#include "nozzle.h" #include "Marlin.h" #include "point_t.h" /** * @brief Stroke clean pattern * @details Wipes the nozzle back and forth in a linear movement * * @param start point_t defining the starting point * @param end point_t defining the ending point * @param strokes number of strokes to execute */ void Nozzle::stroke( _UNUSED point_t const &start, _UNUSED point_t const &end, _UNUSED uint8_t const &strokes ) { #if ENABLED(NOZZLE_CLEAN_FEATURE) #if ENABLED(NOZZLE_CLEAN_GOBACK) // Store the current coords point_t const initial = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] }; #endif // NOZZLE_CLEAN_GOBACK LULZBOT_REHOME_BEFORE_REWIPE // Move to the starting point do_blocking_move_to_xy(start.x, start.y); do_blocking_move_to_z(start.z); // Start the stroke pattern for (uint8_t i = 0; i < (strokes >>1); i++) { do_blocking_move_to_xy(end.x, end.y); do_blocking_move_to_xy(start.x, start.y); } #if ENABLED(NOZZLE_CLEAN_GOBACK) // Move the nozzle to the initial point do_blocking_move_to(initial.x, initial.y, initial.z); #endif // NOZZLE_CLEAN_GOBACK #endif // NOZZLE_CLEAN_FEATURE } /** * @brief Zig-zag clean pattern * @details Apply a zig-zag cleanning pattern * * @param start point_t defining the starting point * @param end point_t defining the ending point * @param strokes number of strokes to execute * @param objects number of objects to create */ void Nozzle::zigzag( _UNUSED point_t const &start, _UNUSED point_t const &end, _UNUSED uint8_t const &strokes, _UNUSED uint8_t const &objects ) { #if ENABLED(NOZZLE_CLEAN_FEATURE) const float A = nozzle_clean_horizontal ? nozzle_clean_height : nozzle_clean_length, // [twice the] Amplitude P = (nozzle_clean_horizontal ? nozzle_clean_length : nozzle_clean_height) / (objects << 1); // Period // Don't allow impossible triangles if (A <= 0.0f || P <= 0.0f ) return; #if ENABLED(NOZZLE_CLEAN_GOBACK) // Store the current coords point_t const initial = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] }; #endif // NOZZLE_CLEAN_GOBACK for (uint8_t j = 0; j < strokes; j++) { for (uint8_t i = 0; i < (objects << 1); i++) { float const x = start.x + ( nozzle_clean_horizontal ? i * P : (A/P) * (P - FABS(FMOD((i*P), (2*P)) - P)) ); float const y = start.y + (!nozzle_clean_horizontal ? i * P : (A/P) * (P - FABS(FMOD((i*P), (2*P)) - P)) ); do_blocking_move_to_xy(x, y); if (i == 0) do_blocking_move_to_z(start.z); } for (int i = (objects << 1); i > -1; i--) { float const x = start.x + ( nozzle_clean_horizontal ? i * P : (A/P) * (P - FABS(FMOD((i*P), (2*P)) - P)) ); float const y = start.y + (!nozzle_clean_horizontal ? i * P : (A/P) * (P - FABS(FMOD((i*P), (2*P)) - P)) ); do_blocking_move_to_xy(x, y); } } #if ENABLED(NOZZLE_CLEAN_GOBACK) // Move the nozzle to the initial point do_blocking_move_to_z(initial.z); do_blocking_move_to_xy(initial.x, initial.y); #endif // NOZZLE_CLEAN_GOBACK #endif // NOZZLE_CLEAN_FEATURE } /** * @brief Circular clean pattern * @details Apply a circular cleaning pattern * * @param start point_t defining the middle of circle * @param strokes number of strokes to execute * @param radius radius of circle */ void Nozzle::circle( _UNUSED point_t const &start, _UNUSED point_t const &middle, _UNUSED uint8_t const &strokes, _UNUSED float const &radius ) { #if ENABLED(NOZZLE_CLEAN_FEATURE) if (strokes == 0) return; #if ENABLED(NOZZLE_CLEAN_GOBACK) // Store the current coords point_t const initial = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] }; #endif // NOZZLE_CLEAN_GOBACK if (start.z <= current_position[Z_AXIS]) { // Order of movement is pretty darn important here do_blocking_move_to_xy(start.x, start.y); do_blocking_move_to_z(start.z); } else { do_blocking_move_to_z(start.z); do_blocking_move_to_xy(start.x, start.y); } float x, y; for (uint8_t s = 0; s < strokes; s++) { for (uint8_t i = 0; i < NOZZLE_CLEAN_CIRCLE_FN; i++) { x = middle.x + sin((M_2_PI / NOZZLE_CLEAN_CIRCLE_FN) * i) * radius; y = middle.y + cos((M_2_PI / NOZZLE_CLEAN_CIRCLE_FN) * i) * radius; do_blocking_move_to_xy(x, y); } } // Let's be safe do_blocking_move_to_xy(start.x, start.y); #if ENABLED(NOZZLE_CLEAN_GOBACK) // Move the nozzle to the initial point if (start.z <= initial.z) { // As above order is important do_blocking_move_to_z(initial.z); do_blocking_move_to_xy(initial.x, initial.y); } else { do_blocking_move_to_xy(initial.x, initial.y); do_blocking_move_to_z(initial.z); } #endif // NOZZLE_CLEAN_GOBACK #endif // NOZZLE_CLEAN_FEATURE } /** * @brief Clean the nozzle * @details Starts the selected clean procedure pattern * * @param pattern one of the available patterns * @param argument depends on the cleaning pattern */ void Nozzle::clean( _UNUSED uint8_t const &pattern, _UNUSED uint8_t const &strokes, _UNUSED float const &radius, _UNUSED uint8_t const &objects ) { #if ENABLED(NOZZLE_CLEAN_FEATURE) #if ENABLED(DELTA) if (current_position[Z_AXIS] > delta_clip_start_height) do_blocking_move_to_z(delta_clip_start_height); #endif switch (pattern) { case 1: Nozzle::zigzag( NOZZLE_CLEAN_START_POINT, NOZZLE_CLEAN_END_POINT, strokes, objects); break; case 2: Nozzle::circle( NOZZLE_CLEAN_START_POINT, NOZZLE_CLEAN_CIRCLE_MIDDLE, strokes, radius); break; default: Nozzle::stroke( NOZZLE_CLEAN_START_POINT, NOZZLE_CLEAN_END_POINT, strokes); } #endif // NOZZLE_CLEAN_FEATURE } void Nozzle::park( _UNUSED uint8_t const &z_action ) { #if ENABLED(NOZZLE_PARK_FEATURE) float const z = current_position[Z_AXIS]; point_t const park = NOZZLE_PARK_POINT; switch(z_action) { case 1: // force Z-park height do_blocking_move_to_z(park.z); break; case 2: // Raise by Z-park height do_blocking_move_to_z( (z + park.z > Z_MAX_POS) ? Z_MAX_POS : z + park.z); break; default: // Raise to Z-park height if lower if (current_position[Z_AXIS] < park.z) do_blocking_move_to_z(park.z); } do_blocking_move_to_xy(park.x, park.y); #endif // NOZZLE_PARK_FEATURE }