/* temperature.cpp - temperature control Part of Marlin Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "Marlin.h" #include "ultralcd.h" #include "temperature.h" #include "watchdog.h" #include "language.h" #include "Sd2PinMap.h" //=========================================================================== //================================== macros ================================= //=========================================================================== #ifdef K1 // Defined in Configuration.h in the PID settings #define K2 (1.0-K1) #endif #if defined(PIDTEMPBED) || defined(PIDTEMP) #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0)) #endif //=========================================================================== //============================= public variables ============================ //=========================================================================== int target_temperature[4] = { 0 }; int target_temperature_bed = 0; int current_temperature_raw[4] = { 0 }; float current_temperature[4] = { 0.0 }; int current_temperature_bed_raw = 0; float current_temperature_bed = 0.0; #ifdef TEMP_SENSOR_1_AS_REDUNDANT int redundant_temperature_raw = 0; float redundant_temperature = 0.0; #endif #ifdef PIDTEMPBED float bedKp=DEFAULT_bedKp; float bedKi=(DEFAULT_bedKi*PID_dT); float bedKd=(DEFAULT_bedKd/PID_dT); #endif //PIDTEMPBED #ifdef FAN_SOFT_PWM unsigned char fanSpeedSoftPwm; #endif unsigned char soft_pwm_bed; #ifdef BABYSTEPPING volatile int babystepsTodo[3] = { 0 }; #endif #ifdef FILAMENT_SENSOR int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only #endif #if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED) enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway }; void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc); #ifdef THERMAL_PROTECTION_HOTENDS static TRState thermal_runaway_state_machine[4] = { TRReset, TRReset, TRReset, TRReset }; static millis_t thermal_runaway_timer[4]; // = {0,0,0,0}; #endif #ifdef THERMAL_PROTECTION_BED static TRState thermal_runaway_bed_state_machine = TRReset; static millis_t thermal_runaway_bed_timer; #endif #endif //=========================================================================== //============================ private variables ============================ //=========================================================================== static volatile bool temp_meas_ready = false; #ifdef PIDTEMP //static cannot be external: static float temp_iState[EXTRUDERS] = { 0 }; static float temp_dState[EXTRUDERS] = { 0 }; static float pTerm[EXTRUDERS]; static float iTerm[EXTRUDERS]; static float dTerm[EXTRUDERS]; //int output; static float pid_error[EXTRUDERS]; static float temp_iState_min[EXTRUDERS]; static float temp_iState_max[EXTRUDERS]; static bool pid_reset[EXTRUDERS]; #endif //PIDTEMP #ifdef PIDTEMPBED //static cannot be external: static float temp_iState_bed = { 0 }; static float temp_dState_bed = { 0 }; static float pTerm_bed; static float iTerm_bed; static float dTerm_bed; //int output; static float pid_error_bed; static float temp_iState_min_bed; static float temp_iState_max_bed; #else //PIDTEMPBED static millis_t next_bed_check_ms; #endif //PIDTEMPBED static unsigned char soft_pwm[EXTRUDERS]; #ifdef FAN_SOFT_PWM static unsigned char soft_pwm_fan; #endif #if HAS_AUTO_FAN static millis_t next_auto_fan_check_ms; #endif #ifdef PIDTEMP #ifdef PID_PARAMS_PER_EXTRUDER float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp); float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT); float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT); #ifdef PID_ADD_EXTRUSION_RATE float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc); #endif // PID_ADD_EXTRUSION_RATE #else //PID_PARAMS_PER_EXTRUDER float Kp = DEFAULT_Kp; float Ki = DEFAULT_Ki * PID_dT; float Kd = DEFAULT_Kd / PID_dT; #ifdef PID_ADD_EXTRUSION_RATE float Kc = DEFAULT_Kc; #endif // PID_ADD_EXTRUSION_RATE #endif // PID_PARAMS_PER_EXTRUDER #endif //PIDTEMP // Init min and max temp with extreme values to prevent false errors during startup static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP); static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP); static int minttemp[EXTRUDERS] = { 0 }; static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 ); #ifdef BED_MINTEMP static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; #endif #ifdef BED_MAXTEMP static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP; #endif #ifdef TEMP_SENSOR_1_AS_REDUNDANT static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE }; static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN }; #else static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE ); static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN ); #endif static float analog2temp(int raw, uint8_t e); static float analog2tempBed(int raw); static void updateTemperaturesFromRawValues(); #ifdef THERMAL_PROTECTION_HOTENDS int watch_target_temp[EXTRUDERS] = { 0 }; millis_t watch_heater_next_ms[EXTRUDERS] = { 0 }; #endif #ifndef SOFT_PWM_SCALE #define SOFT_PWM_SCALE 0 #endif #ifdef FILAMENT_SENSOR static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor #endif #ifdef HEATER_0_USES_MAX6675 static int read_max6675(); #endif //=========================================================================== //================================ Functions ================================ //=========================================================================== void PID_autotune(float temp, int extruder, int ncycles) { float input = 0.0; int cycles = 0; bool heating = true; millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms; long t_high = 0, t_low = 0; long bias, d; float Ku, Tu; float Kp, Ki, Kd; float max = 0, min = 10000; #if HAS_AUTO_FAN millis_t next_auto_fan_check_ms = temp_ms + 2500; #endif if (extruder >= EXTRUDERS #if !HAS_TEMP_BED || extruder < 0 #endif ) { SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM); return; } SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START); disable_all_heaters(); // switch off all heaters. if (extruder < 0) soft_pwm_bed = bias = d = MAX_BED_POWER / 2; else soft_pwm[extruder] = bias = d = PID_MAX / 2; // PID Tuning loop for (;;) { millis_t ms = millis(); if (temp_meas_ready) { // temp sample ready updateTemperaturesFromRawValues(); input = (extruder<0)?current_temperature_bed:current_temperature[extruder]; max = max(max, input); min = min(min, input); #if HAS_AUTO_FAN if (ms > next_auto_fan_check_ms) { checkExtruderAutoFans(); next_auto_fan_check_ms = ms + 2500; } #endif if (heating && input > temp) { if (ms > t2 + 5000) { heating = false; if (extruder < 0) soft_pwm_bed = (bias - d) >> 1; else soft_pwm[extruder] = (bias - d) >> 1; t1 = ms; t_high = t1 - t2; max = temp; } } if (!heating && input < temp) { if (ms > t1 + 5000) { heating = true; t2 = ms; t_low = t2 - t1; if (cycles > 0) { long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX; bias += (d*(t_high - t_low))/(t_low + t_high); bias = constrain(bias, 20, max_pow - 20); d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias; SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias); SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d); SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min); SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max); if (cycles > 2) { Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0); Tu = ((float)(t_low + t_high) / 1000.0); SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku); SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu); Kp = 0.6 * Ku; Ki = 2 * Kp / Tu; Kd = Kp * Tu / 8; SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID); SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp); SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki); SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd); /* Kp = 0.33*Ku; Ki = Kp/Tu; Kd = Kp*Tu/3; SERIAL_PROTOCOLLNPGM(" Some overshoot "); SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp); SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki); SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd); Kp = 0.2*Ku; Ki = 2*Kp/Tu; Kd = Kp*Tu/3; SERIAL_PROTOCOLLNPGM(" No overshoot "); SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp); SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki); SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd); */ } } if (extruder < 0) soft_pwm_bed = (bias + d) >> 1; else soft_pwm[extruder] = (bias + d) >> 1; cycles++; min = temp; } } } #define MAX_OVERSHOOT_PID_AUTOTUNE 20 if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) { SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH); return; } // Every 2 seconds... if (ms > temp_ms + 2000) { int p; if (extruder < 0) { p = soft_pwm_bed; SERIAL_PROTOCOLPGM(MSG_B); } else { p = soft_pwm[extruder]; SERIAL_PROTOCOLPGM(MSG_T); } SERIAL_PROTOCOL(input); SERIAL_PROTOCOLPGM(MSG_AT); SERIAL_PROTOCOLLN(p); temp_ms = ms; } // every 2 seconds // Over 2 minutes? if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) { SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT); return; } if (cycles > ncycles) { SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED); const char *estring = extruder < 0 ? "bed" : ""; SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kp "); SERIAL_PROTOCOLLN(Kp); SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Ki "); SERIAL_PROTOCOLLN(Ki); SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kd "); SERIAL_PROTOCOLLN(Kd); return; } lcd_update(); } } void updatePID() { #ifdef PIDTEMP for (int e = 0; e < EXTRUDERS; e++) { temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e); } #endif #ifdef PIDTEMPBED temp_iState_max_bed = PID_BED_INTEGRAL_DRIVE_MAX / bedKi; #endif } int getHeaterPower(int heater) { return heater < 0 ? soft_pwm_bed : soft_pwm[heater]; } #if HAS_AUTO_FAN void setExtruderAutoFanState(int pin, bool state) { unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0; // this idiom allows both digital and PWM fan outputs (see M42 handling). pinMode(pin, OUTPUT); digitalWrite(pin, newFanSpeed); analogWrite(pin, newFanSpeed); } void checkExtruderAutoFans() { uint8_t fanState = 0; // which fan pins need to be turned on? #if HAS_AUTO_FAN_0 if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE) fanState |= 1; #endif #if HAS_AUTO_FAN_1 if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE) { if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN) fanState |= 1; else fanState |= 2; } #endif #if HAS_AUTO_FAN_2 if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE) { if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN) fanState |= 1; else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN) fanState |= 2; else fanState |= 4; } #endif #if HAS_AUTO_FAN_3 if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE) { if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN) fanState |= 1; else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN) fanState |= 2; else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN) fanState |= 4; else fanState |= 8; } #endif // update extruder auto fan states #if HAS_AUTO_FAN_0 setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0); #endif #if HAS_AUTO_FAN_1 if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN) setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0); #endif #if HAS_AUTO_FAN_2 if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN) setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0); #endif #if HAS_AUTO_FAN_3 if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN) setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0); #endif } #endif // any extruder auto fan pins set // // Temperature Error Handlers // inline void _temp_error(int e, const char *serial_msg, const char *lcd_msg) { static bool killed = false; if (IsRunning()) { SERIAL_ERROR_START; serialprintPGM(serial_msg); SERIAL_ERRORPGM(MSG_STOPPED_HEATER); if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED); } #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE if (!killed) { Running = false; killed = true; kill(lcd_msg); } else disable_all_heaters(); // paranoia #endif } void max_temp_error(uint8_t e) { _temp_error(e, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP)); } void min_temp_error(uint8_t e) { _temp_error(e, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP)); } float get_pid_output(int e) { float pid_output; #ifdef PIDTEMP #ifndef PID_OPENLOOP pid_error[e] = target_temperature[e] - current_temperature[e]; if (pid_error[e] > PID_FUNCTIONAL_RANGE) { pid_output = BANG_MAX; pid_reset[e] = true; } else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) { pid_output = 0; pid_reset[e] = true; } else { if (pid_reset[e]) { temp_iState[e] = 0.0; pid_reset[e] = false; } pTerm[e] = PID_PARAM(Kp,e) * pid_error[e]; temp_iState[e] += pid_error[e]; temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]); iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e]; dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e]; pid_output = pTerm[e] + iTerm[e] - dTerm[e]; if (pid_output > PID_MAX) { if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration pid_output = PID_MAX; } else if (pid_output < 0) { if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration pid_output = 0; } } temp_dState[e] = current_temperature[e]; #else pid_output = constrain(target_temperature[e], 0, PID_MAX); #endif //PID_OPENLOOP #ifdef PID_DEBUG SERIAL_ECHO_START; SERIAL_ECHO(MSG_PID_DEBUG); SERIAL_ECHO(e); SERIAL_ECHO(MSG_PID_DEBUG_INPUT); SERIAL_ECHO(current_temperature[e]); SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT); SERIAL_ECHO(pid_output); SERIAL_ECHO(MSG_PID_DEBUG_PTERM); SERIAL_ECHO(pTerm[e]); SERIAL_ECHO(MSG_PID_DEBUG_ITERM); SERIAL_ECHO(iTerm[e]); SERIAL_ECHO(MSG_PID_DEBUG_DTERM); SERIAL_ECHOLN(dTerm[e]); #endif //PID_DEBUG #else /* PID off */ pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0; #endif return pid_output; } #ifdef PIDTEMPBED float get_pid_output_bed() { float pid_output; #ifndef PID_OPENLOOP pid_error_bed = target_temperature_bed - current_temperature_bed; pTerm_bed = bedKp * pid_error_bed; temp_iState_bed += pid_error_bed; temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed); iTerm_bed = bedKi * temp_iState_bed; dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed; temp_dState_bed = current_temperature_bed; pid_output = pTerm_bed + iTerm_bed - dTerm_bed; if (pid_output > MAX_BED_POWER) { if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration pid_output = MAX_BED_POWER; } else if (pid_output < 0) { if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration pid_output = 0; } #else pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER); #endif // PID_OPENLOOP #ifdef PID_BED_DEBUG SERIAL_ECHO_START; SERIAL_ECHO(" PID_BED_DEBUG "); SERIAL_ECHO(": Input "); SERIAL_ECHO(current_temperature_bed); SERIAL_ECHO(" Output "); SERIAL_ECHO(pid_output); SERIAL_ECHO(" pTerm "); SERIAL_ECHO(pTerm_bed); SERIAL_ECHO(" iTerm "); SERIAL_ECHO(iTerm_bed); SERIAL_ECHO(" dTerm "); SERIAL_ECHOLN(dTerm_bed); #endif //PID_BED_DEBUG return pid_output; } #endif /** * Manage heating activities for extruder hot-ends and a heated bed * - Acquire updated temperature readings * - Invoke thermal runaway protection * - Manage extruder auto-fan * - Apply filament width to the extrusion rate (may move) * - Update the heated bed PID output value */ void manage_heater() { if (!temp_meas_ready) return; updateTemperaturesFromRawValues(); #ifdef HEATER_0_USES_MAX6675 float ct = current_temperature[0]; if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0); if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0); #endif #if defined(THERMAL_PROTECTION_HOTENDS) || !defined(PIDTEMPBED) || HAS_AUTO_FAN millis_t ms = millis(); #endif // Loop through all extruders for (int e = 0; e < EXTRUDERS; e++) { #ifdef THERMAL_PROTECTION_HOTENDS thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS); #endif float pid_output = get_pid_output(e); // Check if temperature is within the correct range soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0; // Check if the temperature is failing to increase #ifdef THERMAL_PROTECTION_HOTENDS // Is it time to check this extruder's heater? if (watch_heater_next_ms[e] && ms > watch_heater_next_ms[e]) { // Has it failed to increase enough? if (degHotend(e) < watch_target_temp[e]) { // Stop! _temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD)); } else { // Start again if the target is still far off start_watching_heater(e); } } #endif // THERMAL_PROTECTION_HOTENDS #ifdef TEMP_SENSOR_1_AS_REDUNDANT if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) { _temp_error(0, PSTR(MSG_EXTRUDER_SWITCHED_OFF), PSTR(MSG_ERR_REDUNDANT_TEMP)); } #endif } // Extruders Loop #if HAS_AUTO_FAN if (ms > next_auto_fan_check_ms) { // only need to check fan state very infrequently checkExtruderAutoFans(); next_auto_fan_check_ms = ms + 2500; } #endif // Control the extruder rate based on the width sensor #ifdef FILAMENT_SENSOR if (filament_sensor) { meas_shift_index = delay_index1 - meas_delay_cm; if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed // Get the delayed info and add 100 to reconstitute to a percent of // the nominal filament diameter then square it to get an area meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY); float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2); if (vm < 0.01) vm = 0.01; volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm; } #endif //FILAMENT_SENSOR #ifndef PIDTEMPBED if (ms < next_bed_check_ms) return; next_bed_check_ms = ms + BED_CHECK_INTERVAL; #endif #if TEMP_SENSOR_BED != 0 #ifdef THERMAL_PROTECTION_BED thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS); #endif #ifdef PIDTEMPBED float pid_output = get_pid_output_bed(); soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0; #elif defined(BED_LIMIT_SWITCHING) // Check if temperature is within the correct band if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) { if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS) soft_pwm_bed = 0; else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS) soft_pwm_bed = MAX_BED_POWER >> 1; } else { soft_pwm_bed = 0; WRITE_HEATER_BED(LOW); } #else // BED_LIMIT_SWITCHING // Check if temperature is within the correct range if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) { soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0; } else { soft_pwm_bed = 0; WRITE_HEATER_BED(LOW); } #endif #endif //TEMP_SENSOR_BED != 0 } #define PGM_RD_W(x) (short)pgm_read_word(&x) // Derived from RepRap FiveD extruder::getTemperature() // For hot end temperature measurement. static float analog2temp(int raw, uint8_t e) { #ifdef TEMP_SENSOR_1_AS_REDUNDANT if (e > EXTRUDERS) #else if (e >= EXTRUDERS) #endif { SERIAL_ERROR_START; SERIAL_ERROR((int)e); SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM); kill(PSTR(MSG_KILLED)); return 0.0; } #ifdef HEATER_0_USES_MAX6675 if (e == 0) return 0.25 * raw; #endif if (heater_ttbl_map[e] != NULL) { float celsius = 0; uint8_t i; short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); for (i = 1; i < heater_ttbllen_map[e]; i++) { if (PGM_RD_W((*tt)[i][0]) > raw) { celsius = PGM_RD_W((*tt)[i-1][1]) + (raw - PGM_RD_W((*tt)[i-1][0])) * (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) / (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0])); break; } } // Overflow: Set to last value in the table if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]); return celsius; } return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET; } // Derived from RepRap FiveD extruder::getTemperature() // For bed temperature measurement. static float analog2tempBed(int raw) { #ifdef BED_USES_THERMISTOR float celsius = 0; byte i; for (i = 1; i < BEDTEMPTABLE_LEN; i++) { if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) { celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) + (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) * (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) / (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0])); break; } } // Overflow: Set to last value in the table if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]); return celsius; #elif defined BED_USES_AD595 return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET; #else return 0; #endif } /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context, and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */ static void updateTemperaturesFromRawValues() { #ifdef HEATER_0_USES_MAX6675 current_temperature_raw[0] = read_max6675(); #endif for (uint8_t e = 0; e < EXTRUDERS; e++) { current_temperature[e] = analog2temp(current_temperature_raw[e], e); } current_temperature_bed = analog2tempBed(current_temperature_bed_raw); #ifdef TEMP_SENSOR_1_AS_REDUNDANT redundant_temperature = analog2temp(redundant_temperature_raw, 1); #endif #if HAS_FILAMENT_SENSOR filament_width_meas = analog2widthFil(); #endif //Reset the watchdog after we know we have a temperature measurement. watchdog_reset(); CRITICAL_SECTION_START; temp_meas_ready = false; CRITICAL_SECTION_END; } #ifdef FILAMENT_SENSOR // Convert raw Filament Width to millimeters float analog2widthFil() { return current_raw_filwidth / 16383.0 * 5.0; //return current_raw_filwidth; } // Convert raw Filament Width to a ratio int widthFil_to_size_ratio() { float temp = filament_width_meas; if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT; return filament_width_nominal / temp * 100; } #endif /** * Initialize the temperature manager * The manager is implemented by periodic calls to manage_heater() */ void tp_init() { #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1)) //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector MCUCR=BIT(JTD); MCUCR=BIT(JTD); #endif // Finish init of mult extruder arrays for (int e = 0; e < EXTRUDERS; e++) { // populate with the first value maxttemp[e] = maxttemp[0]; #ifdef PIDTEMP temp_iState_min[e] = 0.0; temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e); #endif //PIDTEMP #ifdef PIDTEMPBED temp_iState_min_bed = 0.0; temp_iState_max_bed = PID_BED_INTEGRAL_DRIVE_MAX / bedKi; #endif //PIDTEMPBED } #if HAS_HEATER_0 SET_OUTPUT(HEATER_0_PIN); #endif #if HAS_HEATER_1 SET_OUTPUT(HEATER_1_PIN); #endif #if HAS_HEATER_2 SET_OUTPUT(HEATER_2_PIN); #endif #if HAS_HEATER_3 SET_OUTPUT(HEATER_3_PIN); #endif #if HAS_HEATER_BED SET_OUTPUT(HEATER_BED_PIN); #endif #if HAS_FAN SET_OUTPUT(FAN_PIN); #ifdef FAST_PWM_FAN setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8 #endif #ifdef FAN_SOFT_PWM soft_pwm_fan = fanSpeedSoftPwm / 2; #endif #endif #ifdef HEATER_0_USES_MAX6675 #ifndef SDSUPPORT OUT_WRITE(SCK_PIN, LOW); OUT_WRITE(MOSI_PIN, HIGH); OUT_WRITE(MISO_PIN, HIGH); #else pinMode(SS_PIN, OUTPUT); digitalWrite(SS_PIN, HIGH); #endif OUT_WRITE(MAX6675_SS,HIGH); #endif //HEATER_0_USES_MAX6675 #ifdef DIDR2 #define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0) #else #define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0) #endif // Set analog inputs ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07; DIDR0 = 0; #ifdef DIDR2 DIDR2 = 0; #endif #if HAS_TEMP_0 ANALOG_SELECT(TEMP_0_PIN); #endif #if HAS_TEMP_1 ANALOG_SELECT(TEMP_1_PIN); #endif #if HAS_TEMP_2 ANALOG_SELECT(TEMP_2_PIN); #endif #if HAS_TEMP_3 ANALOG_SELECT(TEMP_3_PIN); #endif #if HAS_TEMP_BED ANALOG_SELECT(TEMP_BED_PIN); #endif #if HAS_FILAMENT_SENSOR ANALOG_SELECT(FILWIDTH_PIN); #endif // Use timer0 for temperature measurement // Interleave temperature interrupt with millies interrupt OCR0B = 128; TIMSK0 |= BIT(OCIE0B); // Wait for temperature measurement to settle delay(250); #define TEMP_MIN_ROUTINE(NR) \ minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \ while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \ if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \ minttemp_raw[NR] += OVERSAMPLENR; \ else \ minttemp_raw[NR] -= OVERSAMPLENR; \ } #define TEMP_MAX_ROUTINE(NR) \ maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \ while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \ if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \ maxttemp_raw[NR] -= OVERSAMPLENR; \ else \ maxttemp_raw[NR] += OVERSAMPLENR; \ } #ifdef HEATER_0_MINTEMP TEMP_MIN_ROUTINE(0); #endif #ifdef HEATER_0_MAXTEMP TEMP_MAX_ROUTINE(0); #endif #if EXTRUDERS > 1 #ifdef HEATER_1_MINTEMP TEMP_MIN_ROUTINE(1); #endif #ifdef HEATER_1_MAXTEMP TEMP_MAX_ROUTINE(1); #endif #if EXTRUDERS > 2 #ifdef HEATER_2_MINTEMP TEMP_MIN_ROUTINE(2); #endif #ifdef HEATER_2_MAXTEMP TEMP_MAX_ROUTINE(2); #endif #if EXTRUDERS > 3 #ifdef HEATER_3_MINTEMP TEMP_MIN_ROUTINE(3); #endif #ifdef HEATER_3_MAXTEMP TEMP_MAX_ROUTINE(3); #endif #endif // EXTRUDERS > 3 #endif // EXTRUDERS > 2 #endif // EXTRUDERS > 1 #ifdef BED_MINTEMP while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) { #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP bed_minttemp_raw += OVERSAMPLENR; #else bed_minttemp_raw -= OVERSAMPLENR; #endif } #endif //BED_MINTEMP #ifdef BED_MAXTEMP while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) { #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP bed_maxttemp_raw -= OVERSAMPLENR; #else bed_maxttemp_raw += OVERSAMPLENR; #endif } #endif //BED_MAXTEMP } #ifdef THERMAL_PROTECTION_HOTENDS /** * Start Heating Sanity Check for hotends that are below * their target temperature by a configurable margin. * This is called when the temperature is set. (M104, M109) */ void start_watching_heater(int e) { if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) { watch_target_temp[e] = degHotend(e) + WATCH_TEMP_INCREASE; watch_heater_next_ms[e] = millis() + WATCH_TEMP_PERIOD * 1000; } else watch_heater_next_ms[e] = 0; } #endif #if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED) void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) { static float tr_target_temperature[EXTRUDERS+1] = { 0.0 }; /* SERIAL_ECHO_START; SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: "); if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHOPGM(heater_id); SERIAL_ECHOPGM(" ; State:"); SERIAL_ECHOPGM(*state); SERIAL_ECHOPGM(" ; Timer:"); SERIAL_ECHOPGM(*timer); SERIAL_ECHOPGM(" ; Temperature:"); SERIAL_ECHOPGM(temperature); SERIAL_ECHOPGM(" ; Target Temp:"); SERIAL_ECHOPGM(target_temperature); SERIAL_EOL; */ int heater_index = heater_id >= 0 ? heater_id : EXTRUDERS; // If the target temperature changes, restart if (tr_target_temperature[heater_index] != target_temperature) *state = TRReset; switch (*state) { case TRReset: *timer = 0; *state = TRInactive; // Inactive state waits for a target temperature to be set case TRInactive: if (target_temperature > 0) { tr_target_temperature[heater_index] = target_temperature; *state = TRFirstHeating; } break; // When first heating, wait for the temperature to be reached then go to Stable state case TRFirstHeating: if (temperature >= tr_target_temperature[heater_index]) *state = TRStable; break; // While the temperature is stable watch for a bad temperature case TRStable: // If the temperature is over the target (-hysteresis) restart the timer if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc) *timer = millis(); // If the timer goes too long without a reset, trigger shutdown else if (millis() > *timer + period_seconds * 1000UL) *state = TRRunaway; break; case TRRunaway: _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY)); } } #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED void disable_all_heaters() { for (int i=0; i 1 && HAS_TEMP_1 DISABLE_HEATER(1); #endif #if EXTRUDERS > 2 && HAS_TEMP_2 DISABLE_HEATER(2); #endif #if EXTRUDERS > 3 && HAS_TEMP_3 DISABLE_HEATER(3); #endif #if HAS_TEMP_BED target_temperature_bed = 0; soft_pwm_bed = 0; #if HAS_HEATER_BED WRITE_HEATER_BED(LOW); #endif #endif } #ifdef HEATER_0_USES_MAX6675 #define MAX6675_HEAT_INTERVAL 250u static millis_t next_max6675_ms = 0; int max6675_temp = 2000; static int read_max6675() { millis_t ms = millis(); if (ms < next_max6675_ms) return max6675_temp; next_max6675_ms = ms + MAX6675_HEAT_INTERVAL; max6675_temp = 0; #ifdef PRR PRR &= ~BIT(PRSPI); #elif defined(PRR0) PRR0 &= ~BIT(PRSPI); #endif SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0); // enable TT_MAX6675 WRITE(MAX6675_SS, 0); // ensure 100ns delay - a bit extra is fine asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz // read MSB SPDR = 0; for (;(SPSR & BIT(SPIF)) == 0;); max6675_temp = SPDR; max6675_temp <<= 8; // read LSB SPDR = 0; for (;(SPSR & BIT(SPIF)) == 0;); max6675_temp |= SPDR; // disable TT_MAX6675 WRITE(MAX6675_SS, 1); if (max6675_temp & 4) { // thermocouple open max6675_temp = 4000; } else { max6675_temp = max6675_temp >> 3; } return max6675_temp; } #endif //HEATER_0_USES_MAX6675 /** * Stages in the ISR loop */ enum TempState { PrepareTemp_0, MeasureTemp_0, PrepareTemp_BED, MeasureTemp_BED, PrepareTemp_1, MeasureTemp_1, PrepareTemp_2, MeasureTemp_2, PrepareTemp_3, MeasureTemp_3, Prepare_FILWIDTH, Measure_FILWIDTH, StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle }; static unsigned long raw_temp_value[4] = { 0 }; static unsigned long raw_temp_bed_value = 0; static void set_current_temp_raw() { #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675) current_temperature_raw[0] = raw_temp_value[0]; #endif #if HAS_TEMP_1 #ifdef TEMP_SENSOR_1_AS_REDUNDANT redundant_temperature_raw = raw_temp_value[1]; #else current_temperature_raw[1] = raw_temp_value[1]; #endif #if HAS_TEMP_2 current_temperature_raw[2] = raw_temp_value[2]; #if HAS_TEMP_3 current_temperature_raw[3] = raw_temp_value[3]; #endif #endif #endif current_temperature_bed_raw = raw_temp_bed_value; temp_meas_ready = true; } /** * Timer 0 is shared with millies * - Manage PWM to all the heaters and fan * - Update the raw temperature values * - Check new temperature values for MIN/MAX errors * - Step the babysteps value for each axis towards 0 */ ISR(TIMER0_COMPB_vect) { static unsigned char temp_count = 0; static TempState temp_state = StartupDelay; static unsigned char pwm_count = BIT(SOFT_PWM_SCALE); // Static members for each heater #ifdef SLOW_PWM_HEATERS static unsigned char slow_pwm_count = 0; #define ISR_STATICS(n) \ static unsigned char soft_pwm_ ## n; \ static unsigned char state_heater_ ## n = 0; \ static unsigned char state_timer_heater_ ## n = 0 #else #define ISR_STATICS(n) static unsigned char soft_pwm_ ## n #endif // Statics per heater ISR_STATICS(0); #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL) ISR_STATICS(1); #if EXTRUDERS > 2 ISR_STATICS(2); #if EXTRUDERS > 3 ISR_STATICS(3); #endif #endif #endif #if HAS_HEATER_BED ISR_STATICS(BED); #endif #if HAS_FILAMENT_SENSOR static unsigned long raw_filwidth_value = 0; #endif #ifndef SLOW_PWM_HEATERS /** * standard PWM modulation */ if (pwm_count == 0) { soft_pwm_0 = soft_pwm[0]; if (soft_pwm_0 > 0) { WRITE_HEATER_0(1); } else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0 #if EXTRUDERS > 1 soft_pwm_1 = soft_pwm[1]; WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0); #if EXTRUDERS > 2 soft_pwm_2 = soft_pwm[2]; WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0); #if EXTRUDERS > 3 soft_pwm_3 = soft_pwm[3]; WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0); #endif #endif #endif #if HAS_HEATER_BED soft_pwm_BED = soft_pwm_bed; WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0); #endif #ifdef FAN_SOFT_PWM soft_pwm_fan = fanSpeedSoftPwm / 2; WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0); #endif } if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); } #if EXTRUDERS > 1 if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0); #if EXTRUDERS > 2 if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0); #if EXTRUDERS > 3 if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0); #endif #endif #endif #if HAS_HEATER_BED if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0); #endif #ifdef FAN_SOFT_PWM if (soft_pwm_fan < pwm_count) WRITE_FAN(0); #endif pwm_count += BIT(SOFT_PWM_SCALE); pwm_count &= 0x7f; #else // SLOW_PWM_HEATERS /* * SLOW PWM HEATERS * * for heaters drived by relay */ #ifndef MIN_STATE_TIME #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds #endif // Macros for Slow PWM timer logic - HEATERS_PARALLEL applies #define _SLOW_PWM_ROUTINE(NR, src) \ soft_pwm_ ## NR = src; \ if (soft_pwm_ ## NR > 0) { \ if (state_timer_heater_ ## NR == 0) { \ if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \ state_heater_ ## NR = 1; \ WRITE_HEATER_ ## NR(1); \ } \ } \ else { \ if (state_timer_heater_ ## NR == 0) { \ if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \ state_heater_ ## NR = 0; \ WRITE_HEATER_ ## NR(0); \ } \ } #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n]) #define PWM_OFF_ROUTINE(NR) \ if (soft_pwm_ ## NR < slow_pwm_count) { \ if (state_timer_heater_ ## NR == 0) { \ if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \ state_heater_ ## NR = 0; \ WRITE_HEATER_ ## NR (0); \ } \ } if (slow_pwm_count == 0) { SLOW_PWM_ROUTINE(0); // EXTRUDER 0 #if EXTRUDERS > 1 SLOW_PWM_ROUTINE(1); // EXTRUDER 1 #if EXTRUDERS > 2 SLOW_PWM_ROUTINE(2); // EXTRUDER 2 #if EXTRUDERS > 3 SLOW_PWM_ROUTINE(3); // EXTRUDER 3 #endif #endif #endif #if HAS_HEATER_BED _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED #endif } // slow_pwm_count == 0 PWM_OFF_ROUTINE(0); // EXTRUDER 0 #if EXTRUDERS > 1 PWM_OFF_ROUTINE(1); // EXTRUDER 1 #if EXTRUDERS > 2 PWM_OFF_ROUTINE(2); // EXTRUDER 2 #if EXTRUDERS > 3 PWM_OFF_ROUTINE(3); // EXTRUDER 3 #endif #endif #endif #if HAS_HEATER_BED PWM_OFF_ROUTINE(BED); // BED #endif #ifdef FAN_SOFT_PWM if (pwm_count == 0) { soft_pwm_fan = fanSpeedSoftPwm / 2; WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0); } if (soft_pwm_fan < pwm_count) WRITE_FAN(0); #endif //FAN_SOFT_PWM pwm_count += BIT(SOFT_PWM_SCALE); pwm_count &= 0x7f; // increment slow_pwm_count only every 64 pwm_count circa 65.5ms if ((pwm_count % 64) == 0) { slow_pwm_count++; slow_pwm_count &= 0x7f; // EXTRUDER 0 if (state_timer_heater_0 > 0) state_timer_heater_0--; #if EXTRUDERS > 1 // EXTRUDER 1 if (state_timer_heater_1 > 0) state_timer_heater_1--; #if EXTRUDERS > 2 // EXTRUDER 2 if (state_timer_heater_2 > 0) state_timer_heater_2--; #if EXTRUDERS > 3 // EXTRUDER 3 if (state_timer_heater_3 > 0) state_timer_heater_3--; #endif #endif #endif #if HAS_HEATER_BED if (state_timer_heater_BED > 0) state_timer_heater_BED--; #endif } // (pwm_count % 64) == 0 #endif // SLOW_PWM_HEATERS #define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC) #ifdef MUX5 #define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin) #else #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin) #endif // Prepare or measure a sensor, each one every 12th frame switch(temp_state) { case PrepareTemp_0: #if HAS_TEMP_0 START_ADC(TEMP_0_PIN); #endif lcd_buttons_update(); temp_state = MeasureTemp_0; break; case MeasureTemp_0: #if HAS_TEMP_0 raw_temp_value[0] += ADC; #endif temp_state = PrepareTemp_BED; break; case PrepareTemp_BED: #if HAS_TEMP_BED START_ADC(TEMP_BED_PIN); #endif lcd_buttons_update(); temp_state = MeasureTemp_BED; break; case MeasureTemp_BED: #if HAS_TEMP_BED raw_temp_bed_value += ADC; #endif temp_state = PrepareTemp_1; break; case PrepareTemp_1: #if HAS_TEMP_1 START_ADC(TEMP_1_PIN); #endif lcd_buttons_update(); temp_state = MeasureTemp_1; break; case MeasureTemp_1: #if HAS_TEMP_1 raw_temp_value[1] += ADC; #endif temp_state = PrepareTemp_2; break; case PrepareTemp_2: #if HAS_TEMP_2 START_ADC(TEMP_2_PIN); #endif lcd_buttons_update(); temp_state = MeasureTemp_2; break; case MeasureTemp_2: #if HAS_TEMP_2 raw_temp_value[2] += ADC; #endif temp_state = PrepareTemp_3; break; case PrepareTemp_3: #if HAS_TEMP_3 START_ADC(TEMP_3_PIN); #endif lcd_buttons_update(); temp_state = MeasureTemp_3; break; case MeasureTemp_3: #if HAS_TEMP_3 raw_temp_value[3] += ADC; #endif temp_state = Prepare_FILWIDTH; break; case Prepare_FILWIDTH: #if HAS_FILAMENT_SENSOR START_ADC(FILWIDTH_PIN); #endif lcd_buttons_update(); temp_state = Measure_FILWIDTH; break; case Measure_FILWIDTH: #if HAS_FILAMENT_SENSOR // raw_filwidth_value += ADC; //remove to use an IIR filter approach if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data. raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128 raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading } #endif temp_state = PrepareTemp_0; temp_count++; break; case StartupDelay: temp_state = PrepareTemp_0; break; // default: // SERIAL_ERROR_START; // SERIAL_ERRORLNPGM("Temp measurement error!"); // break; } // switch(temp_state) if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms. // Update the raw values if they've been read. Else we could be updating them during reading. if (!temp_meas_ready) set_current_temp_raw(); // Filament Sensor - can be read any time since IIR filtering is used #if HAS_FILAMENT_SENSOR current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach #endif temp_count = 0; for (int i = 0; i < 4; i++) raw_temp_value[i] = 0; raw_temp_bed_value = 0; #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675) #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP #define GE0 <= #else #define GE0 >= #endif if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0); if (minttemp_raw[0] GE0 current_temperature_raw[0]) min_temp_error(0); #endif #if HAS_TEMP_1 #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP #define GE1 <= #else #define GE1 >= #endif if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1); if (minttemp_raw[1] GE1 current_temperature_raw[1]) min_temp_error(1); #endif // TEMP_SENSOR_1 #if HAS_TEMP_2 #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP #define GE2 <= #else #define GE2 >= #endif if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2); if (minttemp_raw[2] GE2 current_temperature_raw[2]) min_temp_error(2); #endif // TEMP_SENSOR_2 #if HAS_TEMP_3 #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP #define GE3 <= #else #define GE3 >= #endif if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3); if (minttemp_raw[3] GE3 current_temperature_raw[3]) min_temp_error(3); #endif // TEMP_SENSOR_3 #if HAS_TEMP_BED #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP #define GEBED <= #else #define GEBED >= #endif if (current_temperature_bed_raw GEBED bed_maxttemp_raw) _temp_error(-1, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP_BED)); if (bed_minttemp_raw GEBED current_temperature_bed_raw) _temp_error(-1, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP_BED)); #endif } // temp_count >= OVERSAMPLENR #ifdef BABYSTEPPING for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) { int curTodo = babystepsTodo[axis]; //get rid of volatile for performance if (curTodo > 0) { babystep(axis,/*fwd*/true); babystepsTodo[axis]--; //fewer to do next time } else if (curTodo < 0) { babystep(axis,/*fwd*/false); babystepsTodo[axis]++; //fewer to do next time } } #endif //BABYSTEPPING } #ifdef PIDTEMP // Apply the scale factors to the PID values float scalePID_i(float i) { return i * PID_dT; } float unscalePID_i(float i) { return i / PID_dT; } float scalePID_d(float d) { return d / PID_dT; } float unscalePID_d(float d) { return d * PID_dT; } #endif //PIDTEMP