/* stepper.c - stepper motor driver: executes motion plans using stepper motors Part of Grbl Copyright (c) 2009-2011 Simen Svale Skogsrud Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith and Philipp Tiefenbacher. */ #include "Marlin.h" #include "stepper.h" #include "planner.h" #include "temperature.h" #include "ultralcd.h" #include "language.h" #include "speed_lookuptable.h" #if DIGIPOTSS_PIN > -1 #include #endif //=========================================================================== //=============================public variables ============================ //=========================================================================== block_t *current_block; // A pointer to the block currently being traced //=========================================================================== //=============================private variables ============================ //=========================================================================== //static makes it inpossible to be called from outside of this file by extern.! // Variables used by The Stepper Driver Interrupt static unsigned char out_bits; // The next stepping-bits to be output static long counter_x, // Counter variables for the bresenham line tracer counter_y, counter_z, counter_e; volatile static unsigned long step_events_completed; // The number of step events executed in the current block #ifdef ADVANCE static long advance_rate, advance, final_advance = 0; static long old_advance = 0; static long e_steps[3]; #endif static long acceleration_time, deceleration_time; //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; static unsigned short acc_step_rate; // needed for deccelaration start point static char step_loops; static unsigned short OCR1A_nominal; volatile long endstops_trigsteps[3]={0,0,0}; volatile long endstops_stepsTotal,endstops_stepsDone; static volatile bool endstop_x_hit=false; static volatile bool endstop_y_hit=false; static volatile bool endstop_z_hit=false; static bool old_x_min_endstop=false; static bool old_x_max_endstop=false; static bool old_y_min_endstop=false; static bool old_y_max_endstop=false; static bool old_z_min_endstop=false; static bool old_z_max_endstop=false; static bool check_endstops = true; volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0}; volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1}; //=========================================================================== //=============================functions ============================ //=========================================================================== #define CHECK_ENDSTOPS if(check_endstops) // intRes = intIn1 * intIn2 >> 16 // uses: // r26 to store 0 // r27 to store the byte 1 of the 24 bit result #define MultiU16X8toH16(intRes, charIn1, intIn2) \ asm volatile ( \ "clr r26 \n\t" \ "mul %A1, %B2 \n\t" \ "movw %A0, r0 \n\t" \ "mul %A1, %A2 \n\t" \ "add %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "lsr r0 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "clr r1 \n\t" \ : \ "=&r" (intRes) \ : \ "d" (charIn1), \ "d" (intIn2) \ : \ "r26" \ ) // intRes = longIn1 * longIn2 >> 24 // uses: // r26 to store 0 // r27 to store the byte 1 of the 48bit result #define MultiU24X24toH16(intRes, longIn1, longIn2) \ asm volatile ( \ "clr r26 \n\t" \ "mul %A1, %B2 \n\t" \ "mov r27, r1 \n\t" \ "mul %B1, %C2 \n\t" \ "movw %A0, r0 \n\t" \ "mul %C1, %C2 \n\t" \ "add %B0, r0 \n\t" \ "mul %C1, %B2 \n\t" \ "add %A0, r0 \n\t" \ "adc %B0, r1 \n\t" \ "mul %A1, %C2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %B1, %B2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %C1, %A2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %B1, %A2 \n\t" \ "add r27, r1 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "lsr r27 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "clr r1 \n\t" \ : \ "=&r" (intRes) \ : \ "d" (longIn1), \ "d" (longIn2) \ : \ "r26" , "r27" \ ) // Some useful constants #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1< // // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates // first block->accelerate_until step_events_completed, then keeps going at constant speed until // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. // The slope of acceleration is calculated with the leib ramp alghorithm. void st_wake_up() { // TCNT1 = 0; ENABLE_STEPPER_DRIVER_INTERRUPT(); } void step_wait(){ for(int8_t i=0; i < 6; i++){ } } FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { unsigned short timer; if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY; if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times step_rate = (step_rate >> 2)&0x3fff; step_loops = 4; } else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times step_rate = (step_rate >> 1)&0x7fff; step_loops = 2; } else { step_loops = 1; } if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000); step_rate -= (F_CPU/500000); // Correct for minimal speed if(step_rate >= (8*256)){ // higher step rate unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0]; unsigned char tmp_step_rate = (step_rate & 0x00ff); unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2); MultiU16X8toH16(timer, tmp_step_rate, gain); timer = (unsigned short)pgm_read_word_near(table_address) - timer; } else { // lower step rates unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0]; table_address += ((step_rate)>>1) & 0xfffc; timer = (unsigned short)pgm_read_word_near(table_address); timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3); } if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen) return timer; } // Initializes the trapezoid generator from the current block. Called whenever a new // block begins. FORCE_INLINE void trapezoid_generator_reset() { #ifdef ADVANCE advance = current_block->initial_advance; final_advance = current_block->final_advance; // Do E steps + advance steps e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); old_advance = advance >>8; #endif deceleration_time = 0; // step_rate to timer interval OCR1A_nominal = calc_timer(current_block->nominal_rate); acc_step_rate = current_block->initial_rate; acceleration_time = calc_timer(acc_step_rate); OCR1A = acceleration_time; // SERIAL_ECHO_START; // SERIAL_ECHOPGM("advance :"); // SERIAL_ECHO(current_block->advance/256.0); // SERIAL_ECHOPGM("advance rate :"); // SERIAL_ECHO(current_block->advance_rate/256.0); // SERIAL_ECHOPGM("initial advance :"); // SERIAL_ECHO(current_block->initial_advance/256.0); // SERIAL_ECHOPGM("final advance :"); // SERIAL_ECHOLN(current_block->final_advance/256.0); } // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. ISR(TIMER1_COMPA_vect) { // If there is no current block, attempt to pop one from the buffer if (current_block == NULL) { // Anything in the buffer? current_block = plan_get_current_block(); if (current_block != NULL) { current_block->busy = true; trapezoid_generator_reset(); counter_x = -(current_block->step_event_count >> 1); counter_y = counter_x; counter_z = counter_x; counter_e = counter_x; step_events_completed = 0; #ifdef Z_LATE_ENABLE if(current_block->steps_z > 0) { enable_z(); OCR1A = 2000; //1ms wait return; } #endif // #ifdef ADVANCE // e_steps[current_block->active_extruder] = 0; // #endif } else { OCR1A=2000; // 1kHz. } } if (current_block != NULL) { // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt out_bits = current_block->direction_bits; // Set direction en check limit switches if ((out_bits & (1< -1 bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING); if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) { endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; endstop_x_hit=true; step_events_completed = current_block->step_event_count; } old_x_min_endstop = x_min_endstop; #endif } } else { // +direction #if !defined COREXY //NOT COREXY WRITE(X_DIR_PIN,!INVERT_X_DIR); #endif count_direction[X_AXIS]=1; CHECK_ENDSTOPS { #if X_MAX_PIN > -1 bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING); if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){ endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; endstop_x_hit=true; step_events_completed = current_block->step_event_count; } old_x_max_endstop = x_max_endstop; #endif } } if ((out_bits & (1< -1 bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING); if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) { endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstop_y_hit=true; step_events_completed = current_block->step_event_count; } old_y_min_endstop = y_min_endstop; #endif } } else { // +direction #if !defined COREXY //NOT COREXY WRITE(Y_DIR_PIN,!INVERT_Y_DIR); #endif count_direction[Y_AXIS]=1; CHECK_ENDSTOPS { #if Y_MAX_PIN > -1 bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING); if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){ endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstop_y_hit=true; step_events_completed = current_block->step_event_count; } old_y_max_endstop = y_max_endstop; #endif } } #ifdef COREXY //coreXY kinematics defined if((current_block->steps_x >= current_block->steps_y)&&((out_bits & (1<steps_x >= current_block->steps_y)&&((out_bits & (1<steps_y > current_block->steps_x)&&((out_bits & (1<steps_y > current_block->steps_x)&&((out_bits & (1< -1 bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING); if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstop_z_hit=true; step_events_completed = current_block->step_event_count; } old_z_min_endstop = z_min_endstop; #endif } } else { // +direction WRITE(Z_DIR_PIN,!INVERT_Z_DIR); #ifdef Z_DUAL_STEPPER_DRIVERS WRITE(Z2_DIR_PIN,!INVERT_Z_DIR); #endif count_direction[Z_AXIS]=1; CHECK_ENDSTOPS { #if Z_MAX_PIN > -1 bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING); if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstop_z_hit=true; step_events_completed = current_block->step_event_count; } old_z_max_endstop = z_max_endstop; #endif } } #ifndef ADVANCE if ((out_bits & (1<steps_e; if (counter_e > 0) { counter_e -= current_block->step_event_count; if ((out_bits & (1<active_extruder]--; } else { e_steps[current_block->active_extruder]++; } } #endif //ADVANCE #if !defined COREXY counter_x += current_block->steps_x; if (counter_x > 0) { WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); counter_x -= current_block->step_event_count; count_position[X_AXIS]+=count_direction[X_AXIS]; WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); } counter_y += current_block->steps_y; if (counter_y > 0) { WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); counter_y -= current_block->step_event_count; count_position[Y_AXIS]+=count_direction[Y_AXIS]; WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); } #endif #ifdef COREXY counter_x += current_block->steps_x; counter_y += current_block->steps_y; if ((counter_x > 0)&&!(counter_y>0)){ //X step only WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); counter_x -= current_block->step_event_count; count_position[X_AXIS]+=count_direction[X_AXIS]; WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); } if (!(counter_x > 0)&&(counter_y>0)){ //Y step only WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); counter_y -= current_block->step_event_count; count_position[Y_AXIS]+=count_direction[Y_AXIS]; WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); } if ((counter_x > 0)&&(counter_y>0)){ //step in both axes if (((out_bits & (1<step_event_count; WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); step_wait(); count_position[X_AXIS]+=count_direction[X_AXIS]; count_position[Y_AXIS]+=count_direction[Y_AXIS]; WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); counter_y -= current_block->step_event_count; WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); } else{ //X and Y in same direction WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); counter_x -= current_block->step_event_count; WRITE(X_STEP_PIN, INVERT_X_STEP_PIN) ; step_wait(); count_position[X_AXIS]+=count_direction[X_AXIS]; count_position[Y_AXIS]+=count_direction[Y_AXIS]; WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); counter_y -= current_block->step_event_count; WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); } } #endif //corexy counter_z += current_block->steps_z; if (counter_z > 0) { WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); #ifdef Z_DUAL_STEPPER_DRIVERS WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN); #endif counter_z -= current_block->step_event_count; count_position[Z_AXIS]+=count_direction[Z_AXIS]; WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); #ifdef Z_DUAL_STEPPER_DRIVERS WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN); #endif } #ifndef ADVANCE counter_e += current_block->steps_e; if (counter_e > 0) { WRITE_E_STEP(!INVERT_E_STEP_PIN); counter_e -= current_block->step_event_count; count_position[E_AXIS]+=count_direction[E_AXIS]; WRITE_E_STEP(INVERT_E_STEP_PIN); } #endif //!ADVANCE step_events_completed += 1; if(step_events_completed >= current_block->step_event_count) break; } // Calculare new timer value unsigned short timer; unsigned short step_rate; if (step_events_completed <= (unsigned long int)current_block->accelerate_until) { MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); acc_step_rate += current_block->initial_rate; // upper limit if(acc_step_rate > current_block->nominal_rate) acc_step_rate = current_block->nominal_rate; // step_rate to timer interval timer = calc_timer(acc_step_rate); OCR1A = timer; acceleration_time += timer; #ifdef ADVANCE for(int8_t i=0; i < step_loops; i++) { advance += advance_rate; } //if(advance > current_block->advance) advance = current_block->advance; // Do E steps + advance steps e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); old_advance = advance >>8; #endif } else if (step_events_completed > (unsigned long int)current_block->decelerate_after) { MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate); if(step_rate > acc_step_rate) { // Check step_rate stays positive step_rate = current_block->final_rate; } else { step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point. } // lower limit if(step_rate < current_block->final_rate) step_rate = current_block->final_rate; // step_rate to timer interval timer = calc_timer(step_rate); OCR1A = timer; deceleration_time += timer; #ifdef ADVANCE for(int8_t i=0; i < step_loops; i++) { advance -= advance_rate; } if(advance < final_advance) advance = final_advance; // Do E steps + advance steps e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); old_advance = advance >>8; #endif //ADVANCE } else { OCR1A = OCR1A_nominal; } // If current block is finished, reset pointer if (step_events_completed >= current_block->step_event_count) { current_block = NULL; plan_discard_current_block(); } } } #ifdef ADVANCE unsigned char old_OCR0A; // Timer interrupt for E. e_steps is set in the main routine; // Timer 0 is shared with millies ISR(TIMER0_COMPA_vect) { old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz) OCR0A = old_OCR0A; // Set E direction (Depends on E direction + advance) for(unsigned char i=0; i<4;i++) { if (e_steps[0] != 0) { WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN); if (e_steps[0] < 0) { WRITE(E0_DIR_PIN, INVERT_E0_DIR); e_steps[0]++; WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); } else if (e_steps[0] > 0) { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); e_steps[0]--; WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); } } #if EXTRUDERS > 1 if (e_steps[1] != 0) { WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN); if (e_steps[1] < 0) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); e_steps[1]++; WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN); } else if (e_steps[1] > 0) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); e_steps[1]--; WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN); } } #endif #if EXTRUDERS > 2 if (e_steps[2] != 0) { WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN); if (e_steps[2] < 0) { WRITE(E2_DIR_PIN, INVERT_E2_DIR); e_steps[2]++; WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN); } else if (e_steps[2] > 0) { WRITE(E2_DIR_PIN, !INVERT_E2_DIR); e_steps[2]--; WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN); } } #endif } } #endif // ADVANCE void st_init() { digipot_init(); //Initialize Digipot Motor Current microstep_init(); //Initialize Microstepping Pins //Initialize Dir Pins #if X_DIR_PIN > -1 SET_OUTPUT(X_DIR_PIN); #endif #if Y_DIR_PIN > -1 SET_OUTPUT(Y_DIR_PIN); #endif #if Z_DIR_PIN > -1 SET_OUTPUT(Z_DIR_PIN); #if defined(Z_DUAL_STEPPER_DRIVERS) && (Z2_DIR_PIN > -1) SET_OUTPUT(Z2_DIR_PIN); #endif #endif #if E0_DIR_PIN > -1 SET_OUTPUT(E0_DIR_PIN); #endif #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1) SET_OUTPUT(E1_DIR_PIN); #endif #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1) SET_OUTPUT(E2_DIR_PIN); #endif //Initialize Enable Pins - steppers default to disabled. #if (X_ENABLE_PIN > -1) SET_OUTPUT(X_ENABLE_PIN); if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH); #endif #if (Y_ENABLE_PIN > -1) SET_OUTPUT(Y_ENABLE_PIN); if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH); #endif #if (Z_ENABLE_PIN > -1) SET_OUTPUT(Z_ENABLE_PIN); if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH); #if defined(Z_DUAL_STEPPER_DRIVERS) && (Z2_ENABLE_PIN > -1) SET_OUTPUT(Z2_ENABLE_PIN); if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH); #endif #endif #if (E0_ENABLE_PIN > -1) SET_OUTPUT(E0_ENABLE_PIN); if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH); #endif #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1) SET_OUTPUT(E1_ENABLE_PIN); if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH); #endif #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1) SET_OUTPUT(E2_ENABLE_PIN); if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH); #endif //endstops and pullups #if X_MIN_PIN > -1 SET_INPUT(X_MIN_PIN); #ifdef ENDSTOPPULLUP_XMIN WRITE(X_MIN_PIN,HIGH); #endif #endif #if Y_MIN_PIN > -1 SET_INPUT(Y_MIN_PIN); #ifdef ENDSTOPPULLUP_YMIN WRITE(Y_MIN_PIN,HIGH); #endif #endif #if Z_MIN_PIN > -1 SET_INPUT(Z_MIN_PIN); #ifdef ENDSTOPPULLUP_ZMIN WRITE(Z_MIN_PIN,HIGH); #endif #endif #if X_MAX_PIN > -1 SET_INPUT(X_MAX_PIN); #ifdef ENDSTOPPULLUP_XMAX WRITE(X_MAX_PIN,HIGH); #endif #endif #if Y_MAX_PIN > -1 SET_INPUT(Y_MAX_PIN); #ifdef ENDSTOPPULLUP_YMAX WRITE(Y_MAX_PIN,HIGH); #endif #endif #if Z_MAX_PIN > -1 SET_INPUT(Z_MAX_PIN); #ifdef ENDSTOPPULLUP_ZMAX WRITE(Z_MAX_PIN,HIGH); #endif #endif //Initialize Step Pins #if (X_STEP_PIN > -1) SET_OUTPUT(X_STEP_PIN); WRITE(X_STEP_PIN,INVERT_X_STEP_PIN); if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH); #endif #if (Y_STEP_PIN > -1) SET_OUTPUT(Y_STEP_PIN); WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN); if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH); #endif #if (Z_STEP_PIN > -1) SET_OUTPUT(Z_STEP_PIN); WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN); if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH); #if defined(Z_DUAL_STEPPER_DRIVERS) && (Z2_STEP_PIN > -1) SET_OUTPUT(Z2_STEP_PIN); WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN); if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH); #endif #endif #if (E0_STEP_PIN > -1) SET_OUTPUT(E0_STEP_PIN); WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN); if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH); #endif #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1) SET_OUTPUT(E1_STEP_PIN); WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN); if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH); #endif #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1) SET_OUTPUT(E2_STEP_PIN); WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN); if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH); #endif #ifdef CONTROLLERFAN_PIN SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan #endif // waveform generation = 0100 = CTC TCCR1B &= ~(1< -1 digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip SPI.transfer(address); // send in the address and value via SPI: SPI.transfer(value); digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip: //delay(10); #endif } void digipot_init() //Initialize Digipot Motor Current { #if DIGIPOTSS_PIN > -1 const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT; SPI.begin(); pinMode(DIGIPOTSS_PIN, OUTPUT); for(int i=0;i<=4;i++) //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]); digipot_current(i,digipot_motor_current[i]); #endif } void digipot_current(uint8_t driver, int current) { #if DIGIPOTSS_PIN > -1 const uint8_t digipot_ch[] = DIGIPOT_CHANNELS; digitalPotWrite(digipot_ch[driver], current); #endif } void microstep_init() { #if X_MS1_PIN > -1 const uint8_t microstep_modes[] = MICROSTEP_MODES; pinMode(X_MS2_PIN,OUTPUT); pinMode(Y_MS2_PIN,OUTPUT); pinMode(Z_MS2_PIN,OUTPUT); pinMode(E0_MS2_PIN,OUTPUT); pinMode(E1_MS2_PIN,OUTPUT); for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]); #endif } void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) { if(ms1 > -1) switch(driver) { case 0: digitalWrite( X_MS1_PIN,ms1); break; case 1: digitalWrite( Y_MS1_PIN,ms1); break; case 2: digitalWrite( Z_MS1_PIN,ms1); break; case 3: digitalWrite(E0_MS1_PIN,ms1); break; case 4: digitalWrite(E1_MS1_PIN,ms1); break; } if(ms2 > -1) switch(driver) { case 0: digitalWrite( X_MS2_PIN,ms2); break; case 1: digitalWrite( Y_MS2_PIN,ms2); break; case 2: digitalWrite( Z_MS2_PIN,ms2); break; case 3: digitalWrite(E0_MS2_PIN,ms2); break; case 4: digitalWrite(E1_MS2_PIN,ms2); break; } } void microstep_mode(uint8_t driver, uint8_t stepping_mode) { switch(stepping_mode) { case 1: microstep_ms(driver,MICROSTEP1); break; case 2: microstep_ms(driver,MICROSTEP2); break; case 4: microstep_ms(driver,MICROSTEP4); break; case 8: microstep_ms(driver,MICROSTEP8); break; case 16: microstep_ms(driver,MICROSTEP16); break; } } void microstep_readings() { SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n"); SERIAL_PROTOCOLPGM("X: "); SERIAL_PROTOCOL( digitalRead(X_MS1_PIN)); SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN)); SERIAL_PROTOCOLPGM("Y: "); SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN)); SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN)); SERIAL_PROTOCOLPGM("Z: "); SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN)); SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN)); SERIAL_PROTOCOLPGM("E0: "); SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN)); SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN)); SERIAL_PROTOCOLPGM("E1: "); SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN)); SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN)); }