 999: // M999: Restart after being Stopped gcode_M999(); break; } break; case 'T': gcode_T(codenum); break; default: code_is_good = false; } KEEPALIVE_STATE(NOT_BUSY); ExitUnknownCommand: // Still unknown command? Throw an error if (!code_is_good) unknown_command_error(); ok_to_send(); } /** * Send a "Resend: nnn" message to the host to * indicate that a command needs to be re-sent. */ void FlushSerialRequestResend() { //char command_queue[cmd_queue_index_r][100]="Resend:"; MYSERIAL.flush(); SERIAL_PROTOCOLPGM(MSG_RESEND); SERIAL_PROTOCOLLN(gcode_LastN + 1); ok_to_send(); } /** * Send an "ok" message to the host, indicating * that a command was successfully processed. * * If ADVANCED_OK is enabled also include: * N Line number of the command, if any * P Planner space remaining * B Block queue space remaining */ void ok_to_send() { refresh_cmd_timeout(); if (!send_ok[cmd_queue_index_r]) return; SERIAL_PROTOCOLPGM(MSG_OK); #if ENABLED(ADVANCED_OK) char* p = command_queue[cmd_queue_index_r]; if (*p == 'N') { SERIAL_PROTOCOL(' '); SERIAL_ECHO(*p++); while (NUMERIC_SIGNED(*p)) SERIAL_ECHO(*p++); } SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1)); SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue); #endif SERIAL_EOL; } #if HAS_SOFTWARE_ENDSTOPS /** * Constrain the given coordinates to the software endstops. */ void clamp_to_software_endstops(float target[XYZ]) { if (!soft_endstops_enabled) return; #if ENABLED(MIN_SOFTWARE_ENDSTOPS) NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]); NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]); NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]); #endif #if ENABLED(MAX_SOFTWARE_ENDSTOPS) NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]); NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]); NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]); #endif } #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) #if ENABLED(ABL_BILINEAR_SUBDIVISION) #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A] #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A] #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y #define ABL_BG_GRID(X,Y) z_values_virt[X][Y] #else #define ABL_BG_SPACING(A) bilinear_grid_spacing[A] #define ABL_BG_FACTOR(A) bilinear_grid_factor[A] #define ABL_BG_POINTS_X GRID_MAX_POINTS_X #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y #define ABL_BG_GRID(X,Y) z_values[X][Y] #endif // Get the Z adjustment for non-linear bed leveling float bilinear_z_offset(const float logical[XYZ]) { static float z1, d2, z3, d4, L, D, ratio_x, ratio_y, last_x = -999.999, last_y = -999.999; // Whole units for the grid line indices. Constrained within bounds. static int8_t gridx, gridy, nextx, nexty, last_gridx = -99, last_gridy = -99; // XY relative to the probed area const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS], y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS]; if (last_x != x) { last_x = x; ratio_x = x * ABL_BG_FACTOR(X_AXIS); const float gx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1); ratio_x -= gx; // Subtract whole to get the ratio within the grid box NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.) gridx = gx; nextx = min(gridx + 1, ABL_BG_POINTS_X - 1); } if (last_y != y || last_gridx != gridx) { if (last_y != y) { last_y = y; ratio_y = y * ABL_BG_FACTOR(Y_AXIS); const float gy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1); ratio_y -= gy; NOLESS(ratio_y, 0); gridy = gy; nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1); } if (last_gridx != gridx || last_gridy != gridy) { last_gridx = gridx; last_gridy = gridy; // Z at the box corners z1 = ABL_BG_GRID(gridx, gridy); // left-front d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta) z3 = ABL_BG_GRID(nextx, gridy); // right-front d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta) } // Bilinear interpolate. Needed since y or gridx has changed. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB D = R - L; } const float offset = L + ratio_x * D; // the offset almost always changes /* static float last_offset = 0; if (fabs(last_offset - offset) > 0.2) { SERIAL_ECHOPGM("Sudden Shift at "); SERIAL_ECHOPAIR("x=", x); SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]); SERIAL_ECHOLNPAIR(" -> gridx=", gridx); SERIAL_ECHOPAIR(" y=", y); SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]); SERIAL_ECHOLNPAIR(" -> gridy=", gridy); SERIAL_ECHOPAIR(" ratio_x=", ratio_x); SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y); SERIAL_ECHOPAIR(" z1=", z1); SERIAL_ECHOPAIR(" z2=", z2); SERIAL_ECHOPAIR(" z3=", z3); SERIAL_ECHOLNPAIR(" z4=", z4); SERIAL_ECHOPAIR(" L=", L); SERIAL_ECHOPAIR(" R=", R); SERIAL_ECHOLNPAIR(" offset=", offset); } last_offset = offset; //*/ return offset; } #endif // AUTO_BED_LEVELING_BILINEAR #if ENABLED(DELTA) /** * Recalculate factors used for delta kinematics whenever * settings have been changed (e.g., by M665). */ void recalc_delta_settings(float radius, float diagonal_rod) { const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER, drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER; delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]); delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]); delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]); delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]); } #if ENABLED(DELTA_FAST_SQRT) /** * Fast inverse sqrt from Quake III Arena * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root */ float Q_rsqrt(float number) { long i; float x2, y; const float threehalfs = 1.5f; x2 = number * 0.5f; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5F3759DF - ( i >> 1 ); // what the f***? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed return y; } #define _SQRT(n) (1.0f / Q_rsqrt(n)) #else #define _SQRT(n) sqrt(n) #endif /** * Delta Inverse Kinematics * * Calculate the tower positions for a given logical * position, storing the result in the delta[] array. * * This is an expensive calculation, requiring 3 square * roots per segmented linear move, and strains the limits * of a Mega2560 with a Graphical Display. * * Suggested optimizations include: * * - Disable the home_offset (M206) and/or position_shift (G92) * features to remove up to 12 float additions. * * - Use a fast-inverse-sqrt function and add the reciprocal. * (see above) */ // Macro to obtain the Z position of an individual tower #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \ delta_diagonal_rod_2_tower[T] - HYPOT2( \ delta_tower[T][X_AXIS] - raw[X_AXIS], \ delta_tower[T][Y_AXIS] - raw[Y_AXIS] \ ) \ ) #define DELTA_RAW_IK() do { \ delta[A_AXIS] = DELTA_Z(A_AXIS); \ delta[B_AXIS] = DELTA_Z(B_AXIS); \ delta[C_AXIS] = DELTA_Z(C_AXIS); \ } while(0) #define DELTA_LOGICAL_IK() do { \ const float raw[XYZ] = { \ RAW_X_POSITION(logical[X_AXIS]), \ RAW_Y_POSITION(logical[Y_AXIS]), \ RAW_Z_POSITION(logical[Z_AXIS]) \ }; \ DELTA_RAW_IK(); \ } while(0) #define DELTA_DEBUG() do { \ SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \ SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \ SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \ SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \ SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \ SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \ } while(0) void inverse_kinematics(const float logical[XYZ]) { DELTA_LOGICAL_IK(); // DELTA_DEBUG(); } /** * Calculate the highest Z position where the * effector has the full range of XY motion. */ float delta_safe_distance_from_top() { float cartesian[XYZ] = { LOGICAL_X_POSITION(0), LOGICAL_Y_POSITION(0), LOGICAL_Z_POSITION(0) }; inverse_kinematics(cartesian); float distance = delta[A_AXIS]; cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS); inverse_kinematics(cartesian); return abs(distance - delta[A_AXIS]); } /** * Delta Forward Kinematics * * See the Wikipedia article "Trilateration" * https://en.wikipedia.org/wiki/Trilateration * * Establish a new coordinate system in the plane of the * three carriage points. This system has its origin at * tower1, with tower2 on the X axis. Tower3 is in the X-Y * plane with a Z component of zero. * We will define unit vectors in this coordinate system * in our original coordinate system. Then when we calculate * the Xnew, Ynew and Znew values, we can translate back into * the original system by moving along those unit vectors * by the corresponding values. * * Variable names matched to Marlin, c-version, and avoid the * use of any vector library. * * by Andreas Hardtung 2016-06-07 * based on a Java function from "Delta Robot Kinematics V3" * by Steve Graves * * The result is stored in the cartes[] array. */ void forward_kinematics_DELTA(float z1, float z2, float z3) { // Create a vector in old coordinates along x axis of new coordinate float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 }; // Get the Magnitude of vector. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) ); // Create unit vector by dividing by magnitude. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d }; // Get the vector from the origin of the new system to the third point. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 }; // Use the dot product to find the component of this vector on the X axis. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2]; // Create a vector along the x axis that represents the x component of p13. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i }; // Subtract the X component from the original vector leaving only Y. We use the // variable that will be the unit vector after we scale it. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] }; // The magnitude of Y component float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) ); // Convert to a unit vector ey[0] /= j; ey[1] /= j; ey[2] /= j; // The cross product of the unit x and y is the unit z // float[] ez = vectorCrossProd(ex, ey); float ez[3] = { ex[1] * ey[2] - ex[2] * ey[1], ex[2] * ey[0] - ex[0] * ey[2], ex[0] * ey[1] - ex[1] * ey[0] }; // We now have the d, i and j values defined in Wikipedia. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2), Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j, Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew)); // Start from the origin of the old coordinates and add vectors in the // old coords that represent the Xnew, Ynew and Znew to find the point // in the old system. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew; cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew; cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew; } void forward_kinematics_DELTA(float point[ABC]) { forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]); } #endif // DELTA /** * Get the stepper positions in the cartes[] array. * Forward kinematics are applied for DELTA and SCARA. * * The result is in the current coordinate space with * leveling applied. The coordinates need to be run through * unapply_leveling to obtain the "ideal" coordinates * suitable for current_position, etc. */ void get_cartesian_from_steppers() { #if ENABLED(DELTA) forward_kinematics_DELTA( stepper.get_axis_position_mm(A_AXIS), stepper.get_axis_position_mm(B_AXIS), stepper.get_axis_position_mm(C_AXIS) ); cartes[X_AXIS] += LOGICAL_X_POSITION(0); cartes[Y_AXIS] += LOGICAL_Y_POSITION(0); cartes[Z_AXIS] += LOGICAL_Z_POSITION(0); #elif IS_SCARA forward_kinematics_SCARA( stepper.get_axis_position_degrees(A_AXIS), stepper.get_axis_position_degrees(B_AXIS) ); cartes[X_AXIS] += LOGICAL_X_POSITION(0); cartes[Y_AXIS] += LOGICAL_Y_POSITION(0); cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS); #else cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS); cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS); cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS); #endif } /** * Set the current_position for an axis based on * the stepper positions, removing any leveling that * may have been applied. */ void set_current_from_steppers_for_axis(const AxisEnum axis) { get_cartesian_from_steppers(); #if PLANNER_LEVELING planner.unapply_leveling(cartes); #endif if (axis == ALL_AXES) COPY(current_position, cartes); else current_position[axis] = cartes[axis]; } #if ENABLED(MESH_BED_LEVELING) /** * Prepare a mesh-leveled linear move in a Cartesian setup, * splitting the move where it crosses mesh borders. */ void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) { int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)), cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)), cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])), cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS])); NOMORE(cx1, GRID_MAX_POINTS_X - 2); NOMORE(cy1, GRID_MAX_POINTS_Y - 2); NOMORE(cx2, GRID_MAX_POINTS_X - 2); NOMORE(cy2, GRID_MAX_POINTS_Y - 2); if (cx1 == cx2 && cy1 == cy2) { // Start and end on same mesh square line_to_destination(fr_mm_s); set_current_to_destination(); return; } #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist) float normalized_dist, end[XYZE]; // Split at the left/front border of the right/top square const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); if (cx2 != cx1 && TEST(x_splits, gcx)) { COPY(end, destination); destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]); normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); destination[Y_AXIS] = MBL_SEGMENT_END(Y); CBI(x_splits, gcx); } else if (cy2 != cy1 && TEST(y_splits, gcy)) { COPY(end, destination); destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]); normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); destination[X_AXIS] = MBL_SEGMENT_END(X); CBI(y_splits, gcy); } else { // Already split on a border line_to_destination(fr_mm_s); set_current_to_destination(); return; } destination[Z_AXIS] = MBL_SEGMENT_END(Z); destination[E_AXIS] = MBL_SEGMENT_END(E); // Do the split and look for more borders mesh_line_to_destination(fr_mm_s, x_splits, y_splits); // Restore destination from stack COPY(destination, end); mesh_line_to_destination(fr_mm_s, x_splits, y_splits); } #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS)) /** * Prepare a bilinear-leveled linear move on Cartesian, * splitting the move where it crosses grid borders. */ void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) { int cx1 = CELL_INDEX(X, current_position[X_AXIS]), cy1 = CELL_INDEX(Y, current_position[Y_AXIS]), cx2 = CELL_INDEX(X, destination[X_AXIS]), cy2 = CELL_INDEX(Y, destination[Y_AXIS]); cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2); cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2); cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2); cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2); if (cx1 == cx2 && cy1 == cy2) { // Start and end on same mesh square line_to_destination(fr_mm_s); set_current_to_destination(); return; } #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist) float normalized_dist, end[XYZE]; // Split at the left/front border of the right/top square const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); if (cx2 != cx1 && TEST(x_splits, gcx)) { COPY(end, destination); destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx); normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); destination[Y_AXIS] = LINE_SEGMENT_END(Y); CBI(x_splits, gcx); } else if (cy2 != cy1 && TEST(y_splits, gcy)) { COPY(end, destination); destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy); normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); destination[X_AXIS] = LINE_SEGMENT_END(X); CBI(y_splits, gcy); } else { // Already split on a border line_to_destination(fr_mm_s); set_current_to_destination(); return; } destination[Z_AXIS] = LINE_SEGMENT_END(Z); destination[E_AXIS] = LINE_SEGMENT_END(E); // Do the split and look for more borders bilinear_line_to_destination(fr_mm_s, x_splits, y_splits); // Restore destination from stack COPY(destination, end); bilinear_line_to_destination(fr_mm_s, x_splits, y_splits); } #endif // AUTO_BED_LEVELING_BILINEAR #if IS_KINEMATIC /** * Prepare a linear move in a DELTA or SCARA setup. * * This calls planner.buffer_line several times, adding * small incremental moves for DELTA or SCARA. */ inline bool prepare_kinematic_move_to(float ltarget[XYZE]) { // Get the top feedrate of the move in the XY plane float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s); // If the move is only in Z/E don't split up the move if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) { planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder); return false; } // Get the cartesian distances moved in XYZE float difference[XYZE]; LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i]; // Get the linear distance in XYZ float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS])); // If the move is very short, check the E move distance if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]); // No E move either? Game over. if (UNEAR_ZERO(cartesian_mm)) return true; // Minimum number of seconds to move the given distance float seconds = cartesian_mm / _feedrate_mm_s; // The number of segments-per-second times the duration // gives the number of segments uint16_t segments = delta_segments_per_second * seconds; // For SCARA minimum segment size is 0.25mm #if IS_SCARA NOMORE(segments, cartesian_mm * 4); #endif // At least one segment is required NOLESS(segments, 1); // The approximate length of each segment const float inv_segments = 1.0 / float(segments), segment_distance[XYZE] = { difference[X_AXIS] * inv_segments, difference[Y_AXIS] * inv_segments, difference[Z_AXIS] * inv_segments, difference[E_AXIS] * inv_segments }; // SERIAL_ECHOPAIR("mm=", cartesian_mm); // SERIAL_ECHOPAIR(" seconds=", seconds); // SERIAL_ECHOLNPAIR(" segments=", segments); #if IS_SCARA // SCARA needs to scale the feed rate from mm/s to degrees/s const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs feed_factor = inv_segment_length * _feedrate_mm_s; float oldA = stepper.get_axis_position_degrees(A_AXIS), oldB = stepper.get_axis_position_degrees(B_AXIS); #endif // Get the logical current position as starting point float logical[XYZE]; COPY(logical, current_position); // Drop one segment so the last move is to the exact target. // If there's only 1 segment, loops will be skipped entirely. --segments; // Calculate and execute the segments for (uint16_t s = segments + 1; --s;) { LOOP_XYZE(i) logical[i] += segment_distance[i]; #if ENABLED(DELTA) DELTA_LOGICAL_IK(); // Delta can inline its kinematics #else inverse_kinematics(logical); #endif ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled #if IS_SCARA // For SCARA scale the feed rate from mm/s to degrees/s // Use ratio between the length of the move and the larger angle change const float adiff = abs(delta[A_AXIS] - oldA), bdiff = abs(delta[B_AXIS] - oldB); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder); oldA = delta[A_AXIS]; oldB = delta[B_AXIS]; #else planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder); #endif } // Since segment_distance is only approximate, // the final move must be to the exact destination. #if IS_SCARA // For SCARA scale the feed rate from mm/s to degrees/s // With segments > 1 length is 1 segment, otherwise total length inverse_kinematics(ltarget); ADJUST_DELTA(logical); const float adiff = abs(delta[A_AXIS] - oldA), bdiff = abs(delta[B_AXIS] - oldB); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder); #else planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder); #endif return false; } #else // !IS_KINEMATIC /** * Prepare a linear move in a Cartesian setup. * If Mesh Bed Leveling is enabled, perform a mesh move. * * Returns true if the caller didn't update current_position. */ inline bool prepare_move_to_destination_cartesian() { // Do not use feedrate_percentage for E or Z only moves if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) { line_to_destination(); } else { #if ENABLED(MESH_BED_LEVELING) if (mbl.active()) { mesh_line_to_destination(MMS_SCALED(feedrate_mm_s)); return true; } else #elif ENABLED(AUTO_BED_LEVELING_UBL) if (ubl.state.active) { ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder); return true; } else #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) if (planner.abl_enabled) { bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s)); return true; } else #endif line_to_destination(MMS_SCALED(feedrate_mm_s)); } return false; } #endif // !IS_KINEMATIC #if ENABLED(DUAL_X_CARRIAGE) /** * Prepare a linear move in a dual X axis setup */ inline bool prepare_move_to_destination_dualx() { if (active_extruder_parked) { switch (dual_x_carriage_mode) { case DXC_FULL_CONTROL_MODE: break; case DXC_AUTO_PARK_MODE: if (current_position[E_AXIS] == destination[E_AXIS]) { // This is a travel move (with no extrusion) // Skip it, but keep track of the current position // (so it can be used as the start of the next non-travel move) if (delayed_move_time != 0xFFFFFFFFUL) { set_current_to_destination(); NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]); delayed_move_time = millis(); return true; } } // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower for (uint8_t i = 0; i < 3; i++) planner.buffer_line( i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS], i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS], i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS], current_position[E_AXIS], i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS], active_extruder ); delayed_move_time = 0; active_extruder_parked = false; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked"); #endif break; case DXC_DUPLICATION_MODE: if (active_extruder == 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos)); SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset); } #endif // move duplicate extruder into correct duplication position. planner.set_position_mm( LOGICAL_X_POSITION(inactive_extruder_x_pos), current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] ); planner.buffer_line( current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1 ); SYNC_PLAN_POSITION_KINEMATIC(); stepper.synchronize(); extruder_duplication_enabled = true; active_extruder_parked = false; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked"); #endif } else { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0"); #endif } break; } } return false; } #endif // DUAL_X_CARRIAGE /** * Prepare a single move and get ready for the next one * * This may result in several calls to planner.buffer_line to * do smaller moves for DELTA, SCARA, mesh moves, etc. */ void prepare_move_to_destination() { clamp_to_software_endstops(destination); refresh_cmd_timeout(); #if ENABLED(PREVENT_COLD_EXTRUSION) if (!DEBUGGING(DRYRUN)) { if (destination[E_AXIS] != current_position[E_AXIS]) { if (thermalManager.tooColdToExtrude(active_extruder)) { current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); } #if ENABLED(PREVENT_LENGTHY_EXTRUDE) if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) { current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); } #endif } } #endif #if IS_KINEMATIC if (prepare_kinematic_move_to(destination)) return; #else #if ENABLED(DUAL_X_CARRIAGE) if (prepare_move_to_destination_dualx()) return; #endif if (prepare_move_to_destination_cartesian()) return; #endif set_current_to_destination(); } #if ENABLED(ARC_SUPPORT) /** * Plan an arc in 2 dimensions * * The arc is approximated by generating many small linear segments. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm) * Arcs should only be made relatively large (over 5mm), as larger arcs with * larger segments will tend to be more efficient. Your slicer should have * options for G2/G3 arc generation. In future these options may be GCode tunable. */ void plan_arc( float logical[XYZE], // Destination position float *offset, // Center of rotation relative to current_position uint8_t clockwise // Clockwise? ) { float r_X = -offset[X_AXIS], // Radius vector from center to current location r_Y = -offset[Y_AXIS]; const float radius = HYPOT(r_X, r_Y), center_X = current_position[X_AXIS] - r_X, center_Y = current_position[Y_AXIS] - r_Y, rt_X = logical[X_AXIS] - center_X, rt_Y = logical[Y_AXIS] - center_Y, linear_travel = logical[Z_AXIS] - current_position[Z_AXIS], extruder_travel = logical[E_AXIS] - current_position[E_AXIS]; // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y); if (angular_travel < 0) angular_travel += RADIANS(360); if (clockwise) angular_travel -= RADIANS(360); // Make a circle if the angular rotation is 0 if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS]) angular_travel += RADIANS(360); float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel)); if (mm_of_travel < 0.001) return; uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT)); if (segments == 0) segments = 1; /** * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, * and phi is the angle of rotation. Based on the solution approach by Jens Geisler. * r_T = [cos(phi) -sin(phi); * sin(phi) cos(phi)] * r ; * * For arc generation, the center of the circle is the axis of rotation and the radius vector is * defined from the circle center to the initial position. Each line segment is formed by successive * vector rotations. This requires only two cos() and sin() computations to form the rotation * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since * all double numbers are single precision on the Arduino. (True double precision will not have * round off issues for CNC applications.) Single precision error can accumulate to be greater than * tool precision in some cases. Therefore, arc path correction is implemented. * * Small angle approximation may be used to reduce computation overhead further. This approximation * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words, * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an * issue for CNC machines with the single precision Arduino calculations. * * This approximation also allows plan_arc to immediately insert a line segment into the planner * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead. * This is important when there are successive arc motions. */ // Vector rotation matrix values float arc_target[XYZE]; const float theta_per_segment = angular_travel / segments, linear_per_segment = linear_travel / segments, extruder_per_segment = extruder_travel / segments, sin_T = theta_per_segment, cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation // Initialize the linear axis arc_target[Z_AXIS] = current_position[Z_AXIS]; // Initialize the extruder axis arc_target[E_AXIS] = current_position[E_AXIS]; const float fr_mm_s = MMS_SCALED(feedrate_mm_s); millis_t next_idle_ms = millis() + 200UL; int8_t count = 0; for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times thermalManager.manage_heater(); if (ELAPSED(millis(), next_idle_ms)) { next_idle_ms = millis() + 200UL; idle(); } if (++count < N_ARC_CORRECTION) { // Apply vector rotation matrix to previous r_X / 1 const float r_new_Y = r_X * sin_T + r_Y * cos_T; r_X = r_X * cos_T - r_Y * sin_T; r_Y = r_new_Y; } else { // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. // Compute exact location by applying transformation matrix from initial radius vector(=-offset). // To reduce stuttering, the sin and cos could be computed at different times. // For now, compute both at the same time. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment); r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti; r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti; count = 0; } // Update arc_target location arc_target[X_AXIS] = center_X + r_X; arc_target[Y_AXIS] = center_Y + r_Y; arc_target[Z_AXIS] += linear_per_segment; arc_target[E_AXIS] += extruder_per_segment; clamp_to_software_endstops(arc_target); planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder); } // Ensure last segment arrives at target location. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder); // As far as the parser is concerned, the position is now == target. In reality the // motion control system might still be processing the action and the real tool position // in any intermediate location. set_current_to_destination(); } #endif #if ENABLED(BEZIER_CURVE_SUPPORT) void plan_cubic_move(const float offset[4]) { cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder); // As far as the parser is concerned, the position is now == destination. In reality the // motion control system might still be processing the action and the real tool position // in any intermediate location. set_current_to_destination(); } #endif // BEZIER_CURVE_SUPPORT #if USE_CONTROLLER_FAN void controllerFan() { static millis_t lastMotorOn = 0, // Last time a motor was turned on nextMotorCheck = 0; // Last time the state was checked const millis_t ms = millis(); if (ELAPSED(ms, nextMotorCheck)) { nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0 || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled... #if E_STEPPERS > 1 || E1_ENABLE_READ == E_ENABLE_ON #if HAS_X2_ENABLE || X2_ENABLE_READ == X_ENABLE_ON #endif #if E_STEPPERS > 2 || E2_ENABLE_READ == E_ENABLE_ON #if E_STEPPERS > 3 || E3_ENABLE_READ == E_ENABLE_ON #if E_STEPPERS > 4 || E4_ENABLE_READ == E_ENABLE_ON #endif // E_STEPPERS > 4 #endif // E_STEPPERS > 3 #endif // E_STEPPERS > 2 #endif // E_STEPPERS > 1 ) { lastMotorOn = ms; //... set time to NOW so the fan will turn on } // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED; // allows digital or PWM fan output to be used (see M42 handling) WRITE(CONTROLLER_FAN_PIN, speed); analogWrite(CONTROLLER_FAN_PIN, speed); } } #endif // USE_CONTROLLER_FAN #if ENABLED(MORGAN_SCARA) /** * Morgan SCARA Forward Kinematics. Results in cartes[]. * Maths and first version by QHARLEY. * Integrated into Marlin and slightly restructured by Joachim Cerny. */ void forward_kinematics_SCARA(const float &a, const float &b) { float a_sin = sin(RADIANS(a)) * L1, a_cos = cos(RADIANS(a)) * L1, b_sin = sin(RADIANS(b)) * L2, b_cos = cos(RADIANS(b)) * L2; cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi /* SERIAL_ECHOPAIR("SCARA FK Angle a=", a); SERIAL_ECHOPAIR(" b=", b); SERIAL_ECHOPAIR(" a_sin=", a_sin); SERIAL_ECHOPAIR(" a_cos=", a_cos); SERIAL_ECHOPAIR(" b_sin=", b_sin); SERIAL_ECHOLNPAIR(" b_cos=", b_cos); SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]); SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]); //*/ } /** * Morgan SCARA Inverse Kinematics. Results in delta[]. * * See http://forums.reprap.org/read.php?185,283327 * * Maths and first version by QHARLEY. * Integrated into Marlin and slightly restructured by Joachim Cerny. */ void inverse_kinematics(const float logical[XYZ]) { static float C2, S2, SK1, SK2, THETA, PSI; float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor. if (L1 == L2) C2 = HYPOT2(sx, sy) / L1_2_2 - 1; else C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2); S2 = sqrt(sq(C2) - 1); // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End SK1 = L1 + L2 * C2; // Rotated Arm2 gives the distance from Arm1 to Arm2 SK2 = L2 * S2; // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow THETA = atan2(SK1, SK2) - atan2(sx, sy); // Angle of Arm2 PSI = atan2(S2, C2); delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor) delta[C_AXIS] = logical[Z_AXIS]; /* DEBUG_POS("SCARA IK", logical); DEBUG_POS("SCARA IK", delta); SERIAL_ECHOPAIR(" SCARA (x,y) ", sx); SERIAL_ECHOPAIR(",", sy); SERIAL_ECHOPAIR(" C2=", C2); SERIAL_ECHOPAIR(" S2=", S2); SERIAL_ECHOPAIR(" Theta=", THETA); SERIAL_ECHOLNPAIR(" Phi=", PHI); //*/ } #endif // MORGAN_SCARA #if ENABLED(TEMP_STAT_LEDS) static bool red_led = false; static millis_t next_status_led_update_ms = 0; void handle_status_leds(void) { if (ELAPSED(millis(), next_status_led_update_ms)) { next_status_led_update_ms += 500; // Update every 0.5s float max_temp = 0.0; #if HAS_TEMP_BED max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed()); #endif HOTEND_LOOP() { max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e)); } bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led; if (new_led != red_led) { red_led = new_led; #if PIN_EXISTS(STAT_LED_RED) WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW); #if PIN_EXISTS(STAT_LED_BLUE) WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH); #endif #else WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW); #endif } } } #endif #if ENABLED(FILAMENT_RUNOUT_SENSOR) void handle_filament_runout() { if (!filament_ran_out) { filament_ran_out = true; enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT)); stepper.synchronize(); } } #endif // FILAMENT_RUNOUT_SENSOR #if ENABLED(FAST_PWM_FAN) void setPwmFrequency(uint8_t pin, int val) { val &= 0x07; switch (digitalPinToTimer(pin)) { #ifdef TCCR0A case TIMER0A: case TIMER0B: //_SET_CS(0, val); break; #endif #ifdef TCCR1A case TIMER1A: case TIMER1B: //_SET_CS(1, val); break; #endif #ifdef TCCR2 case TIMER2: case TIMER2: _SET_CS(2, val); break; #endif #ifdef TCCR2A case TIMER2A: case TIMER2B: _SET_CS(2, val); break; #endif #ifdef TCCR3A case TIMER3A: case TIMER3B: case TIMER3C: _SET_CS(3, val); break; #endif #ifdef TCCR4A case TIMER4A: case TIMER4B: case TIMER4C: _SET_CS(4, val); break; #endif #ifdef TCCR5A case TIMER5A: case TIMER5B: case TIMER5C: _SET_CS(5, val); break; #endif } } #endif // FAST_PWM_FAN float calculate_volumetric_multiplier(float diameter) { if (!volumetric_enabled || diameter == 0) return 1.0; return 1.0 / (M_PI * sq(diameter * 0.5)); } void calculate_volumetric_multipliers() { for (uint8_t i = 0; i < COUNT(filament_size); i++) volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]); } void enable_all_steppers() { enable_X(); enable_Y(); enable_Z(); enable_E0(); enable_E1(); enable_E2(); enable_E3(); enable_E4(); } void disable_e_steppers() { disable_E0(); disable_E1(); disable_E2(); disable_E3(); disable_E4(); } void disable_all_steppers() { disable_X(); disable_Y(); disable_Z(); disable_e_steppers(); } #if ENABLED(HAVE_TMC2130) void automatic_current_control(TMC2130Stepper &st, String axisID) { // Check otpw even if we don't use automatic control. Allows for flag inspection. const bool is_otpw = st.checkOT(); // Report if a warning was triggered static bool previous_otpw = false; if (is_otpw && !previous_otpw) { char timestamp[10]; duration_t elapsed = print_job_timer.duration(); const bool has_days = (elapsed.value > 60*60*24L); (void)elapsed.toDigital(timestamp, has_days); SERIAL_ECHO(timestamp); SERIAL_ECHO(": "); SERIAL_ECHO(axisID); SERIAL_ECHOLNPGM(" driver overtemperature warning!"); } previous_otpw = is_otpw; #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL) // Return if user has not enabled current control start with M906 S1. if (!auto_current_control) return; /** * Decrease current if is_otpw is true. * Bail out if driver is disabled. * Increase current if OTPW has not been triggered yet. */ uint16_t current = st.getCurrent(); if (is_otpw) { st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER); #if ENABLED(REPORT_CURRENT_CHANGE) SERIAL_ECHO(axisID); SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent()); #endif } else if (!st.isEnabled()) return; else if (!is_otpw && !st.getOTPW()) { current += CURRENT_STEP; if (current <= AUTO_ADJUST_MAX) { st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER); #if ENABLED(REPORT_CURRENT_CHANGE) SERIAL_ECHO(axisID); SERIAL_ECHOPAIR(" current increased to ", st.getCurrent()); #endif } } SERIAL_EOL; #endif } void checkOverTemp() { static millis_t next_cOT = 0; if (ELAPSED(millis(), next_cOT)) { next_cOT = millis() + 5000; #if ENABLED(X_IS_TMC2130) automatic_current_control(stepperX, "X"); #endif #if ENABLED(Y_IS_TMC2130) automatic_current_control(stepperY, "Y"); #endif #if ENABLED(Z_IS_TMC2130) automatic_current_control(stepperZ, "Z"); #endif #if ENABLED(X2_IS_TMC2130) automatic_current_control(stepperX2, "X2"); #endif #if ENABLED(Y2_IS_TMC2130) automatic_current_control(stepperY2, "Y2"); #endif #if ENABLED(Z2_IS_TMC2130) automatic_current_control(stepperZ2, "Z2"); #endif #if ENABLED(E0_IS_TMC2130) automatic_current_control(stepperE0, "E0"); #endif #if ENABLED(E1_IS_TMC2130) automatic_current_control(stepperE1, "E1"); #endif #if ENABLED(E2_IS_TMC2130) automatic_current_control(stepperE2, "E2"); #endif #if ENABLED(E3_IS_TMC2130) automatic_current_control(stepperE3, "E3"); #endif #if ENABLED(E4_IS_TMC2130) automatic_current_control(stepperE4, "E4"); #endif #if ENABLED(E4_IS_TMC2130) automatic_current_control(stepperE4); #endif } } #endif // HAVE_TMC2130 /** * Manage several activities: * - Check for Filament Runout * - Keep the command buffer full * - Check for maximum inactive time between commands * - Check for maximum inactive time between stepper commands * - Check if pin CHDK needs to go LOW * - Check for KILL button held down * - Check for HOME button held down * - Check if cooling fan needs to be switched on * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT) */ void manage_inactivity(bool ignore_stepper_queue/*=false*/) { #if ENABLED(FILAMENT_RUNOUT_SENSOR) if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING)) handle_filament_runout(); #endif if (commands_in_queue < BUFSIZE) get_available_commands(); const millis_t ms = millis(); if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) { SERIAL_ERROR_START; SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command); kill(PSTR(MSG_KILLED)); } // Prevent steppers timing-out in the middle of M600 #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT) #define M600_TEST !busy_doing_M600 #else #define M600_TEST true #endif if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time) && !ignore_stepper_queue && !planner.blocks_queued()) { #if ENABLED(DISABLE_INACTIVE_X) disable_X(); #endif #if ENABLED(DISABLE_INACTIVE_Y) disable_Y(); #endif #if ENABLED(DISABLE_INACTIVE_Z) disable_Z(); #endif #if ENABLED(DISABLE_INACTIVE_E) disable_e_steppers(); #endif } #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) { chdkActive = false; WRITE(CHDK, LOW); } #endif #if HAS_KILL // Check if the kill button was pressed and wait just in case it was an accidental // key kill key press // ------------------------------------------------------------------------------- static int killCount = 0; // make the inactivity button a bit less responsive const int KILL_DELAY = 750; if (!READ(KILL_PIN)) killCount++; else if (killCount > 0) killCount--; // Exceeded threshold and we can confirm that it was not accidental // KILL the machine // ---------------------------------------------------------------- if (killCount >= KILL_DELAY) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_KILL_BUTTON); kill(PSTR(MSG_KILLED)); } #endif #if HAS_HOME // Check to see if we have to home, use poor man's debouncer // --------------------------------------------------------- static int homeDebounceCount = 0; // poor man's debouncing count const int HOME_DEBOUNCE_DELAY = 2500; if (!IS_SD_PRINTING && !READ(HOME_PIN)) { if (!homeDebounceCount) { enqueue_and_echo_commands_P(PSTR("G28")); LCD_MESSAGEPGM(MSG_AUTO_HOME); } if (homeDebounceCount < HOME_DEBOUNCE_DELAY) homeDebounceCount++; else homeDebounceCount = 0; } #endif #if USE_CONTROLLER_FAN controllerFan(); // Check if fan should be turned on to cool stepper drivers down #endif #if ENABLED(EXTRUDER_RUNOUT_PREVENT) if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL) && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) { bool oldstatus; #if ENABLED(SWITCHING_EXTRUDER) oldstatus = E0_ENABLE_READ; enable_E0(); #else // !SWITCHING_EXTRUDER switch (active_extruder) { case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break; #if E_STEPPERS > 1 case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break; #if E_STEPPERS > 2 case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break; #if E_STEPPERS > 3 case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break; #if E_STEPPERS > 4 case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break; #endif // E_STEPPERS > 4 #endif // E_STEPPERS > 3 #endif // E_STEPPERS > 2 #endif // E_STEPPERS > 1 } #endif // !SWITCHING_EXTRUDER previous_cmd_ms = ms; // refresh_cmd_timeout() const float olde = current_position[E_AXIS]; current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE; planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder); current_position[E_AXIS] = olde; planner.set_e_position_mm(olde); stepper.synchronize(); #if ENABLED(SWITCHING_EXTRUDER) E0_ENABLE_WRITE(oldstatus); #else switch (active_extruder) { case 0: E0_ENABLE_WRITE(oldstatus); break; #if E_STEPPERS > 1 case 1: E1_ENABLE_WRITE(oldstatus); break; #if E_STEPPERS > 2 case 2: E2_ENABLE_WRITE(oldstatus); break; #if E_STEPPERS > 3 case 3: E3_ENABLE_WRITE(oldstatus); break; #if E_STEPPERS > 4 case 4: E4_ENABLE_WRITE(oldstatus); break; #endif // E_STEPPERS > 4 #endif // E_STEPPERS > 3 #endif // E_STEPPERS > 2 #endif // E_STEPPERS > 1 } #endif // !SWITCHING_EXTRUDER } #endif // EXTRUDER_RUNOUT_PREVENT #if ENABLED(DUAL_X_CARRIAGE) // handle delayed move timeout if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) { // travel moves have been received so enact them delayed_move_time = 0xFFFFFFFFUL; // force moves to be done set_destination_to_current(); prepare_move_to_destination(); } #endif #if ENABLED(TEMP_STAT_LEDS) handle_status_leds(); #endif #if ENABLED(HAVE_TMC2130) checkOverTemp(); #endif planner.check_axes_activity(); } /** * Standard idle routine keeps the machine alive */ void idle( #if ENABLED(FILAMENT_CHANGE_FEATURE) bool no_stepper_sleep/*=false*/ #endif ) { lcd_update(); host_keepalive(); #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED) auto_report_temperatures(); #endif manage_inactivity( #if ENABLED(FILAMENT_CHANGE_FEATURE) no_stepper_sleep #endif ); thermalManager.manage_heater(); #if ENABLED(PRINTCOUNTER) print_job_timer.tick(); #endif #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER) buzzer.tick(); #endif } /** * Kill all activity and lock the machine. * After this the machine will need to be reset. */ void kill(const char* lcd_msg) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_KILLED); thermalManager.disable_all_heaters(); disable_all_steppers(); #if ENABLED(ULTRA_LCD) kill_screen(lcd_msg); #else UNUSED(lcd_msg); #endif _delay_ms(600); // Wait a short time (allows messages to get out before shutting down. cli(); // Stop interrupts _delay_ms(250); //Wait to ensure all interrupts routines stopped thermalManager.disable_all_heaters(); //turn off heaters again #if HAS_POWER_SWITCH SET_INPUT(PS_ON_PIN); #endif suicide(); while (1) { #if ENABLED(USE_WATCHDOG) watchdog_reset(); #endif } // Wait for reset } /** * Turn off heaters and stop the print in progress * After a stop the machine may be resumed with M999 */ void stop() { thermalManager.disable_all_heaters(); if (IsRunning()) { Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_STOPPED); LCD_MESSAGEPGM(MSG_STOPPED); safe_delay(350); // allow enough time for messages to get out before stopping Running = false; } } /** * Marlin entry-point: Set up before the program loop * - Set up the kill pin, filament runout, power hold * - Start the serial port * - Print startup messages and diagnostics * - Get EEPROM or default settings * - Initialize managers for: * • temperature * • planner * • watchdog * • stepper * • photo pin * • servos * • LCD controller * • Digipot I2C * • Z probe sled * • status LEDs */ void setup() { #ifdef DISABLE_JTAG // Disable JTAG on AT90USB chips to free up pins for IO MCUCR = 0x80; MCUCR = 0x80; #endif #if ENABLED(FILAMENT_RUNOUT_SENSOR) setup_filrunoutpin(); #endif setup_killpin(); setup_powerhold(); #if HAS_STEPPER_RESET disableStepperDrivers(); #endif MYSERIAL.begin(BAUDRATE); SERIAL_PROTOCOLLNPGM("start"); SERIAL_ECHO_START; // Check startup - does nothing if bootloader sets MCUSR to 0 byte mcu = MCUSR; if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP); if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET); if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET); if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET); if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET); MCUSR = 0; SERIAL_ECHOPGM(MSG_MARLIN); SERIAL_CHAR(' '); SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION); SERIAL_EOL; #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR) SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_CONFIGURATION_VER); SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE); SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR); SERIAL_ECHOLNPGM("Compiled: " __DATE__); #endif SERIAL_ECHO_START; SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory()); SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE); // Send "ok" after commands by default for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true; // Load data from EEPROM if available (or use defaults) // This also updates variables in the planner, elsewhere (void)settings.load(); #if HAS_M206_COMMAND // Initialize current position based on home_offset COPY(current_position, home_offset); #else ZERO(current_position); #endif // Vital to init stepper/planner equivalent for current_position SYNC_PLAN_POSITION_KINEMATIC(); thermalManager.init(); // Initialize temperature loop #if ENABLED(USE_WATCHDOG) watchdog_init(); #endif stepper.init(); // Initialize stepper, this enables interrupts! servo_init(); #if HAS_PHOTOGRAPH OUT_WRITE(PHOTOGRAPH_PIN, LOW); #endif #if HAS_CASE_LIGHT update_case_light(); #endif #if HAS_BED_PROBE endstops.enable_z_probe(false); #endif #if USE_CONTROLLER_FAN SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan #endif #if HAS_STEPPER_RESET enableStepperDrivers(); #endif #if ENABLED(DIGIPOT_I2C) digipot_i2c_init(); #endif #if ENABLED(DAC_STEPPER_CURRENT) dac_init(); #endif #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1 OUT_WRITE(SOL1_PIN, LOW); // turn it off #endif setup_homepin(); #if PIN_EXISTS(STAT_LED_RED) OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off #endif #if PIN_EXISTS(STAT_LED_BLUE) OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off #endif #if ENABLED(RGB_LED) || ENABLED(RGBW_LED) SET_OUTPUT(RGB_LED_R_PIN); SET_OUTPUT(RGB_LED_G_PIN); SET_OUTPUT(RGB_LED_B_PIN); #if ENABLED(RGBW_LED) SET_OUTPUT(RGB_LED_W_PIN); #endif #endif lcd_init(); #if ENABLED(SHOW_BOOTSCREEN) #if ENABLED(DOGLCD) safe_delay(BOOTSCREEN_TIMEOUT); #elif ENABLED(ULTRA_LCD) bootscreen(); #if DISABLED(SDSUPPORT) lcd_init(); #endif #endif #endif #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1 // Initialize mixing to 100% color 1 for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] = (i == 0) ? 1.0 : 0.0; for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++) for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_virtual_tool_mix[t][i] = mixing_factor[i]; #endif #if ENABLED(BLTOUCH) // Make sure any BLTouch error condition is cleared bltouch_command(BLTOUCH_RESET); set_bltouch_deployed(true); set_bltouch_deployed(false); #endif #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0 i2c.onReceive(i2c_on_receive); i2c.onRequest(i2c_on_request); #endif #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) setup_endstop_interrupts(); #endif } /** * The main Marlin program loop * * - Save or log commands to SD * - Process available commands (if not saving) * - Call heater manager * - Call inactivity manager * - Call endstop manager * - Call LCD update */ void loop() { if (commands_in_queue < BUFSIZE) get_available_commands(); #if ENABLED(SDSUPPORT) card.checkautostart(false); #endif if (commands_in_queue) { #if ENABLED(SDSUPPORT) if (card.saving) { char* command = command_queue[cmd_queue_index_r]; if (strstr_P(command, PSTR("M29"))) { // M29 closes the file card.closefile(); SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED); ok_to_send(); } else { // Write the string from the read buffer to SD card.write_command(command); if (card.logging) process_next_command(); // The card is saving because it's logging else ok_to_send(); } } else process_next_command(); #else process_next_command(); #endif // SDSUPPORT // The queue may be reset by a command handler or by code invoked by idle() within a handler if (commands_in_queue) { --commands_in_queue; cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE; } } endstops.report_state(); idle(); }