/* planner.c - buffers movement commands and manages the acceleration profile plan Part of Grbl Copyright (c) 2009-2011 Simen Svale Skogsrud Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */ /* Reasoning behind the mathematics in this module (in the key of 'Mathematica'): s == speed, a == acceleration, t == time, d == distance Basic definitions: Speed[s_, a_, t_] := s + (a*t) Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t] Distance to reach a specific speed with a constant acceleration: Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t] d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance() Speed after a given distance of travel with constant acceleration: Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t] m -> Sqrt[2 a d + s^2] DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2] When to start braking (di) to reach a specified destionation speed (s2) after accelerating from initial speed s1 without ever stopping at a plateau: Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di] di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance() IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) */ //#include //#include //#include #include "Marlin.h" #include "Configuration.h" #include "pins.h" #include "fastio.h" #include "planner.h" #include "stepper.h" #include "temperature.h" #include "ultralcd.h" //=========================================================================== //=============================public variables ============================ //=========================================================================== unsigned long minsegmenttime; float max_feedrate[4]; // set the max speeds float axis_steps_per_unit[4]; long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software float minimumfeedrate; float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX float max_xy_jerk; //speed than can be stopped at once, if i understand correctly. float max_z_jerk; float mintravelfeedrate; unsigned long axis_steps_per_sqr_second[NUM_AXIS]; // The current position of the tool in absolute steps long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode //=========================================================================== //=============================private variables ============================ //=========================================================================== static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions static volatile unsigned char block_buffer_head; // Index of the next block to be pushed static volatile unsigned char block_buffer_tail; // Index of the block to process now //=========================================================================== //=============================functions ============================ //=========================================================================== #define ONE_MINUTE_OF_MICROSECONDS 60000000.0 // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the // given acceleration: inline float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) { if (acceleration!=0) { return((target_rate*target_rate-initial_rate*initial_rate)/ (2.0*acceleration)); } else { return 0.0; // acceleration was 0, set acceleration distance to 0 } } // This function gives you the point at which you must start braking (at the rate of -acceleration) if // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after // a total travel of distance. This can be used to compute the intersection point between acceleration and // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed) inline float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) { if (acceleration!=0) { return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/ (4.0*acceleration) ); } else { return 0.0; // acceleration was 0, set intersection distance to 0 } } // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) { if(block->busy == true) return; // If block is busy then bail out. float entry_factor = entry_speed / block->nominal_speed; float exit_factor = exit_speed / block->nominal_speed; long initial_rate = ceil(block->nominal_rate*entry_factor); long final_rate = ceil(block->nominal_rate*exit_factor); #ifdef ADVANCE long initial_advance = block->advance*entry_factor*entry_factor; long final_advance = block->advance*exit_factor*exit_factor; #endif // ADVANCE // Limit minimal step rate (Otherwise the timer will overflow.) if(initial_rate <120) initial_rate=120; if(final_rate < 120) final_rate=120; // Calculate the acceleration steps long acceleration = block->acceleration_st; long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration); long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration); // Calculate the size of Plateau of Nominal Rate. long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps; // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will // have to use intersection_distance() to calculate when to abort acceleration and start braking // in order to reach the final_rate exactly at the end of this block. if (plateau_steps < 0) { accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count); plateau_steps = 0; } long decelerate_after = accelerate_steps+plateau_steps; CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section if(block->busy == false) { // Don't update variables if block is busy. block->accelerate_until = accelerate_steps; block->decelerate_after = decelerate_after; block->initial_rate = initial_rate; block->final_rate = final_rate; #ifdef ADVANCE block->initial_advance = initial_advance; block->final_advance = final_advance; #endif //ADVANCE } CRITICAL_SECTION_END; } // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the // acceleration within the allotted distance. inline float max_allowable_speed(float acceleration, float target_velocity, float distance) { return sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance); } // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks. // This method will calculate the junction jerk as the euclidean distance between the nominal // velocities of the respective blocks. inline float junction_jerk(block_t *before, block_t *after) { return sqrt( pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2)); } // Return the safe speed which is max_jerk/2, e.g. the // speed under which you cannot exceed max_jerk no matter what you do. float safe_speed(block_t *block) { float safe_speed; safe_speed = max_xy_jerk/2; if(abs(block->speed_z) > max_z_jerk/2) safe_speed = max_z_jerk/2; if (safe_speed > block->nominal_speed) safe_speed = block->nominal_speed; return safe_speed; } // The kernel called by planner_recalculate() when scanning the plan from last to first entry. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) { if(!current) { return; } float entry_speed = current->nominal_speed; float exit_factor; float exit_speed; if (next) { exit_speed = next->entry_speed; } else { exit_speed = safe_speed(current); } // Calculate the entry_factor for the current block. if (previous) { // Reduce speed so that junction_jerk is within the maximum allowed float jerk = junction_jerk(previous, current); if((previous->steps_x == 0) && (previous->steps_y == 0)) { entry_speed = safe_speed(current); } else if (jerk > max_xy_jerk) { entry_speed = (max_xy_jerk/jerk) * entry_speed; } if(abs(previous->speed_z - current->speed_z) > max_z_jerk) { entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed; } // If the required deceleration across the block is too rapid, reduce the entry_factor accordingly. if (entry_speed > exit_speed) { float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters); if (max_entry_speed < entry_speed) { entry_speed = max_entry_speed; } } } else { entry_speed = safe_speed(current); } // Store result current->entry_speed = entry_speed; } // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This // implements the reverse pass. void planner_reverse_pass() { char block_index = block_buffer_head; if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) { block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1); block_t *block[5] = { NULL, NULL, NULL, NULL, NULL }; while(block_index != block_buffer_tail) { block_index = (block_index-1) & (BLOCK_BUFFER_SIZE -1); block[2]= block[1]; block[1]= block[0]; block[0] = &block_buffer[block_index]; planner_reverse_pass_kernel(block[0], block[1], block[2]); } planner_reverse_pass_kernel(NULL, block[0], block[1]); } } // The kernel called by planner_recalculate() when scanning the plan from first to last entry. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) { if(!current) { return; } if(previous) { // If the previous block is an acceleration block, but it is not long enough to // complete the full speed change within the block, we need to adjust out entry // speed accordingly. Remember current->entry_factor equals the exit factor of // the previous block. if(previous->entry_speed < current->entry_speed) { float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters); if (max_entry_speed < current->entry_speed) { current->entry_speed = max_entry_speed; } } } } // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This // implements the forward pass. void planner_forward_pass() { char block_index = block_buffer_tail; block_t *block[3] = { NULL, NULL, NULL }; while(block_index != block_buffer_head) { block[0] = block[1]; block[1] = block[2]; block[2] = &block_buffer[block_index]; planner_forward_pass_kernel(block[0],block[1],block[2]); block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); } planner_forward_pass_kernel(block[1], block[2], NULL); } // Recalculates the trapezoid speed profiles for all blocks in the plan according to the // entry_factor for each junction. Must be called by planner_recalculate() after // updating the blocks. void planner_recalculate_trapezoids() { char block_index = block_buffer_tail; block_t *current; block_t *next = NULL; while(block_index != block_buffer_head) { current = next; next = &block_buffer[block_index]; if (current) { calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed); } block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); } calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next)); } // Recalculates the motion plan according to the following algorithm: // // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor) // so that: // a. The junction jerk is within the set limit // b. No speed reduction within one block requires faster deceleration than the one, true constant // acceleration. // 2. Go over every block in chronological order and dial down junction speed reduction values if // a. The speed increase within one block would require faster accelleration than the one, true // constant acceleration. // // When these stages are complete all blocks have an entry_factor that will allow all speed changes to // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than // the set limit. Finally it will: // // 3. Recalculate trapezoids for all blocks. void planner_recalculate() { planner_reverse_pass(); planner_forward_pass(); planner_recalculate_trapezoids(); } void plan_init() { block_buffer_head = 0; block_buffer_tail = 0; memset(position, 0, sizeof(position)); // clear position } void plan_discard_current_block() { if (block_buffer_head != block_buffer_tail) { block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1); } } block_t *plan_get_current_block() { if (block_buffer_head == block_buffer_tail) { return(NULL); } block_t *block = &block_buffer[block_buffer_tail]; block->busy = true; return(block); } void check_axes_activity() { unsigned char x_active = 0; unsigned char y_active = 0; unsigned char z_active = 0; unsigned char e_active = 0; block_t *block; if(block_buffer_tail != block_buffer_head) { char block_index = block_buffer_tail; while(block_index != block_buffer_head) { block = &block_buffer[block_index]; if(block->steps_x != 0) x_active++; if(block->steps_y != 0) y_active++; if(block->steps_z != 0) z_active++; if(block->steps_e != 0) e_active++; block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); } } if((DISABLE_X) && (x_active == 0)) disable_x(); if((DISABLE_Y) && (y_active == 0)) disable_y(); if((DISABLE_Z) && (z_active == 0)) disable_z(); if((DISABLE_E) && (e_active == 0)) disable_e(); } // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration // calculation the caller must also provide the physical length of the line in millimeters. void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate) { // Calculate the buffer head after we push this byte int next_buffer_head = (block_buffer_head + 1) & (BLOCK_BUFFER_SIZE - 1); // If the buffer is full: good! That means we are well ahead of the robot. // Rest here until there is room in the buffer. while(block_buffer_tail == next_buffer_head) { manage_heater(); manage_inactivity(1); LCD_STATUS; } // The target position of the tool in absolute steps // Calculate target position in absolute steps //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow long target[4]; target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); // Prepare to set up new block block_t *block = &block_buffer[block_buffer_head]; // Mark block as not busy (Not executed by the stepper interrupt) block->busy = false; // Number of steps for each axis block->steps_x = labs(target[X_AXIS]-position[X_AXIS]); block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]); block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]); block->steps_e = labs(target[E_AXIS]-position[E_AXIS]); block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e))); // Bail if this is a zero-length block if (block->step_event_count <=dropsegments) { return; }; //enable active axes if(block->steps_x != 0) enable_x(); if(block->steps_y != 0) enable_y(); if(block->steps_z != 0) enable_z(); if(block->steps_e != 0) enable_e(); float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS]; float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]; float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]; float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS]; block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm)); unsigned long microseconds; if (block->steps_e == 0) { if(feed_ratemillimeters/feed_rate)*1000000); // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill // reduces/removes corner blobs as the machine won't come to a full stop. int blockcount=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1); if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) { if (microsecondsspeed_z = delta_z_mm * multiplier; block->speed_x = delta_x_mm * multiplier; block->speed_y = delta_y_mm * multiplier; block->speed_e = delta_e_mm * multiplier; // Limit speed per axis float speed_factor = 1; //factor <=1 do decrease speed if(abs(block->speed_x) > max_feedrate[X_AXIS]) { speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x); //if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor; /is not need here because auf the init above } if(abs(block->speed_y) > max_feedrate[Y_AXIS]){ float tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y); if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor; } if(abs(block->speed_z) > max_feedrate[Z_AXIS]){ float tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z); if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor; } if(abs(block->speed_e) > max_feedrate[E_AXIS]){ float tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e); if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor; } multiplier = multiplier * speed_factor; block->speed_z = delta_z_mm * multiplier; block->speed_x = delta_x_mm * multiplier; block->speed_y = delta_y_mm * multiplier; block->speed_e = delta_e_mm * multiplier; block->nominal_speed = block->millimeters * multiplier; block->nominal_rate = ceil(block->step_event_count * multiplier / 60); if(block->nominal_rate < 120) block->nominal_rate = 120; block->entry_speed = safe_speed(block); // Compute the acceleration rate for the trapezoid generator. float travel_per_step = block->millimeters/block->step_event_count; if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) { block->acceleration_st = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2 } else { block->acceleration_st = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2 float tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count; // Limit acceleration per axis if((tmp_acceleration * block->steps_x) > axis_steps_per_sqr_second[X_AXIS]) { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count; } if((tmp_acceleration * block->steps_y) > axis_steps_per_sqr_second[Y_AXIS]) { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count; } if((tmp_acceleration * block->steps_e) > axis_steps_per_sqr_second[E_AXIS]) { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count; } if((tmp_acceleration * block->steps_z) > axis_steps_per_sqr_second[Z_AXIS]) { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count; } } block->acceleration = block->acceleration_st * travel_per_step; block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608); #ifdef ADVANCE // Calculate advance rate if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) { block->advance_rate = 0; block->advance = 0; } else { long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st); float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * (block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536; block->advance = advance; if(acc_dist == 0) { block->advance_rate = 0; } else { block->advance_rate = advance / (float)acc_dist; } } #endif // ADVANCE // compute a preliminary conservative acceleration trapezoid float safespeed = safe_speed(block); calculate_trapezoid_for_block(block, safespeed, safespeed); // Compute direction bits for this block block->direction_bits = 0; if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<