- Probe index (optional - defaults to 0
   */
  inline void gcode_M43() {
    if (parser.seen('T')) {   // must be first ot else it's "S" and "E" parameters will execute endstop or servo test
      toggle_pins();
      return;
    }
    // Enable or disable endstop monitoring
    if (parser.seen('E')) {
      endstop_monitor_flag = parser.value_bool();
      SERIAL_PROTOCOLPGM("endstop monitor ");
      SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
      SERIAL_PROTOCOLLNPGM("abled");
      return;
    }
    if (parser.seen('S')) {
      servo_probe_test();
      return;
    }
    // Get the range of pins to test or watch
    const uint8_t first_pin = parser.seen('P') ? parser.value_byte() : 0,
                  last_pin = parser.seen('P') ? first_pin : NUM_DIGITAL_PINS - 1;
    if (first_pin > last_pin) return;
    const bool ignore_protection = parser.seen('I') && parser.value_bool();
    // Watch until click, M108, or reset
    if (parser.seen('W') && parser.value_bool()) {
      SERIAL_PROTOCOLLNPGM("Watching pins");
      byte pin_state[last_pin - first_pin + 1];
      for (int8_t pin = first_pin; pin <= last_pin; pin++) {
        if (pin_is_protected(pin) && !ignore_protection) continue;
        pinMode(pin, INPUT_PULLUP);
        /*
          if (IS_ANALOG(pin))
            pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
          else
        //*/
            pin_state[pin - first_pin] = digitalRead(pin);
      }
      #if HAS_RESUME_CONTINUE
        wait_for_user = true;
        KEEPALIVE_STATE(PAUSED_FOR_USER);
      #endif
      for (;;) {
        for (int8_t pin = first_pin; pin <= last_pin; pin++) {
          if (pin_is_protected(pin)) continue;
          const byte val =
            /*
              IS_ANALOG(pin)
                ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
                :
            //*/
              digitalRead(pin);
          if (val != pin_state[pin - first_pin]) {
            report_pin_state(pin);
            pin_state[pin - first_pin] = val;
          }
        }
        #if HAS_RESUME_CONTINUE
          if (!wait_for_user) {
            KEEPALIVE_STATE(IN_HANDLER);
            break;
          }
        #endif
        safe_delay(500);
      }
      return;
    }
    // Report current state of selected pin(s)
    for (uint8_t pin = first_pin; pin <= last_pin; pin++)
      report_pin_state_extended(pin, ignore_protection);
  }
#endif // PINS_DEBUGGING
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  /**
   * M48: Z probe repeatability measurement function.
   *
   * Usage:
   *   M48      
   *     P = Number of sampled points (4-50, default 10)
   *     X = Sample X position
   *     Y = Sample Y position
   *     V = Verbose level (0-4, default=1)
   *     E = Engage Z probe for each reading
   *     L = Number of legs of movement before probe
   *     S = Schizoid (Or Star if you prefer)
   *
   * This function assumes the bed has been homed.  Specifically, that a G28 command
   * as been issued prior to invoking the M48 Z probe repeatability measurement function.
   * Any information generated by a prior G29 Bed leveling command will be lost and need to be
   * regenerated.
   */
  inline void gcode_M48() {
    if (axis_unhomed_error()) return;
    const int8_t verbose_level = parser.seen('V') ? parser.value_byte() : 1;
    if (!WITHIN(verbose_level, 0, 4)) {
      SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
      return;
    }
    if (verbose_level > 0)
      SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
    int8_t n_samples = parser.seen('P') ? parser.value_byte() : 10;
    if (!WITHIN(n_samples, 4, 50)) {
      SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
      return;
    }
    const bool stow_probe_after_each = parser.seen('E');
    float X_current = current_position[X_AXIS],
          Y_current = current_position[Y_AXIS];
    const float X_probe_location = parser.seen('X') ? parser.value_linear_units() : X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
                Y_probe_location = parser.seen('Y') ? parser.value_linear_units() : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
    #if DISABLED(DELTA)
      if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
        out_of_range_error(PSTR("X"));
        return;
      }
      if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
        out_of_range_error(PSTR("Y"));
        return;
      }
    #else
      if (!position_is_reachable_by_probe_xy(X_probe_location, Y_probe_location)) {
        SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
        return;
      }
    #endif
    bool seen_L = parser.seen('L');
    uint8_t n_legs = seen_L ? parser.value_byte() : 0;
    if (n_legs > 15) {
      SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
      return;
    }
    if (n_legs == 1) n_legs = 2;
    bool schizoid_flag = parser.seen('S');
    if (schizoid_flag && !seen_L) n_legs = 7;
    /**
     * Now get everything to the specified probe point So we can safely do a
     * probe to get us close to the bed.  If the Z-Axis is far from the bed,
     * we don't want to use that as a starting point for each probe.
     */
    if (verbose_level > 2)
      SERIAL_PROTOCOLLNPGM("Positioning the probe...");
    // Disable bed level correction in M48 because we want the raw data when we probe
    #if HAS_LEVELING
      const bool was_enabled = leveling_is_active();
      set_bed_leveling_enabled(false);
    #endif
    setup_for_endstop_or_probe_move();
    // Move to the first point, deploy, and probe
    const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
    if (isnan(t)) return;
    randomSeed(millis());
    double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
    for (uint8_t n = 0; n < n_samples; n++) {
      if (n_legs) {
        int dir = (random(0, 10) > 5.0) ? -1 : 1;  // clockwise or counter clockwise
        float angle = random(0.0, 360.0),
              radius = random(
                #if ENABLED(DELTA)
                  DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
                #else
                  5, X_MAX_LENGTH / 8
                #endif
              );
        if (verbose_level > 3) {
          SERIAL_ECHOPAIR("Starting radius: ", radius);
          SERIAL_ECHOPAIR("   angle: ", angle);
          SERIAL_ECHOPGM(" Direction: ");
          if (dir > 0) SERIAL_ECHOPGM("Counter-");
          SERIAL_ECHOLNPGM("Clockwise");
        }
        for (uint8_t l = 0; l < n_legs - 1; l++) {
          double delta_angle;
          if (schizoid_flag)
            // The points of a 5 point star are 72 degrees apart.  We need to
            // skip a point and go to the next one on the star.
            delta_angle = dir * 2.0 * 72.0;
          else
            // If we do this line, we are just trying to move further
            // around the circle.
            delta_angle = dir * (float) random(25, 45);
          angle += delta_angle;
          while (angle > 360.0)   // We probably do not need to keep the angle between 0 and 2*PI, but the
            angle -= 360.0;       // Arduino documentation says the trig functions should not be given values
          while (angle < 0.0)     // outside of this range.   It looks like they behave correctly with
            angle += 360.0;       // numbers outside of the range, but just to be safe we clamp them.
          X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
          Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
          #if DISABLED(DELTA)
            X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
            Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
          #else
            // If we have gone out too far, we can do a simple fix and scale the numbers
            // back in closer to the origin.
            while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
              X_current *= 0.8;
              Y_current *= 0.8;
              if (verbose_level > 3) {
                SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
                SERIAL_ECHOLNPAIR(", ", Y_current);
              }
            }
          #endif
          if (verbose_level > 3) {
            SERIAL_PROTOCOLPGM("Going to:");
            SERIAL_ECHOPAIR(" X", X_current);
            SERIAL_ECHOPAIR(" Y", Y_current);
            SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
          }
          do_blocking_move_to_xy(X_current, Y_current);
        } // n_legs loop
      } // n_legs
      // Probe a single point
      sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
      /**
       * Get the current mean for the data points we have so far
       */
      double sum = 0.0;
      for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
      mean = sum / (n + 1);
      NOMORE(min, sample_set[n]);
      NOLESS(max, sample_set[n]);
      /**
       * Now, use that mean to calculate the standard deviation for the
       * data points we have so far
       */
      sum = 0.0;
      for (uint8_t j = 0; j <= n; j++)
        sum += sq(sample_set[j] - mean);
      sigma = sqrt(sum / (n + 1));
      if (verbose_level > 0) {
        if (verbose_level > 1) {
          SERIAL_PROTOCOL(n + 1);
          SERIAL_PROTOCOLPGM(" of ");
          SERIAL_PROTOCOL((int)n_samples);
          SERIAL_PROTOCOLPGM(": z: ");
          SERIAL_PROTOCOL_F(sample_set[n], 3);
          if (verbose_level > 2) {
            SERIAL_PROTOCOLPGM(" mean: ");
            SERIAL_PROTOCOL_F(mean, 4);
            SERIAL_PROTOCOLPGM(" sigma: ");
            SERIAL_PROTOCOL_F(sigma, 6);
            SERIAL_PROTOCOLPGM(" min: ");
            SERIAL_PROTOCOL_F(min, 3);
            SERIAL_PROTOCOLPGM(" max: ");
            SERIAL_PROTOCOL_F(max, 3);
            SERIAL_PROTOCOLPGM(" range: ");
            SERIAL_PROTOCOL_F(max-min, 3);
          }
          SERIAL_EOL;
        }
      }
    } // End of probe loop
    if (STOW_PROBE()) return;
    SERIAL_PROTOCOLPGM("Finished!");
    SERIAL_EOL;
    if (verbose_level > 0) {
      SERIAL_PROTOCOLPGM("Mean: ");
      SERIAL_PROTOCOL_F(mean, 6);
      SERIAL_PROTOCOLPGM(" Min: ");
      SERIAL_PROTOCOL_F(min, 3);
      SERIAL_PROTOCOLPGM(" Max: ");
      SERIAL_PROTOCOL_F(max, 3);
      SERIAL_PROTOCOLPGM(" Range: ");
      SERIAL_PROTOCOL_F(max-min, 3);
      SERIAL_EOL;
    }
    SERIAL_PROTOCOLPGM("Standard Deviation: ");
    SERIAL_PROTOCOL_F(sigma, 6);
    SERIAL_EOL;
    SERIAL_EOL;
    clean_up_after_endstop_or_probe_move();
    // Re-enable bed level correction if it had been on
    #if HAS_LEVELING
      set_bed_leveling_enabled(was_enabled);
    #endif
    report_current_position();
  }
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  inline void gcode_M49() {
    ubl.g26_debug_flag ^= true;
    SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
    serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  }
#endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
/**
 * M75: Start print timer
 */
inline void gcode_M75() { print_job_timer.start(); }
/**
 * M76: Pause print timer
 */
inline void gcode_M76() { print_job_timer.pause(); }
/**
 * M77: Stop print timer
 */
inline void gcode_M77() { print_job_timer.stop(); }
#if ENABLED(PRINTCOUNTER)
  /**
   * M78: Show print statistics
   */
  inline void gcode_M78() {
    // "M78 S78" will reset the statistics
    if (parser.seen('S') && parser.value_int() == 78)
      print_job_timer.initStats();
    else
      print_job_timer.showStats();
  }
#endif
/**
 * M104: Set hot end temperature
 */
inline void gcode_M104() {
  if (get_target_extruder_from_command(104)) return;
  if (DEBUGGING(DRYRUN)) return;
  #if ENABLED(SINGLENOZZLE)
    if (target_extruder != active_extruder) return;
  #endif
  if (parser.seen('S')) {
    const int16_t temp = parser.value_celsius();
    thermalManager.setTargetHotend(temp, target_extruder);
    #if ENABLED(DUAL_X_CARRIAGE)
      if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
        thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
    #endif
    #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
      /**
       * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
       * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
       * standby mode, for instance in a dual extruder setup, without affecting
       * the running print timer.
       */
      if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
        print_job_timer.stop();
        LCD_MESSAGEPGM(WELCOME_MSG);
      }
    #endif
    if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
      lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  }
  #if ENABLED(AUTOTEMP)
    planner.autotemp_M104_M109();
  #endif
}
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
  void print_heaterstates() {
    #if HAS_TEMP_HOTEND
      SERIAL_PROTOCOLPGM(" T:");
      SERIAL_PROTOCOL(thermalManager.degHotend(target_extruder));
      SERIAL_PROTOCOLPGM(" /");
      SERIAL_PROTOCOL(thermalManager.degTargetHotend(target_extruder));
      #if ENABLED(SHOW_TEMP_ADC_VALUES)
        SERIAL_PROTOCOLPAIR(" (", thermalManager.rawHotendTemp(target_extruder) / OVERSAMPLENR);
        SERIAL_PROTOCOLCHAR(')');
      #endif
    #endif
    #if HAS_TEMP_BED
      SERIAL_PROTOCOLPGM(" B:");
      SERIAL_PROTOCOL(thermalManager.degBed());
      SERIAL_PROTOCOLPGM(" /");
      SERIAL_PROTOCOL(thermalManager.degTargetBed());
      #if ENABLED(SHOW_TEMP_ADC_VALUES)
        SERIAL_PROTOCOLPAIR(" (", thermalManager.rawBedTemp() / OVERSAMPLENR);
        SERIAL_PROTOCOLCHAR(')');
      #endif
    #endif
    #if HOTENDS > 1
      HOTEND_LOOP() {
        SERIAL_PROTOCOLPAIR(" T", e);
        SERIAL_PROTOCOLCHAR(':');
        SERIAL_PROTOCOL(thermalManager.degHotend(e));
        SERIAL_PROTOCOLPGM(" /");
        SERIAL_PROTOCOL(thermalManager.degTargetHotend(e));
        #if ENABLED(SHOW_TEMP_ADC_VALUES)
          SERIAL_PROTOCOLPAIR(" (", thermalManager.rawHotendTemp(e) / OVERSAMPLENR);
          SERIAL_PROTOCOLCHAR(')');
        #endif
      }
    #endif
    SERIAL_PROTOCOLPGM(" @:");
    SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
    #if HAS_TEMP_BED
      SERIAL_PROTOCOLPGM(" B@:");
      SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
    #endif
    #if HOTENDS > 1
      HOTEND_LOOP() {
        SERIAL_PROTOCOLPAIR(" @", e);
        SERIAL_PROTOCOLCHAR(':');
        SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
      }
    #endif
  }
#endif
/**
 * M105: Read hot end and bed temperature
 */
inline void gcode_M105() {
  if (get_target_extruder_from_command(105)) return;
  #if HAS_TEMP_HOTEND || HAS_TEMP_BED
    SERIAL_PROTOCOLPGM(MSG_OK);
    print_heaterstates();
  #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
    SERIAL_ERROR_START;
    SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  #endif
  SERIAL_EOL;
}
#if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  static uint8_t auto_report_temp_interval;
  static millis_t next_temp_report_ms;
  /**
   * M155: Set temperature auto-report interval. M155 S
   */
  inline void gcode_M155() {
    if (parser.seen('S')) {
      auto_report_temp_interval = parser.value_byte();
      NOMORE(auto_report_temp_interval, 60);
      next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
    }
  }
  inline void auto_report_temperatures() {
    if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
      next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
      print_heaterstates();
      SERIAL_EOL;
    }
  }
#endif // AUTO_REPORT_TEMPERATURES
#if FAN_COUNT > 0
  /**
   * M106: Set Fan Speed
   *
   *  S   Speed between 0-255
   *  P Fan index, if more than one fan
   */
  inline void gcode_M106() {
    uint16_t s = parser.seen('S') ? parser.value_ushort() : 255,
             p = parser.seen('P') ? parser.value_ushort() : 0;
    NOMORE(s, 255);
    if (p < FAN_COUNT) fanSpeeds[p] = s;
  }
  /**
   * M107: Fan Off
   */
  inline void gcode_M107() {
    uint16_t p = parser.seen('P') ? parser.value_ushort() : 0;
    if (p < FAN_COUNT) fanSpeeds[p] = 0;
  }
#endif // FAN_COUNT > 0
#if DISABLED(EMERGENCY_PARSER)
  /**
   * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
   */
  inline void gcode_M108() { wait_for_heatup = false; }
  /**
   * M112: Emergency Stop
   */
  inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  /**
   * M410: Quickstop - Abort all planned moves
   *
   * This will stop the carriages mid-move, so most likely they
   * will be out of sync with the stepper position after this.
   */
  inline void gcode_M410() { quickstop_stepper(); }
#endif
/**
 * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
 *       Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
 */
#ifndef MIN_COOLING_SLOPE_DEG
  #define MIN_COOLING_SLOPE_DEG 1.50
#endif
#ifndef MIN_COOLING_SLOPE_TIME
  #define MIN_COOLING_SLOPE_TIME 60
#endif
inline void gcode_M109() {
  if (get_target_extruder_from_command(109)) return;
  if (DEBUGGING(DRYRUN)) return;
  #if ENABLED(SINGLENOZZLE)
    if (target_extruder != active_extruder) return;
  #endif
  const bool no_wait_for_cooling = parser.seen('S');
  if (no_wait_for_cooling || parser.seen('R')) {
    const int16_t temp = parser.value_celsius();
    thermalManager.setTargetHotend(temp, target_extruder);
    #if ENABLED(DUAL_X_CARRIAGE)
      if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
        thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
    #endif
    #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
      /**
       * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
       * standby mode, (e.g., in a dual extruder setup) without affecting
       * the running print timer.
       */
      if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
        print_job_timer.stop();
        LCD_MESSAGEPGM(WELCOME_MSG);
      }
      else
        print_job_timer.start();
    #endif
    if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  }
  else return;
  #if ENABLED(AUTOTEMP)
    planner.autotemp_M104_M109();
  #endif
  #if TEMP_RESIDENCY_TIME > 0
    millis_t residency_start_ms = 0;
    // Loop until the temperature has stabilized
    #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  #else
    // Loop until the temperature is very close target
    #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  #endif
  float target_temp = -1.0, old_temp = 9999.0;
  bool wants_to_cool = false;
  wait_for_heatup = true;
  millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  KEEPALIVE_STATE(NOT_BUSY);
  #if ENABLED(PRINTER_EVENT_LEDS)
    const float start_temp = thermalManager.degHotend(target_extruder);
    uint8_t old_blue = 0;
  #endif
  do {
    // Target temperature might be changed during the loop
    if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
      wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
      target_temp = thermalManager.degTargetHotend(target_extruder);
      // Exit if S, continue if S, R, or R
      if (no_wait_for_cooling && wants_to_cool) break;
    }
    now = millis();
    if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
      next_temp_ms = now + 1000UL;
      print_heaterstates();
      #if TEMP_RESIDENCY_TIME > 0
        SERIAL_PROTOCOLPGM(" W:");
        if (residency_start_ms) {
          long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
          SERIAL_PROTOCOLLN(rem);
        }
        else {
          SERIAL_PROTOCOLLNPGM("?");
        }
      #else
        SERIAL_EOL;
      #endif
    }
    idle();
    refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
    const float temp = thermalManager.degHotend(target_extruder);
    #if ENABLED(PRINTER_EVENT_LEDS)
      // Gradually change LED strip from violet to red as nozzle heats up
      if (!wants_to_cool) {
        const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
        if (blue != old_blue) set_led_color(255, 0, (old_blue = blue));
      }
    #endif
    #if TEMP_RESIDENCY_TIME > 0
      const float temp_diff = fabs(target_temp - temp);
      if (!residency_start_ms) {
        // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
        if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
      }
      else if (temp_diff > TEMP_HYSTERESIS) {
        // Restart the timer whenever the temperature falls outside the hysteresis.
        residency_start_ms = now;
      }
    #endif
    // Prevent a wait-forever situation if R is misused i.e. M109 R0
    if (wants_to_cool) {
      // break after MIN_COOLING_SLOPE_TIME seconds
      // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
      if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
        if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
        next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
        old_temp = temp;
      }
    }
  } while (wait_for_heatup && TEMP_CONDITIONS);
  if (wait_for_heatup) {
    LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
    #if ENABLED(PRINTER_EVENT_LEDS)
      #if ENABLED(RGBW_LED)
        set_led_color(0, 0, 0, 255);  // Turn on the WHITE LED
      #else
        set_led_color(255, 255, 255); // Set LEDs All On
      #endif
    #endif
  }
  KEEPALIVE_STATE(IN_HANDLER);
}
#if HAS_TEMP_BED
  #ifndef MIN_COOLING_SLOPE_DEG_BED
    #define MIN_COOLING_SLOPE_DEG_BED 1.50
  #endif
  #ifndef MIN_COOLING_SLOPE_TIME_BED
    #define MIN_COOLING_SLOPE_TIME_BED 60
  #endif
  /**
   * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
   *       Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
   */
  inline void gcode_M190() {
    if (DEBUGGING(DRYRUN)) return;
    LCD_MESSAGEPGM(MSG_BED_HEATING);
    const bool no_wait_for_cooling = parser.seen('S');
    if (no_wait_for_cooling || parser.seen('R')) {
      thermalManager.setTargetBed(parser.value_celsius());
      #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
        if (parser.value_celsius() > BED_MINTEMP)
          print_job_timer.start();
      #endif
    }
    else return;
    #if TEMP_BED_RESIDENCY_TIME > 0
      millis_t residency_start_ms = 0;
      // Loop until the temperature has stabilized
      #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
    #else
      // Loop until the temperature is very close target
      #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
    #endif
    float target_temp = -1.0, old_temp = 9999.0;
    bool wants_to_cool = false;
    wait_for_heatup = true;
    millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
    KEEPALIVE_STATE(NOT_BUSY);
    target_extruder = active_extruder; // for print_heaterstates
    #if ENABLED(PRINTER_EVENT_LEDS)
      const float start_temp = thermalManager.degBed();
      uint8_t old_red = 255;
    #endif
    do {
      // Target temperature might be changed during the loop
      if (target_temp != thermalManager.degTargetBed()) {
        wants_to_cool = thermalManager.isCoolingBed();
        target_temp = thermalManager.degTargetBed();
        // Exit if S, continue if S, R, or R
        if (no_wait_for_cooling && wants_to_cool) break;
      }
      now = millis();
      if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
        next_temp_ms = now + 1000UL;
        print_heaterstates();
        #if TEMP_BED_RESIDENCY_TIME > 0
          SERIAL_PROTOCOLPGM(" W:");
          if (residency_start_ms) {
            long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
            SERIAL_PROTOCOLLN(rem);
          }
          else {
            SERIAL_PROTOCOLLNPGM("?");
          }
        #else
          SERIAL_EOL;
        #endif
      }
      idle();
      refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
      const float temp = thermalManager.degBed();
      #if ENABLED(PRINTER_EVENT_LEDS)
        // Gradually change LED strip from blue to violet as bed heats up
        if (!wants_to_cool) {
          const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
          if (red != old_red) set_led_color((old_red = red), 0, 255);
        }
      #endif
      #if TEMP_BED_RESIDENCY_TIME > 0
        const float temp_diff = fabs(target_temp - temp);
        if (!residency_start_ms) {
          // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
          if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
        }
        else if (temp_diff > TEMP_BED_HYSTERESIS) {
          // Restart the timer whenever the temperature falls outside the hysteresis.
          residency_start_ms = now;
        }
      #endif // TEMP_BED_RESIDENCY_TIME > 0
      // Prevent a wait-forever situation if R is misused i.e. M190 R0
      if (wants_to_cool) {
        // Break after MIN_COOLING_SLOPE_TIME_BED seconds
        // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
        if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
          if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
          next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
          old_temp = temp;
        }
      }
    } while (wait_for_heatup && TEMP_BED_CONDITIONS);
    if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
    KEEPALIVE_STATE(IN_HANDLER);
  }
#endif // HAS_TEMP_BED
/**
 * M110: Set Current Line Number
 */
inline void gcode_M110() {
  if (parser.seen('N')) gcode_LastN = parser.value_long();
}
/**
 * M111: Set the debug level
 */
inline void gcode_M111() {
  marlin_debug_flags = parser.seen('S') ? parser.value_byte() : (uint8_t)DEBUG_NONE;
  const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  #if ENABLED(DEBUG_LEVELING_FEATURE)
    const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  #endif
  const static char* const debug_strings[] PROGMEM = {
    str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
    #if ENABLED(DEBUG_LEVELING_FEATURE)
      , str_debug_32
    #endif
  };
  SERIAL_ECHO_START;
  SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  if (marlin_debug_flags) {
    uint8_t comma = 0;
    for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
      if (TEST(marlin_debug_flags, i)) {
        if (comma++) SERIAL_CHAR(',');
        serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
      }
    }
  }
  else {
    SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  }
  SERIAL_EOL;
}
#if ENABLED(HOST_KEEPALIVE_FEATURE)
  /**
   * M113: Get or set Host Keepalive interval (0 to disable)
   *
   *   S Optional. Set the keepalive interval.
   */
  inline void gcode_M113() {
    if (parser.seen('S')) {
      host_keepalive_interval = parser.value_byte();
      NOMORE(host_keepalive_interval, 60);
    }
    else {
      SERIAL_ECHO_START;
      SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
    }
  }
#endif
#if ENABLED(BARICUDA)
  #if HAS_HEATER_1
    /**
     * M126: Heater 1 valve open
     */
    inline void gcode_M126() { baricuda_valve_pressure = parser.seen('S') ? parser.value_byte() : 255; }
    /**
     * M127: Heater 1 valve close
     */
    inline void gcode_M127() { baricuda_valve_pressure = 0; }
  #endif
  #if HAS_HEATER_2
    /**
     * M128: Heater 2 valve open
     */
    inline void gcode_M128() { baricuda_e_to_p_pressure = parser.seen('S') ? parser.value_byte() : 255; }
    /**
     * M129: Heater 2 valve close
     */
    inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  #endif
#endif // BARICUDA
/**
 * M140: Set bed temperature
 */
inline void gcode_M140() {
  if (DEBUGGING(DRYRUN)) return;
  if (parser.seen('S')) thermalManager.setTargetBed(parser.value_celsius());
}
#if ENABLED(ULTIPANEL)
  /**
   * M145: Set the heatup state for a material in the LCD menu
   *
   *   S (0=PLA, 1=ABS)
   *   H
   *   B
   *   F
   */
  inline void gcode_M145() {
    uint8_t material = parser.seen('S') ? (uint8_t)parser.value_int() : 0;
    if (material >= COUNT(lcd_preheat_hotend_temp)) {
      SERIAL_ERROR_START;
      SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
    }
    else {
      int v;
      if (parser.seen('H')) {
        v = parser.value_int();
        lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
      }
      if (parser.seen('F')) {
        v = parser.value_int();
        lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
      }
      #if TEMP_SENSOR_BED != 0
        if (parser.seen('B')) {
          v = parser.value_int();
          lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
        }
      #endif
    }
  }
#endif // ULTIPANEL
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  /**
   * M149: Set temperature units
   */
  inline void gcode_M149() {
         if (parser.seen('C')) parser.set_input_temp_units(TEMPUNIT_C);
    else if (parser.seen('K')) parser.set_input_temp_units(TEMPUNIT_K);
    else if (parser.seen('F')) parser.set_input_temp_units(TEMPUNIT_F);
  }
#endif
#if HAS_POWER_SWITCH
  /**
   * M80   : Turn on the Power Supply
   * M80 S : Report the current state and exit
   */
  inline void gcode_M80() {
    // S: Report the current power supply state and exit
    if (parser.seen('S')) {
      serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
      return;
    }
    OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
    /**
     * If you have a switch on suicide pin, this is useful
     * if you want to start another print with suicide feature after
     * a print without suicide...
     */
    #if HAS_SUICIDE
      OUT_WRITE(SUICIDE_PIN, HIGH);
    #endif
    #if ENABLED(HAVE_TMC2130)
      delay(100);
      tmc2130_init(); // Settings only stick when the driver has power
    #endif
    powersupply_on = true;
    #if ENABLED(ULTIPANEL)
      LCD_MESSAGEPGM(WELCOME_MSG);
    #endif
  }
#endif // HAS_POWER_SWITCH
/**
 * M81: Turn off Power, including Power Supply, if there is one.
 *
 *      This code should ALWAYS be available for EMERGENCY SHUTDOWN!
 */
inline void gcode_M81() {
  thermalManager.disable_all_heaters();
  stepper.finish_and_disable();
  #if FAN_COUNT > 0
    for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
    #if ENABLED(PROBING_FANS_OFF)
      fans_paused = false;
      ZERO(paused_fanSpeeds);
    #endif
  #endif
  safe_delay(1000); // Wait 1 second before switching off
  #if HAS_SUICIDE
    stepper.synchronize();
    suicide();
  #elif HAS_POWER_SWITCH
    OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
    powersupply_on = false;
  #endif
  #if ENABLED(ULTIPANEL)
    LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  #endif
}
/**
 * M82: Set E codes absolute (default)
 */
inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
/**
 * M83: Set E codes relative while in Absolute Coordinates (G90) mode
 */
inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
/**
 * M18, M84: Disable stepper motors
 */
inline void gcode_M18_M84() {
  if (parser.seen('S')) {
    stepper_inactive_time = parser.value_millis_from_seconds();
  }
  else {
    bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
    if (all_axis) {
      stepper.finish_and_disable();
    }
    else {
      stepper.synchronize();
      if (parser.seen('X')) disable_X();
      if (parser.seen('Y')) disable_Y();
      if (parser.seen('Z')) disable_Z();
      #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
        if (parser.seen('E')) disable_e_steppers();
      #endif
    }
  }
}
/**
 * M85: Set inactivity shutdown timer with parameter S. To disable set zero (default)
 */
inline void gcode_M85() {
  if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
}
/**
 * Multi-stepper support for M92, M201, M203
 */
#if ENABLED(DISTINCT_E_FACTORS)
  #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  #define TARGET_EXTRUDER target_extruder
#else
  #define GET_TARGET_EXTRUDER(CMD) NOOP
  #define TARGET_EXTRUDER 0
#endif
/**
 * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
 *      (Follows the same syntax as G92)
 *
 *      With multiple extruders use T to specify which one.
 */
inline void gcode_M92() {
  GET_TARGET_EXTRUDER(92);
  LOOP_XYZE(i) {
    if (parser.seen(axis_codes[i])) {
      if (i == E_AXIS) {
        const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
        if (value < 20.0) {
          float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
          planner.max_jerk[E_AXIS] *= factor;
          planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
          planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
        }
        planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
      }
      else {
        planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
      }
    }
  }
  planner.refresh_positioning();
}
/**
 * Output the current position to serial
 */
void report_current_position() {
  SERIAL_PROTOCOLPGM("X:");
  SERIAL_PROTOCOL(current_position[X_AXIS]);
  SERIAL_PROTOCOLPGM(" Y:");
  SERIAL_PROTOCOL(current_position[Y_AXIS]);
  SERIAL_PROTOCOLPGM(" Z:");
  SERIAL_PROTOCOL(current_position[Z_AXIS]);
  SERIAL_PROTOCOLPGM(" E:");
  SERIAL_PROTOCOL(current_position[E_AXIS]);
  stepper.report_positions();
  #if IS_SCARA
    SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
    SERIAL_PROTOCOLLNPAIR("   Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
    SERIAL_EOL;
  #endif
}
#ifdef M114_DETAIL
  void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
    char str[12];
    for (uint8_t i = 0; i < n; i++) {
      SERIAL_CHAR(' ');
      SERIAL_CHAR(axis_codes[i]);
      SERIAL_CHAR(':');
      SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
    }
    SERIAL_EOL;
  }
  inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
  void report_current_position_detail() {
    stepper.synchronize();
    SERIAL_PROTOCOLPGM("\nLogical:");
    report_xyze(current_position);
    SERIAL_PROTOCOLPGM("Raw:    ");
    const float raw[XYZ] = { RAW_X_POSITION(current_position[X_AXIS]), RAW_Y_POSITION(current_position[Y_AXIS]), RAW_Z_POSITION(current_position[Z_AXIS]) };
    report_xyz(raw);
    SERIAL_PROTOCOLPGM("Leveled:");
    float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
    planner.apply_leveling(leveled);
    report_xyz(leveled);
    SERIAL_PROTOCOLPGM("UnLevel:");
    float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
    planner.unapply_leveling(unleveled);
    report_xyz(unleveled);
    #if IS_KINEMATIC
      #if IS_SCARA
        SERIAL_PROTOCOLPGM("ScaraK: ");
      #else
        SERIAL_PROTOCOLPGM("DeltaK: ");
      #endif
      inverse_kinematics(leveled);  // writes delta[]
      report_xyz(delta);
    #endif
    SERIAL_PROTOCOLPGM("Stepper:");
    const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
    report_xyze(step_count, 4, 0);
    #if IS_SCARA
      const float deg[XYZ] = {
        stepper.get_axis_position_degrees(A_AXIS),
        stepper.get_axis_position_degrees(B_AXIS)
      };
      SERIAL_PROTOCOLPGM("Degrees:");
      report_xyze(deg, 2);
    #endif
    SERIAL_PROTOCOLPGM("FromStp:");
    get_cartesian_from_steppers();  // writes cartes[XYZ] (with forward kinematics)
    const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
    report_xyze(from_steppers);
    const float diff[XYZE] = {
      from_steppers[X_AXIS] - leveled[X_AXIS],
      from_steppers[Y_AXIS] - leveled[Y_AXIS],
      from_steppers[Z_AXIS] - leveled[Z_AXIS],
      from_steppers[E_AXIS] - current_position[E_AXIS]
    };
    SERIAL_PROTOCOLPGM("Differ: ");
    report_xyze(diff);
  }
#endif // M114_DETAIL
/**
 * M114: Report current position to host
 */
inline void gcode_M114() {
  #ifdef M114_DETAIL
    if (parser.seen('D')) {
      report_current_position_detail();
      return;
    }
  #endif
  stepper.synchronize();
  report_current_position();
}
/**
 * M115: Capabilities string
 */
inline void gcode_M115() {
  SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
    // EEPROM (M500, M501)
    #if ENABLED(EEPROM_SETTINGS)
      SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
    #else
      SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
    #endif
    // AUTOREPORT_TEMP (M155)
    #if ENABLED(AUTO_REPORT_TEMPERATURES)
      SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
    #else
      SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
    #endif
    // PROGRESS (M530 S L, M531 , M532 X L)
    SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
    // AUTOLEVEL (G29)
    #if HAS_ABL
      SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
    #else
      SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
    #endif
    // Z_PROBE (G30)
    #if HAS_BED_PROBE
      SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
    #else
      SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
    #endif
    // MESH_REPORT (M420 V)
    #if HAS_LEVELING
      SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
    #else
      SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
    #endif
    // SOFTWARE_POWER (G30)
    #if HAS_POWER_SWITCH
      SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
    #else
      SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
    #endif
    // CASE LIGHTS (M355)
    #if HAS_CASE_LIGHT
      SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
      bool USEABLE_HARDWARE_PWM(uint8_t pin);
      if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
        SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
      }
      else
        SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
    #else
      SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
      SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
    #endif
    // EMERGENCY_PARSER (M108, M112, M410)
    #if ENABLED(EMERGENCY_PARSER)
      SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
    #else
      SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
    #endif
  #endif // EXTENDED_CAPABILITIES_REPORT
}
/**
 * M117: Set LCD Status Message
 */
inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
/**
 * M119: Output endstop states to serial output
 */
inline void gcode_M119() { endstops.M119(); }
/**
 * M120: Enable endstops and set non-homing endstop state to "enabled"
 */
inline void gcode_M120() { endstops.enable_globally(true); }
/**
 * M121: Disable endstops and set non-homing endstop state to "disabled"
 */
inline void gcode_M121() { endstops.enable_globally(false); }
#if ENABLED(PARK_HEAD_ON_PAUSE)
  /**
   * M125: Store current position and move to filament change position.
   *       Called on pause (by M25) to prevent material leaking onto the
   *       object. On resume (M24) the head will be moved back and the
   *       print will resume.
   *
   *       If Marlin is compiled without SD Card support, M125 can be
   *       used directly to pause the print and move to park position,
   *       resuming with a button click or M108.
   *
   *    L = override retract length
   *    X = override X
   *    Y = override Y
   *    Z = override Z raise
   */
  inline void gcode_M125() {
    // Initial retract before move to filament change position
    const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
      #if defined(PAUSE_PARK_RETRACT_LENGTH) && PAUSE_PARK_RETRACT_LENGTH > 0
        - (PAUSE_PARK_RETRACT_LENGTH)
      #endif
    ;
    // Lift Z axis
    const float z_lift = parser.seen('Z') ? parser.value_linear_units() :
      #if defined(PAUSE_PARK_Z_ADD) && PAUSE_PARK_Z_ADD > 0
        PAUSE_PARK_Z_ADD
      #else
        0
      #endif
    ;
    // Move XY axes to filament change position or given position
    const float x_pos = parser.seen('X') ? parser.value_linear_units() : 0
      #ifdef PAUSE_PARK_X_POS
        + PAUSE_PARK_X_POS
      #endif
      #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
        + (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
      #endif
    ;
    const float y_pos = parser.seen('Y') ? parser.value_linear_units() : 0
      #ifdef PAUSE_PARK_Y_POS
        + PAUSE_PARK_Y_POS
      #endif
      #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
        + (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
      #endif
    ;
    const bool job_running = print_job_timer.isRunning();
    if (pause_print(retract, z_lift, x_pos, y_pos)) {
      #if DISABLED(SDSUPPORT)
        // Wait for lcd click or M108
        wait_for_filament_reload();
        // Return to print position and continue
        resume_print();
        if (job_running) print_job_timer.start();
      #endif
    }
  }
#endif // PARK_HEAD_ON_PAUSE
#if HAS_COLOR_LEDS
  /**
   * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
   *
   * Always sets all 3 or 4 components. If a component is left out, set to 0.
   *
   * Examples:
   *
   *   M150 R255       ; Turn LED red
   *   M150 R255 U127  ; Turn LED orange (PWM only)
   *   M150            ; Turn LED off
   *   M150 R U B      ; Turn LED white
   *   M150 W          ; Turn LED white using a white LED
   *
   */
  inline void gcode_M150() {
    set_led_color(
      parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
      parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
      parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0
      #if ENABLED(RGBW_LED)
        , parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0
      #endif
    );
  }
#endif // BLINKM || RGB_LED
/**
 * M200: Set filament diameter and set E axis units to cubic units
 *
 *    T - Optional extruder number. Current extruder if omitted.
 *    D - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
 */
inline void gcode_M200() {
  if (get_target_extruder_from_command(200)) return;
  if (parser.seen('D')) {
    // setting any extruder filament size disables volumetric on the assumption that
    // slicers either generate in extruder values as cubic mm or as as filament feeds
    // for all extruders
    volumetric_enabled = (parser.value_linear_units() != 0.0);
    if (volumetric_enabled) {
      filament_size[target_extruder] = parser.value_linear_units();
      // make sure all extruders have some sane value for the filament size
      for (uint8_t i = 0; i < COUNT(filament_size); i++)
        if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
    }
  }
  calculate_volumetric_multipliers();
}
/**
 * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
 *
 *       With multiple extruders use T to specify which one.
 */
inline void gcode_M201() {
  GET_TARGET_EXTRUDER(201);
  LOOP_XYZE(i) {
    if (parser.seen(axis_codes[i])) {
      const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
      planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
    }
  }
  // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  planner.reset_acceleration_rates();
}
#if 0 // Not used for Sprinter/grbl gen6
  inline void gcode_M202() {
    LOOP_XYZE(i) {
      if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
    }
  }
#endif
/**
 * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
 *
 *       With multiple extruders use T to specify which one.
 */
inline void gcode_M203() {
  GET_TARGET_EXTRUDER(203);
  LOOP_XYZE(i)
    if (parser.seen(axis_codes[i])) {
      const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
      planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
    }
}
/**
 * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
 *
 *    P = Printing moves
 *    R = Retract only (no X, Y, Z) moves
 *    T = Travel (non printing) moves
 *
 *  Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
 */
inline void gcode_M204() {
  if (parser.seen('S')) {  // Kept for legacy compatibility. Should NOT BE USED for new developments.
    planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
    SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  }
  if (parser.seen('P')) {
    planner.acceleration = parser.value_linear_units();
    SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  }
  if (parser.seen('R')) {
    planner.retract_acceleration = parser.value_linear_units();
    SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  }
  if (parser.seen('T')) {
    planner.travel_acceleration = parser.value_linear_units();
    SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  }
}
/**
 * M205: Set Advanced Settings
 *
 *    S = Min Feed Rate (units/s)
 *    T = Min Travel Feed Rate (units/s)
 *    B = Min Segment Time (µs)
 *    X = Max X Jerk (units/sec^2)
 *    Y = Max Y Jerk (units/sec^2)
 *    Z = Max Z Jerk (units/sec^2)
 *    E = Max E Jerk (units/sec^2)
 */
inline void gcode_M205() {
  if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
  if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
  if (parser.seen('B')) planner.min_segment_time = parser.value_millis();
  if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
  if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
  if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
  if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
}
#if HAS_M206_COMMAND
  /**
   * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
   *
   * *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
   * ***              M206 for SCARA will remain enabled in 1.1.x for compatibility.
   * ***              In the next 1.2 release, it will simply be disabled by default.
   */
  inline void gcode_M206() {
    LOOP_XYZ(i)
      if (parser.seen(axis_codes[i]))
        set_home_offset((AxisEnum)i, parser.value_linear_units());
    #if ENABLED(MORGAN_SCARA)
      if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_linear_units()); // Theta
      if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_linear_units()); // Psi
    #endif
    SYNC_PLAN_POSITION_KINEMATIC();
    report_current_position();
  }
#endif // HAS_M206_COMMAND
#if ENABLED(DELTA)
  /**
   * M665: Set delta configurations
   *
   *    H = delta height
   *    L = diagonal rod
   *    R = delta radius
   *    S = segments per second
   *    B = delta calibration radius
   *    X = Alpha (Tower 1) angle trim
   *    Y = Beta (Tower 2) angle trim
   *    Z = Rotate A and B by this angle
   */
  inline void gcode_M665() {
    if (parser.seen('H')) {
      home_offset[Z_AXIS] = parser.value_linear_units() - DELTA_HEIGHT;
      current_position[Z_AXIS] += parser.value_linear_units() - DELTA_HEIGHT - home_offset[Z_AXIS];
      update_software_endstops(Z_AXIS);
    }
    if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
    if (parser.seen('R')) delta_radius = parser.value_linear_units();
    if (parser.seen('S')) delta_segments_per_second = parser.value_float();
    if (parser.seen('B')) delta_calibration_radius = parser.value_float();
    if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
    if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
    if (parser.seen('Z')) { // rotate all 3 axis for Z = 0
      delta_tower_angle_trim[A_AXIS] -= parser.value_float();
      delta_tower_angle_trim[B_AXIS] -= parser.value_float();
    }
    recalc_delta_settings(delta_radius, delta_diagonal_rod);
  }
  /**
   * M666: Set delta endstop adjustment
   */
  inline void gcode_M666() {
    #if ENABLED(DEBUG_LEVELING_FEATURE)
      if (DEBUGGING(LEVELING)) {
        SERIAL_ECHOLNPGM(">>> gcode_M666");
      }
    #endif
    LOOP_XYZ(i) {
      if (parser.seen(axis_codes[i])) {
        endstop_adj[i] = parser.value_linear_units();
        #if ENABLED(DEBUG_LEVELING_FEATURE)
          if (DEBUGGING(LEVELING)) {
            SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
            SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
          }
        #endif
      }
    }
    #if ENABLED(DEBUG_LEVELING_FEATURE)
      if (DEBUGGING(LEVELING)) {
        SERIAL_ECHOLNPGM("<<< gcode_M666");
      }
    #endif
    // normalize endstops so all are <=0; set the residue to delta height
    const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
    home_offset[Z_AXIS] -= z_temp;
    LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  }
#elif IS_SCARA
  /**
   * M665: Set SCARA settings
   *
   * Parameters:
   *
   *   S[segments-per-second] - Segments-per-second
   *   P[theta-psi-offset]    - Theta-Psi offset, added to the shoulder (A/X) angle
   *   T[theta-offset]        - Theta     offset, added to the elbow    (B/Y) angle
   *
   *   A, P, and X are all aliases for the shoulder angle
   *   B, T, and Y are all aliases for the elbow angle
   */
  inline void gcode_M665() {
    if (parser.seen('S')) delta_segments_per_second = parser.value_float();
    const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
    const uint8_t sumAPX = hasA + hasP + hasX;
    if (sumAPX == 1)
      home_offset[A_AXIS] = parser.value_float();
    else if (sumAPX > 1) {
      SERIAL_ERROR_START;
      SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
      return;
    }
    const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
    const uint8_t sumBTY = hasB + hasT + hasY;
    if (sumBTY == 1)
      home_offset[B_AXIS] = parser.value_float();
    else if (sumBTY > 1) {
      SERIAL_ERROR_START;
      SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
      return;
    }
  }
#elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  /**
   * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
   */
  inline void gcode_M666() {
    if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
    SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  }
#endif // !DELTA && Z_DUAL_ENDSTOPS
#if ENABLED(FWRETRACT)
  /**
   * M207: Set firmware retraction values
   *
   *   S[+units]    retract_length
   *   W[+units]    retract_length_swap (multi-extruder)
   *   F[units/min] retract_feedrate_mm_s
   *   Z[units]     retract_zlift
   */
  inline void gcode_M207() {
    if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
    if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
    if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
    #if EXTRUDERS > 1
      if (parser.seen('W')) retract_length_swap = parser.value_axis_units(E_AXIS);
    #endif
  }
  /**
   * M208: Set firmware un-retraction values
   *
   *   S[+units]    retract_recover_length (in addition to M207 S*)
   *   W[+units]    retract_recover_length_swap (multi-extruder)
   *   F[units/min] retract_recover_feedrate_mm_s
   */
  inline void gcode_M208() {
    if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
    if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
    #if EXTRUDERS > 1
      if (parser.seen('W')) retract_recover_length_swap = parser.value_axis_units(E_AXIS);
    #endif
  }
  /**
   * M209: Enable automatic retract (M209 S1)
   *   For slicers that don't support G10/11, reversed extrude-only
   *   moves will be classified as retraction.
   */
  inline void gcode_M209() {
    if (parser.seen('S')) {
      autoretract_enabled = parser.value_bool();
      for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
    }
  }
#endif // FWRETRACT
/**
 * M211: Enable, Disable, and/or Report software endstops
 *
 * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
 */
inline void gcode_M211() {
  SERIAL_ECHO_START;
  #if HAS_SOFTWARE_ENDSTOPS
    if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
    SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
    serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  #else
    SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
    SERIAL_ECHOPGM(MSG_OFF);
  #endif
  SERIAL_ECHOPGM(MSG_SOFT_MIN);
  SERIAL_ECHOPAIR(    MSG_X, soft_endstop_min[X_AXIS]);
  SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  SERIAL_ECHOPGM(MSG_SOFT_MAX);
  SERIAL_ECHOPAIR(    MSG_X, soft_endstop_max[X_AXIS]);
  SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
}
#if HOTENDS > 1
  /**
   * M218 - set hotend offset (in linear units)
   *
   *   T
   *   X
   *   Y
   *   Z - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
   */
  inline void gcode_M218() {
    if (get_target_extruder_from_command(218) || target_extruder == 0) return;
    if (parser.seen('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
    if (parser.seen('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
    #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE)
      if (parser.seen('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
    #endif
    SERIAL_ECHO_START;
    SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
    HOTEND_LOOP() {
      SERIAL_CHAR(' ');
      SERIAL_ECHO(hotend_offset[X_AXIS][e]);
      SERIAL_CHAR(',');
      SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
      #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE)
        SERIAL_CHAR(',');
        SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
      #endif
    }
    SERIAL_EOL;
  }
#endif // HOTENDS > 1
/**
 * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
 */
inline void gcode_M220() {
  if (parser.seen('S')) feedrate_percentage = parser.value_int();
}
/**
 * M221: Set extrusion percentage (M221 T0 S95)
 */
inline void gcode_M221() {
  if (get_target_extruder_from_command(221)) return;
  if (parser.seen('S'))
    flow_percentage[target_extruder] = parser.value_int();
}
/**
 * M226: Wait until the specified pin reaches the state required (M226 P S)
 */
inline void gcode_M226() {
  if (parser.seen('P')) {
    int pin_number = parser.value_int(),
        pin_state = parser.seen('S') ? parser.value_int() : -1; // required pin state - default is inverted
    if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
      int target = LOW;
      stepper.synchronize();
      pinMode(pin_number, INPUT);
      switch (pin_state) {
        case 1:
          target = HIGH;
          break;
        case 0:
          target = LOW;
          break;
        case -1:
          target = !digitalRead(pin_number);
          break;
      }
      while (digitalRead(pin_number) != target) idle();
    } // pin_state -1 0 1 && pin_number > -1
  } // parser.seen('P')
}
#if ENABLED(EXPERIMENTAL_I2CBUS)
  /**
   * M260: Send data to a I2C slave device
   *
   * This is a PoC, the formating and arguments for the GCODE will
   * change to be more compatible, the current proposal is:
   *
   *  M260 A ; Sets the I2C slave address the data will be sent to
   *
   *  M260 B
   *  M260 B
   *  M260 B
   *
   *  M260 S1 ; Send the buffered data and reset the buffer
   *  M260 R1 ; Reset the buffer without sending data
   *
   */
  inline void gcode_M260() {
    // Set the target address
    if (parser.seen('A')) i2c.address(parser.value_byte());
    // Add a new byte to the buffer
    if (parser.seen('B')) i2c.addbyte(parser.value_byte());
    // Flush the buffer to the bus
    if (parser.seen('S')) i2c.send();
    // Reset and rewind the buffer
    else if (parser.seen('R')) i2c.reset();
  }
  /**
   * M261: Request X bytes from I2C slave device
   *
   * Usage: M261 A B
   */
  inline void gcode_M261() {
    if (parser.seen('A')) i2c.address(parser.value_byte());
    uint8_t bytes = parser.seen('B') ? parser.value_byte() : 1;
    if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
      i2c.relay(bytes);
    }
    else {
      SERIAL_ERROR_START;
      SERIAL_ERRORLN("Bad i2c request");
    }
  }
#endif // EXPERIMENTAL_I2CBUS
#if HAS_SERVOS
  /**
   * M280: Get or set servo position. P [S]
   */
  inline void gcode_M280() {
    if (!parser.seen('P')) return;
    int servo_index = parser.value_int();
    if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
      if (parser.seen('S'))
        MOVE_SERVO(servo_index, parser.value_int());
      else {
        SERIAL_ECHO_START;
        SERIAL_ECHOPAIR(" Servo ", servo_index);
        SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
      }
    }
    else {
      SERIAL_ERROR_START;
      SERIAL_ECHOPAIR("Servo ", servo_index);
      SERIAL_ECHOLNPGM(" out of range");
    }
  }
#endif // HAS_SERVOS
#if HAS_BUZZER
  /**
   * M300: Play beep sound S P
   */
  inline void gcode_M300() {
    uint16_t const frequency = parser.seen('S') ? parser.value_ushort() : 260;
    uint16_t duration = parser.seen('P') ? parser.value_ushort() : 1000;
    // Limits the tone duration to 0-5 seconds.
    NOMORE(duration, 5000);
    BUZZ(duration, frequency);
  }
#endif // HAS_BUZZER
#if ENABLED(PIDTEMP)
  /**
   * M301: Set PID parameters P I D (and optionally C, L)
   *
   *   P[float] Kp term
   *   I[float] Ki term (unscaled)
   *   D[float] Kd term (unscaled)
   *
   * With PID_EXTRUSION_SCALING:
   *
   *   C[float] Kc term
   *   L[float] LPQ length
   */
  inline void gcode_M301() {
    // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
    // default behaviour (omitting E parameter) is to update for extruder 0 only
    int e = parser.seen('E') ? parser.value_int() : 0; // extruder being updated
    if (e < HOTENDS) { // catch bad input value
      if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
      if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
      if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
      #if ENABLED(PID_EXTRUSION_SCALING)
        if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
        if (parser.seen('L')) lpq_len = parser.value_float();
        NOMORE(lpq_len, LPQ_MAX_LEN);
      #endif
      thermalManager.updatePID();
      SERIAL_ECHO_START;
      #if ENABLED(PID_PARAMS_PER_HOTEND)
        SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
      #endif // PID_PARAMS_PER_HOTEND
      SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
      SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
      SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
      #if ENABLED(PID_EXTRUSION_SCALING)
        //Kc does not have scaling applied above, or in resetting defaults
        SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
      #endif
      SERIAL_EOL;
    }
    else {
      SERIAL_ERROR_START;
      SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
    }
  }
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
  inline void gcode_M304() {
    if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
    if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
    if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
    thermalManager.updatePID();
    SERIAL_ECHO_START;
    SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
    SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
    SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  }
#endif // PIDTEMPBED
#if defined(CHDK) || HAS_PHOTOGRAPH
  /**
   * M240: Trigger a camera by emulating a Canon RC-1
   *       See http://www.doc-diy.net/photo/rc-1_hacked/
   */
  inline void gcode_M240() {
    #ifdef CHDK
      OUT_WRITE(CHDK, HIGH);
      chdkHigh = millis();
      chdkActive = true;
    #elif HAS_PHOTOGRAPH
      const uint8_t NUM_PULSES = 16;
      const float PULSE_LENGTH = 0.01524;
      for (int i = 0; i < NUM_PULSES; i++) {
        WRITE(PHOTOGRAPH_PIN, HIGH);
        _delay_ms(PULSE_LENGTH);
        WRITE(PHOTOGRAPH_PIN, LOW);
        _delay_ms(PULSE_LENGTH);
      }
      delay(7.33);
      for (int i = 0; i < NUM_PULSES; i++) {
        WRITE(PHOTOGRAPH_PIN, HIGH);
        _delay_ms(PULSE_LENGTH);
        WRITE(PHOTOGRAPH_PIN, LOW);
        _delay_ms(PULSE_LENGTH);
      }
    #endif // !CHDK && HAS_PHOTOGRAPH
  }
#endif // CHDK || PHOTOGRAPH_PIN
#if HAS_LCD_CONTRAST
  /**
   * M250: Read and optionally set the LCD contrast
   */
  inline void gcode_M250() {
    if (parser.seen('C')) set_lcd_contrast(parser.value_int());
    SERIAL_PROTOCOLPGM("lcd contrast value: ");
    SERIAL_PROTOCOL(lcd_contrast);
    SERIAL_EOL;
  }
#endif // HAS_LCD_CONTRAST
#if ENABLED(PREVENT_COLD_EXTRUSION)
  /**
   * M302: Allow cold extrudes, or set the minimum extrude temperature
   *
   *       S sets the minimum extrude temperature
   *       P enables (1) or disables (0) cold extrusion
   *
   *  Examples:
   *
   *       M302         ; report current cold extrusion state
   *       M302 P0      ; enable cold extrusion checking
   *       M302 P1      ; disables cold extrusion checking
   *       M302 S0      ; always allow extrusion (disables checking)
   *       M302 S170    ; only allow extrusion above 170
   *       M302 S170 P1 ; set min extrude temp to 170 but leave disabled
   */
  inline void gcode_M302() {
    bool seen_S = parser.seen('S');
    if (seen_S) {
      thermalManager.extrude_min_temp = parser.value_celsius();
      thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
    }
    if (parser.seen('P'))
      thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
    else if (!seen_S) {
      // Report current state
      SERIAL_ECHO_START;
      SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
      SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
      SERIAL_ECHOLNPGM("C)");
    }
  }
#endif // PREVENT_COLD_EXTRUSION
/**
 * M303: PID relay autotune
 *
 *       S sets the target temperature. (default 150C)
 *       E (-1 for the bed) (default 0)
 *       C
 *       U with a non-zero value will apply the result to current settings
 */
inline void gcode_M303() {
  #if HAS_PID_HEATING
    const int e = parser.seen('E') ? parser.value_int() : 0,
              c = parser.seen('C') ? parser.value_int() : 5;
    const bool u = parser.seen('U') && parser.value_bool();
    int16_t temp = parser.seen('S') ? parser.value_celsius() : (e < 0 ? 70 : 150);
    if (WITHIN(e, 0, HOTENDS - 1))
      target_extruder = e;
    KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
    thermalManager.PID_autotune(temp, e, c, u);
    KEEPALIVE_STATE(IN_HANDLER);
  #else
    SERIAL_ERROR_START;
    SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  #endif
}
#if ENABLED(MORGAN_SCARA)
  bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
    if (IsRunning()) {
      forward_kinematics_SCARA(delta_a, delta_b);
      destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
      destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
      destination[Z_AXIS] = current_position[Z_AXIS];
      prepare_move_to_destination();
      return true;
    }
    return false;
  }
  /**
   * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
   */
  inline bool gcode_M360() {
    SERIAL_ECHOLNPGM(" Cal: Theta 0");
    return SCARA_move_to_cal(0, 120);
  }
  /**
   * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
   */
  inline bool gcode_M361() {
    SERIAL_ECHOLNPGM(" Cal: Theta 90");
    return SCARA_move_to_cal(90, 130);
  }
  /**
   * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
   */
  inline bool gcode_M362() {
    SERIAL_ECHOLNPGM(" Cal: Psi 0");
    return SCARA_move_to_cal(60, 180);
  }
  /**
   * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
   */
  inline bool gcode_M363() {
    SERIAL_ECHOLNPGM(" Cal: Psi 90");
    return SCARA_move_to_cal(50, 90);
  }
  /**
   * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
   */
  inline bool gcode_M364() {
    SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
    return SCARA_move_to_cal(45, 135);
  }
#endif // SCARA
#if ENABLED(EXT_SOLENOID)
  void enable_solenoid(const uint8_t num) {
    switch (num) {
      case 0:
        OUT_WRITE(SOL0_PIN, HIGH);
        break;
        #if HAS_SOLENOID_1 && EXTRUDERS > 1
          case 1:
            OUT_WRITE(SOL1_PIN, HIGH);
            break;
        #endif
        #if HAS_SOLENOID_2 && EXTRUDERS > 2
          case 2:
            OUT_WRITE(SOL2_PIN, HIGH);
            break;
        #endif
        #if HAS_SOLENOID_3 && EXTRUDERS > 3
          case 3:
            OUT_WRITE(SOL3_PIN, HIGH);
            break;
        #endif
        #if HAS_SOLENOID_4 && EXTRUDERS > 4
          case 4:
            OUT_WRITE(SOL4_PIN, HIGH);
            break;
        #endif
      default:
        SERIAL_ECHO_START;
        SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
        break;
    }
  }
  void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  void disable_all_solenoids() {
    OUT_WRITE(SOL0_PIN, LOW);
    #if HAS_SOLENOID_1 && EXTRUDERS > 1
      OUT_WRITE(SOL1_PIN, LOW);
    #endif
    #if HAS_SOLENOID_2 && EXTRUDERS > 2
      OUT_WRITE(SOL2_PIN, LOW);
    #endif
    #if HAS_SOLENOID_3 && EXTRUDERS > 3
      OUT_WRITE(SOL3_PIN, LOW);
    #endif
    #if HAS_SOLENOID_4 && EXTRUDERS > 4
      OUT_WRITE(SOL4_PIN, LOW);
    #endif
  }
  /**
   * M380: Enable solenoid on the active extruder
   */
  inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  /**
   * M381: Disable all solenoids
   */
  inline void gcode_M381() { disable_all_solenoids(); }
#endif // EXT_SOLENOID
/**
 * M400: Finish all moves
 */
inline void gcode_M400() { stepper.synchronize(); }
#if HAS_BED_PROBE
  /**
   * M401: Engage Z Servo endstop if available
   */
  inline void gcode_M401() { DEPLOY_PROBE(); }
  /**
   * M402: Retract Z Servo endstop if enabled
   */
  inline void gcode_M402() { STOW_PROBE(); }
#endif // HAS_BED_PROBE
#if ENABLED(FILAMENT_WIDTH_SENSOR)
  /**
   * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
   */
  inline void gcode_M404() {
    if (parser.seen('W')) {
      filament_width_nominal = parser.value_linear_units();
    }
    else {
      SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
      SERIAL_PROTOCOLLN(filament_width_nominal);
    }
  }
  /**
   * M405: Turn on filament sensor for control
   */
  inline void gcode_M405() {
    // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
    // everything else, it uses parser.value_int() instead of parser.value_linear_units().
    if (parser.seen('D')) meas_delay_cm = parser.value_int();
    NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
    if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
      const int temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
      for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
        measurement_delay[i] = temp_ratio;
      filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
    }
    filament_sensor = true;
    //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
    //SERIAL_PROTOCOL(filament_width_meas);
    //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
    //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  }
  /**
   * M406: Turn off filament sensor for control
   */
  inline void gcode_M406() { filament_sensor = false; }
  /**
   * M407: Get measured filament diameter on serial output
   */
  inline void gcode_M407() {
    SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
    SERIAL_PROTOCOLLN(filament_width_meas);
  }
#endif // FILAMENT_WIDTH_SENSOR
void quickstop_stepper() {
  stepper.quick_stop();
  stepper.synchronize();
  set_current_from_steppers_for_axis(ALL_AXES);
  SYNC_PLAN_POSITION_KINEMATIC();
}
#if HAS_LEVELING
  /**
   * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
   *
   *   S[bool]   Turns leveling on or off
   *   Z[height] Sets the Z fade height (0 or none to disable)
   *   V[bool]   Verbose - Print the leveling grid
   *
   * With AUTO_BED_LEVELING_UBL only:
   *
   *   L[index]  Load UBL mesh from index (0 is default)
   */
  inline void gcode_M420() {
    #if ENABLED(AUTO_BED_LEVELING_UBL)
      // L to load a mesh from the EEPROM
      if (parser.seen('L')) {
        const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.state.storage_slot;
        const int16_t a = settings.calc_num_meshes();
        if (!a) {
          SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
          return;
        }
        if (!WITHIN(storage_slot, 0, a - 1)) {
          SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
          SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
          return;
        }
        settings.load_mesh(storage_slot);
        ubl.state.storage_slot = storage_slot;
      }
    #endif // AUTO_BED_LEVELING_UBL
    // V to print the matrix or mesh
    if (parser.seen('V')) {
      #if ABL_PLANAR
        planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
      #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
        if (leveling_is_valid()) {
          print_bilinear_leveling_grid();
          #if ENABLED(ABL_BILINEAR_SUBDIVISION)
            bed_level_virt_print();
          #endif
        }
      #elif ENABLED(MESH_BED_LEVELING)
        if (leveling_is_valid()) {
          SERIAL_ECHOLNPGM("Mesh Bed Level data:");
          mbl_mesh_report();
        }
      #endif
    }
    #if ENABLED(AUTO_BED_LEVELING_UBL)
      // L to load a mesh from the EEPROM
      if (parser.seen('L') || parser.seen('V')) {
        ubl.display_map(0);  // Currently only supports one map type
        SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
        SERIAL_ECHOLNPAIR("ubl.state.storage_slot = ", ubl.state.storage_slot);
      }
    #endif
    bool to_enable = false;
    if (parser.seen('S')) {
      to_enable = parser.value_bool();
      set_bed_leveling_enabled(to_enable);
    }
    #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
      if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
    #endif
    const bool new_status = leveling_is_active();
    if (to_enable && !new_status) {
      SERIAL_ERROR_START;
      SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
    }
    SERIAL_ECHO_START;
    SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  }
#endif
#if ENABLED(MESH_BED_LEVELING)
  /**
   * M421: Set a single Mesh Bed Leveling Z coordinate
   *
   * Usage:
   *   M421 X Y Z
   *   M421 X Y Q
   *   M421 I J Z
   *   M421 I J Q
   */
  inline void gcode_M421() {
    const bool hasX = parser.seen('X'), hasI = parser.seen('I');
    const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(RAW_X_POSITION(parser.value_linear_units())) : -1;
    const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
    const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(RAW_Y_POSITION(parser.value_linear_units())) : -1;
    const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
    if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
      SERIAL_ERROR_START;
      SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
    }
    else if (ix < 0 || iy < 0) {
      SERIAL_ERROR_START;
      SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
    }
    else
      mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
  }
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  /**
   * M421: Set a single Mesh Bed Leveling Z coordinate
   *
   * Usage:
   *   M421 I J Z
   *   M421 I J Q
   */
  inline void gcode_M421() {
    const bool hasI = parser.seen('I');
    const int8_t ix = hasI ? parser.value_int() : -1;
    const bool hasJ = parser.seen('J');
    const int8_t iy = hasJ ? parser.value_int() : -1;
    const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
    if (!hasI || !hasJ || !(hasZ || hasQ)) {
      SERIAL_ERROR_START;
      SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
    }
    else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
      SERIAL_ERROR_START;
      SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
    }
    else {
      z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
      #if ENABLED(ABL_BILINEAR_SUBDIVISION)
        bed_level_virt_interpolate();
      #endif
    }
  }
#elif ENABLED(AUTO_BED_LEVELING_UBL)
  /**
   * M421: Set a single Mesh Bed Leveling Z coordinate
   *
   * Usage:
   *   M421 I J Z
   *   M421 I J Q
   *   M421 C Z
   *   M421 C Q
   */
  inline void gcode_M421() {
    const bool hasC = parser.seen('C'), hasI = parser.seen('I');
    int8_t ix = hasI ? parser.value_int() : -1;
    const bool hasJ = parser.seen('J');
    int8_t iy = hasJ ? parser.value_int() : -1;
    const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
    if (hasC) {
      const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
      ix = location.x_index;
      iy = location.y_index;
    }
    if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
      SERIAL_ERROR_START;
      SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
    }
    else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
      SERIAL_ERROR_START;
      SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
    }
    else
      ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
  }
#endif // AUTO_BED_LEVELING_UBL
#if HAS_M206_COMMAND
  /**
   * M428: Set home_offset based on the distance between the
   *       current_position and the nearest "reference point."
   *       If an axis is past center its endstop position
   *       is the reference-point. Otherwise it uses 0. This allows
   *       the Z offset to be set near the bed when using a max endstop.
   *
   *       M428 can't be used more than 2cm away from 0 or an endstop.
   *
   *       Use M206 to set these values directly.
   */
  inline void gcode_M428() {
    bool err = false;
    LOOP_XYZ(i) {
      if (axis_homed[i]) {
        const float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
                    diff = base - RAW_POSITION(current_position[i], i);
        if (WITHIN(diff, -20, 20)) {
          set_home_offset((AxisEnum)i, diff);
        }
        else {
          SERIAL_ERROR_START;
          SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
          LCD_ALERTMESSAGEPGM("Err: Too far!");
          BUZZ(200, 40);
          err = true;
          break;
        }
      }
    }
    if (!err) {
      SYNC_PLAN_POSITION_KINEMATIC();
      report_current_position();
      LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
      BUZZ(100, 659);
      BUZZ(100, 698);
    }
  }
#endif // HAS_M206_COMMAND
/**
 * M500: Store settings in EEPROM
 */
inline void gcode_M500() {
  (void)settings.save();
}
/**
 * M501: Read settings from EEPROM
 */
inline void gcode_M501() {
  (void)settings.load();
}
/**
 * M502: Revert to default settings
 */
inline void gcode_M502() {
  (void)settings.reset();
}
/**
 * M503: print settings currently in memory
 */
inline void gcode_M503() {
  (void)settings.report(parser.seen('S') && !parser.value_bool());
}
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  /**
   * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
   */
  inline void gcode_M540() {
    if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
  }
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
#if HAS_BED_PROBE
  void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
    static float last_zoffset = NAN;
    if (!isnan(last_zoffset)) {
      #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
        const float diff = zprobe_zoffset - last_zoffset;
      #endif
      #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
        // Correct bilinear grid for new probe offset
        if (diff) {
          for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
            for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
              z_values[x][y] -= diff;
        }
        #if ENABLED(ABL_BILINEAR_SUBDIVISION)
          bed_level_virt_interpolate();
        #endif
      #endif
      #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
        if (!no_babystep && leveling_is_active())
          thermalManager.babystep_axis(Z_AXIS, -lround(diff * planner.axis_steps_per_mm[Z_AXIS]));
      #else
        UNUSED(no_babystep);
      #endif
      #if ENABLED(DELTA) // correct the delta_height
        home_offset[Z_AXIS] -= diff;
      #endif
    }
    last_zoffset = zprobe_zoffset;
  }
  inline void gcode_M851() {
    SERIAL_ECHO_START;
    SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
    if (parser.seen('Z')) {
      const float value = parser.value_linear_units();
      if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
        zprobe_zoffset = value;
        refresh_zprobe_zoffset();
        SERIAL_ECHO(zprobe_zoffset);
      }
      else
        SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
    }
    else
      SERIAL_ECHOPAIR(": ", zprobe_zoffset);
    SERIAL_EOL;
  }
#endif // HAS_BED_PROBE
#if ENABLED(ADVANCED_PAUSE_FEATURE)
  /**
   * M600: Pause for filament change
   *
   *  E[distance] - Retract the filament this far (negative value)
   *  Z[distance] - Move the Z axis by this distance
   *  X[position] - Move to this X position, with Y
   *  Y[position] - Move to this Y position, with X
   *  U[distance] - Retract distance for removal (negative value) (manual reload)
   *  L[distance] - Extrude distance for insertion (positive value) (manual reload)
   *  B[count]    - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
   *
   *  Default values are used for omitted arguments.
   *
   */
  inline void gcode_M600() {
    ensure_safe_temperature();
    // Initial retract before move to filament change position
    const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
      #if defined(PAUSE_PARK_RETRACT_LENGTH) && PAUSE_PARK_RETRACT_LENGTH > 0
        - (PAUSE_PARK_RETRACT_LENGTH)
      #endif
    ;
    // Lift Z axis
    const float z_lift = parser.seen('Z') ? parser.value_linear_units() :
      #if defined(PAUSE_PARK_Z_ADD) && PAUSE_PARK_Z_ADD > 0
        PAUSE_PARK_Z_ADD
      #else
        0
      #endif
    ;
    // Move XY axes to filament exchange position
    const float x_pos = parser.seen('X') ? parser.value_linear_units() : 0
      #ifdef PAUSE_PARK_X_POS
        + PAUSE_PARK_X_POS
      #endif
    ;
    const float y_pos = parser.seen('Y') ? parser.value_linear_units() : 0
      #ifdef PAUSE_PARK_Y_POS
        + PAUSE_PARK_Y_POS
      #endif
    ;
    // Unload filament
    const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
      #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
        - (FILAMENT_CHANGE_UNLOAD_LENGTH)
      #endif
    ;
    // Load filament
    const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
      #ifdef FILAMENT_CHANGE_LOAD_LENGTH
        + FILAMENT_CHANGE_LOAD_LENGTH
      #endif
    ;
    const int beep_count = parser.seen('B') ? parser.value_int() :
      #ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
        FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
      #else
        -1
      #endif
    ;
    const bool job_running = print_job_timer.isRunning();
    if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
      wait_for_filament_reload(beep_count);
      resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
    }
    // Resume the print job timer if it was running
    if (job_running) print_job_timer.start();
  }
#endif // ADVANCED_PAUSE_FEATURE
#if ENABLED(DUAL_X_CARRIAGE)
  /**
   * M605: Set dual x-carriage movement mode
   *
   *    M605 S0: Full control mode. The slicer has full control over x-carriage movement
   *    M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
   *    M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
   *                         units x-offset and an optional differential hotend temperature of
   *                         mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
   *                         the first with a spacing of 100mm in the x direction and 2 degrees hotter.
   *
   *    Note: the X axis should be homed after changing dual x-carriage mode.
   */
  inline void gcode_M605() {
    stepper.synchronize();
    if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
    switch (dual_x_carriage_mode) {
      case DXC_FULL_CONTROL_MODE:
      case DXC_AUTO_PARK_MODE:
        break;
      case DXC_DUPLICATION_MODE:
        if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
        if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
        SERIAL_ECHO_START;
        SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
        SERIAL_CHAR(' ');
        SERIAL_ECHO(hotend_offset[X_AXIS][0]);
        SERIAL_CHAR(',');
        SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
        SERIAL_CHAR(' ');
        SERIAL_ECHO(duplicate_extruder_x_offset);
        SERIAL_CHAR(',');
        SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
        break;
      default:
        dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
        break;
    }
    active_extruder_parked = false;
    extruder_duplication_enabled = false;
    delayed_move_time = 0;
  }
#elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  inline void gcode_M605() {
    stepper.synchronize();
    extruder_duplication_enabled = parser.seen('S') && parser.value_int() == (int)DXC_DUPLICATION_MODE;
    SERIAL_ECHO_START;
    SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  }
#endif // DUAL_NOZZLE_DUPLICATION_MODE
#if ENABLED(LIN_ADVANCE)
  /**
   * M900: Set and/or Get advance K factor and WH/D ratio
   *
   *  K                  Set advance K factor
   *  R                   Set ratio directly (overrides WH/D)
   *  W H D Set ratio from WH/D
   */
  inline void gcode_M900() {
    stepper.synchronize();
    const float newK = parser.seen('K') ? parser.value_float() : -1;
    if (newK >= 0) planner.extruder_advance_k = newK;
    float newR = parser.seen('R') ? parser.value_float() : -1;
    if (newR < 0) {
      const float newD = parser.seen('D') ? parser.value_float() : -1,
                  newW = parser.seen('W') ? parser.value_float() : -1,
                  newH = parser.seen('H') ? parser.value_float() : -1;
      if (newD >= 0 && newW >= 0 && newH >= 0)
        newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
    }
    if (newR >= 0) planner.advance_ed_ratio = newR;
    SERIAL_ECHO_START;
    SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
    SERIAL_ECHOPGM(" E/D=");
    const float ratio = planner.advance_ed_ratio;
    if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
    SERIAL_EOL;
  }
#endif // LIN_ADVANCE
#if ENABLED(HAVE_TMC2130)
  static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
    SERIAL_CHAR(name);
    SERIAL_ECHOPGM(" axis driver current: ");
    SERIAL_ECHOLN(st.getCurrent());
  }
  static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
    st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
    tmc2130_get_current(st, name);
  }
  static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
    SERIAL_CHAR(name);
    SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
    serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
    SERIAL_EOL;
  }
  static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
    st.clear_otpw();
    SERIAL_CHAR(name);
    SERIAL_ECHOLNPGM(" prewarn flag cleared");
  }
  static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
    SERIAL_CHAR(name);
    SERIAL_ECHOPGM(" stealthChop max speed set to ");
    SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  }
  static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
    st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
    tmc2130_get_pwmthrs(st, name, spmm);
  }
  static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
    SERIAL_CHAR(name);
    SERIAL_ECHOPGM(" driver homing sensitivity set to ");
    SERIAL_ECHOLN(st.sgt());
  }
  static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
    st.sgt(sgt_val);
    tmc2130_get_sgt(st, name);
  }
  /**
   * M906: Set motor current in milliamps using axis codes X, Y, Z, E
   * Report driver currents when no axis specified
   *
   * S1: Enable automatic current control
   * S0: Disable
   */
  inline void gcode_M906() {
    uint16_t values[XYZE];
    LOOP_XYZE(i)
      values[i] = parser.seen(axis_codes[i]) ? parser.value_int() : 0;
    #if ENABLED(X_IS_TMC2130)
      if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
      else tmc2130_get_current(stepperX, 'X');
    #endif
    #if ENABLED(Y_IS_TMC2130)
      if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
      else tmc2130_get_current(stepperY, 'Y');
    #endif
    #if ENABLED(Z_IS_TMC2130)
      if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
      else tmc2130_get_current(stepperZ, 'Z');
    #endif
    #if ENABLED(E0_IS_TMC2130)
      if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
      else tmc2130_get_current(stepperE0, 'E');
    #endif
    #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
      if (parser.seen('S')) auto_current_control = parser.value_bool();
    #endif
  }
  /**
   * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
   * The flag is held by the library and persist until manually cleared by M912
   */
  inline void gcode_M911() {
    const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'),
             reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
    #if ENABLED(X_IS_TMC2130)
      if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
    #endif
    #if ENABLED(Y_IS_TMC2130)
      if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
    #endif
    #if ENABLED(Z_IS_TMC2130)
      if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
    #endif
    #if ENABLED(E0_IS_TMC2130)
      if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
    #endif
  }
  /**
   * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
   */
  inline void gcode_M912() {
    const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'),
             clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
    #if ENABLED(X_IS_TMC2130)
      if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
    #endif
    #if ENABLED(Y_IS_TMC2130)
      if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
    #endif
    #if ENABLED(Z_IS_TMC2130)
      if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
    #endif
    #if ENABLED(E0_IS_TMC2130)
      if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
    #endif
  }
  /**
   * M913: Set HYBRID_THRESHOLD speed.
   */
  #if ENABLED(HYBRID_THRESHOLD)
    inline void gcode_M913() {
      uint16_t values[XYZE];
      LOOP_XYZE(i)
        values[i] = parser.seen(axis_codes[i]) ? parser.value_int() : 0;
      #if ENABLED(X_IS_TMC2130)
        if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
        else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
      #endif
      #if ENABLED(Y_IS_TMC2130)
        if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
        else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
      #endif
      #if ENABLED(Z_IS_TMC2130)
        if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
        else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
      #endif
      #if ENABLED(E0_IS_TMC2130)
        if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
        else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
      #endif
    }
  #endif // HYBRID_THRESHOLD
  /**
   * M914: Set SENSORLESS_HOMING sensitivity.
   */
  #if ENABLED(SENSORLESS_HOMING)
    inline void gcode_M914() {
      #if ENABLED(X_IS_TMC2130)
        if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int());
        else tmc2130_get_sgt(stepperX, 'X');
      #endif
      #if ENABLED(Y_IS_TMC2130)
        if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int());
        else tmc2130_get_sgt(stepperY, 'Y');
      #endif
    }
  #endif // SENSORLESS_HOMING
#endif // HAVE_TMC2130
/**
 * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
 */
inline void gcode_M907() {
  #if HAS_DIGIPOTSS
    LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
    if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
    if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
  #elif HAS_MOTOR_CURRENT_PWM
    #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
      if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
    #endif
    #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
      if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
    #endif
    #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
      if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
    #endif
  #endif
  #if ENABLED(DIGIPOT_I2C)
    // this one uses actual amps in floating point
    LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
    // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
    for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
  #endif
  #if ENABLED(DAC_STEPPER_CURRENT)
    if (parser.seen('S')) {
      const float dac_percent = parser.value_float();
      for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
    }
    LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
  #endif
}
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  /**
   * M908: Control digital trimpot directly (M908 P S)
   */
  inline void gcode_M908() {
    #if HAS_DIGIPOTSS
      stepper.digitalPotWrite(
        parser.seen('P') ? parser.value_int() : 0,
        parser.seen('S') ? parser.value_int() : 0
      );
    #endif
    #ifdef DAC_STEPPER_CURRENT
      dac_current_raw(
        parser.seen('P') ? parser.value_byte() : -1,
        parser.seen('S') ? parser.value_ushort() : 0
      );
    #endif
  }
  #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
    inline void gcode_M909() { dac_print_values(); }
    inline void gcode_M910() { dac_commit_eeprom(); }
  #endif
#endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
#if HAS_MICROSTEPS
  // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  inline void gcode_M350() {
    if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
    LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
    if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
    stepper.microstep_readings();
  }
  /**
   * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
   *       S# determines MS1 or MS2, X# sets the pin high/low.
   */
  inline void gcode_M351() {
    if (parser.seen('S')) switch (parser.value_byte()) {
      case 1:
        LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
        if (parser.seen('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
        break;
      case 2:
        LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
        if (parser.seen('B')) stepper.microstep_ms(4, -1, parser.value_byte());
        break;
    }
    stepper.microstep_readings();
  }
#endif // HAS_MICROSTEPS
#if HAS_CASE_LIGHT
  #ifndef INVERT_CASE_LIGHT
    #define INVERT_CASE_LIGHT false
  #endif
  int case_light_brightness;  // LCD routine wants INT
  bool case_light_on;
  void update_case_light() {
    pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
    uint8_t case_light_bright = (uint8_t)case_light_brightness;
    if (case_light_on) {
      if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
        analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness );
      }
      else digitalWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH );
    }
    else digitalWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
  }
#endif // HAS_CASE_LIGHT
/**
 * M355: Turn case light on/off and set brightness
 *
 *   P  Set case light brightness (PWM pin required - ignored otherwise)
 *
 *   S  Set case light on/off
 *
 *   When S turns on the light on a PWM pin then the current brightness level is used/restored
 *
 *   M355 P200 S0 turns off the light & sets the brightness level
 *   M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
 */
inline void gcode_M355() {
  #if HAS_CASE_LIGHT
    uint8_t args = 0;
    if (parser.seen('P')) ++args, case_light_brightness = parser.value_byte();
    if (parser.seen('S')) ++args, case_light_on = parser.value_bool();
    if (args) update_case_light();
    // always report case light status
    SERIAL_ECHO_START;
    if (!case_light_on) {
      SERIAL_ECHOLN("Case light: off");
    }
    else {
      if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
      else SERIAL_ECHOLNPAIR("Case light: ", case_light_brightness);
    }
  #else
    SERIAL_ERROR_START;
    SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  #endif // HAS_CASE_LIGHT
}
#if ENABLED(MIXING_EXTRUDER)
  /**
   * M163: Set a single mix factor for a mixing extruder
   *       This is called "weight" by some systems.
   *
   *   S[index]   The channel index to set
   *   P[float]   The mix value
   *
   */
  inline void gcode_M163() {
    const int mix_index = parser.seen('S') ? parser.value_int() : 0;
    if (mix_index < MIXING_STEPPERS) {
      float mix_value = parser.seen('P') ? parser.value_float() : 0.0;
      NOLESS(mix_value, 0.0);
      mixing_factor[mix_index] = RECIPROCAL(mix_value);
    }
  }
  #if MIXING_VIRTUAL_TOOLS > 1
    /**
     * M164: Store the current mix factors as a virtual tool.
     *
     *   S[index]   The virtual tool to store
     *
     */
    inline void gcode_M164() {
      const int tool_index = parser.seen('S') ? parser.value_int() : 0;
      if (tool_index < MIXING_VIRTUAL_TOOLS) {
        normalize_mix();
        for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
          mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
      }
    }
  #endif
  #if ENABLED(DIRECT_MIXING_IN_G1)
    /**
     * M165: Set multiple mix factors for a mixing extruder.
     *       Factors that are left out will be set to 0.
     *       All factors together must add up to 1.0.
     *
     *   A[factor] Mix factor for extruder stepper 1
     *   B[factor] Mix factor for extruder stepper 2
     *   C[factor] Mix factor for extruder stepper 3
     *   D[factor] Mix factor for extruder stepper 4
     *   H[factor] Mix factor for extruder stepper 5
     *   I[factor] Mix factor for extruder stepper 6
     *
     */
    inline void gcode_M165() { gcode_get_mix(); }
  #endif
#endif // MIXING_EXTRUDER
/**
 * M999: Restart after being stopped
 *
 * Default behaviour is to flush the serial buffer and request
 * a resend to the host starting on the last N line received.
 *
 * Sending "M999 S1" will resume printing without flushing the
 * existing command buffer.
 *
 */
inline void gcode_M999() {
  Running = true;
  lcd_reset_alert_level();
  if (parser.seen('S') && parser.value_bool()) return;
  // gcode_LastN = Stopped_gcode_LastN;
  FlushSerialRequestResend();
}
#if ENABLED(SWITCHING_EXTRUDER)
  inline void move_extruder_servo(uint8_t e) {
    const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
    MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
    safe_delay(500);
  }
#endif
#if ENABLED(SWITCHING_NOZZLE)
  inline void move_nozzle_servo(uint8_t e) {
    const int angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
    MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
    safe_delay(500);
  }
#endif
inline void invalid_extruder_error(const uint8_t &e) {
  SERIAL_ECHO_START;
  SERIAL_CHAR('T');
  SERIAL_ECHO_F(e, DEC);
  SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
}
/**
 * Perform a tool-change, which may result in moving the
 * previous tool out of the way and the new tool into place.
 */
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
    if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
      return invalid_extruder_error(tmp_extruder);
    // T0-Tnnn: Switch virtual tool by changing the mix
    for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
      mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
    #if HOTENDS > 1
      if (tmp_extruder >= EXTRUDERS)
        return invalid_extruder_error(tmp_extruder);
      const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
      feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
      if (tmp_extruder != active_extruder) {
        if (!no_move && axis_unhomed_error()) {
          SERIAL_ECHOLNPGM("No move on toolchange");
          no_move = true;
        }
        // Save current position to destination, for use later
        set_destination_to_current();
        #if ENABLED(DUAL_X_CARRIAGE)
          #if ENABLED(DEBUG_LEVELING_FEATURE)
            if (DEBUGGING(LEVELING)) {
              SERIAL_ECHOPGM("Dual X Carriage Mode ");
              switch (dual_x_carriage_mode) {
                case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
                case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
                case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
              }
            }
          #endif
          const float xhome = x_home_pos(active_extruder);
          if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
              && IsRunning()
              && (delayed_move_time || current_position[X_AXIS] != xhome)
          ) {
            float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
            #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
              NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
            #endif
            #if ENABLED(DEBUG_LEVELING_FEATURE)
              if (DEBUGGING(LEVELING)) {
                SERIAL_ECHOLNPAIR("Raise to ", raised_z);
                SERIAL_ECHOLNPAIR("MoveX to ", xhome);
                SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
              }
            #endif
            // Park old head: 1) raise 2) move to park position 3) lower
            for (uint8_t i = 0; i < 3; i++)
              planner.buffer_line(
                i == 0 ? current_position[X_AXIS] : xhome,
                current_position[Y_AXIS],
                i == 2 ? current_position[Z_AXIS] : raised_z,
                current_position[E_AXIS],
                planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
                active_extruder
              );
            stepper.synchronize();
          }
          // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
          current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
          current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
          // Activate the new extruder
          active_extruder = tmp_extruder;
          // This function resets the max/min values - the current position may be overwritten below.
          set_axis_is_at_home(X_AXIS);
          #if ENABLED(DEBUG_LEVELING_FEATURE)
            if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
          #endif
          // Only when auto-parking are carriages safe to move
          if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
          switch (dual_x_carriage_mode) {
            case DXC_FULL_CONTROL_MODE:
              // New current position is the position of the activated extruder
              current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
              // Save the inactive extruder's position (from the old current_position)
              inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
              break;
            case DXC_AUTO_PARK_MODE:
              // record raised toolhead position for use by unpark
              COPY(raised_parked_position, current_position);
              raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
              #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
                NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
              #endif
              active_extruder_parked = true;
              delayed_move_time = 0;
              break;
            case DXC_DUPLICATION_MODE:
              // If the new extruder is the left one, set it "parked"
              // This triggers the second extruder to move into the duplication position
              active_extruder_parked = (active_extruder == 0);
              if (active_extruder_parked)
                current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
              else
                current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
              inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
              extruder_duplication_enabled = false;
              #if ENABLED(DEBUG_LEVELING_FEATURE)
                if (DEBUGGING(LEVELING)) {
                  SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
                  SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
                }
              #endif
              break;
          }
          #if ENABLED(DEBUG_LEVELING_FEATURE)
            if (DEBUGGING(LEVELING)) {
              SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
              DEBUG_POS("New extruder (parked)", current_position);
            }
          #endif
          // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
        #else // !DUAL_X_CARRIAGE
          #if ENABLED(SWITCHING_NOZZLE)
            // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
            const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
                        z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
            // Always raise by some amount (destination copied from current_position earlier)
            current_position[Z_AXIS] += z_raise;
            planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
            stepper.synchronize();
            move_nozzle_servo(active_extruder);
          #endif
          #if ENABLED(SWITCHING_EXTRUDER)
            #if !(ENABLED(SWITCHING_NOZZLE) && (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR))
              stepper.synchronize();
              move_extruder_servo(active_extruder);
            #endif
          #endif
          /**
           * Set current_position to the position of the new nozzle.
           * Offsets are based on linear distance, so we need to get
           * the resulting position in coordinate space.
           *
           * - With grid or 3-point leveling, offset XYZ by a tilted vector
           * - With mesh leveling, update Z for the new position
           * - Otherwise, just use the raw linear distance
           *
           * Software endstops are altered here too. Consider a case where:
           *   E0 at X=0 ... E1 at X=10
           * When we switch to E1 now X=10, but E1 can't move left.
           * To express this we apply the change in XY to the software endstops.
           * E1 can move farther right than E0, so the right limit is extended.
           *
           * Note that we don't adjust the Z software endstops. Why not?
           * Consider a case where Z=0 (here) and switching to E1 makes Z=1
           * because the bed is 1mm lower at the new position. As long as
           * the first nozzle is out of the way, the carriage should be
           * allowed to move 1mm lower. This technically "breaks" the
           * Z software endstop. But this is technically correct (and
           * there is no viable alternative).
           */
          #if ABL_PLANAR
            // Offset extruder, make sure to apply the bed level rotation matrix
            vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
                                               hotend_offset[Y_AXIS][tmp_extruder],
                                               0),
                     act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
                                               hotend_offset[Y_AXIS][active_extruder],
                                               0),
                     offset_vec = tmp_offset_vec - act_offset_vec;
            #if ENABLED(DEBUG_LEVELING_FEATURE)
              if (DEBUGGING(LEVELING)) {
                tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
                act_offset_vec.debug(PSTR("act_offset_vec"));
                offset_vec.debug(PSTR("offset_vec (BEFORE)"));
              }
            #endif
            offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
            #if ENABLED(DEBUG_LEVELING_FEATURE)
              if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
            #endif
            // Adjustments to the current position
            const float xydiff[2] = { offset_vec.x, offset_vec.y };
            current_position[Z_AXIS] += offset_vec.z;
          #else // !ABL_PLANAR
            const float xydiff[2] = {
              hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
              hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
            };
            #if ENABLED(MESH_BED_LEVELING)
              if (leveling_is_active()) {
                #if ENABLED(DEBUG_LEVELING_FEATURE)
                  if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
                #endif
                float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
                      y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
                      z1 = current_position[Z_AXIS], z2 = z1;
                planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
                planner.apply_leveling(x2, y2, z2);
                current_position[Z_AXIS] += z2 - z1;
                #if ENABLED(DEBUG_LEVELING_FEATURE)
                  if (DEBUGGING(LEVELING))
                    SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
                #endif
              }
            #endif // MESH_BED_LEVELING
          #endif // !HAS_ABL
          #if ENABLED(DEBUG_LEVELING_FEATURE)
            if (DEBUGGING(LEVELING)) {
              SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
              SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
              SERIAL_ECHOLNPGM(" }");
            }
          #endif
          // The newly-selected extruder XY is actually at...
          current_position[X_AXIS] += xydiff[X_AXIS];
          current_position[Y_AXIS] += xydiff[Y_AXIS];
          #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
            for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
              #if HAS_POSITION_SHIFT
                position_shift[i] += xydiff[i];
              #endif
              update_software_endstops((AxisEnum)i);
            }
          #endif
          // Set the new active extruder
          active_extruder = tmp_extruder;
        #endif // !DUAL_X_CARRIAGE
        #if ENABLED(DEBUG_LEVELING_FEATURE)
          if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
        #endif
        // Tell the planner the new "current position"
        SYNC_PLAN_POSITION_KINEMATIC();
        // Move to the "old position" (move the extruder into place)
        if (!no_move && IsRunning()) {
          #if ENABLED(DEBUG_LEVELING_FEATURE)
            if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
          #endif
          prepare_move_to_destination();
        }
        #if ENABLED(SWITCHING_NOZZLE)
          // Move back down, if needed. (Including when the new tool is higher.)
          if (z_raise != z_diff) {
            destination[Z_AXIS] += z_diff;
            feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
            prepare_move_to_destination();
          }
        #endif
      } // (tmp_extruder != active_extruder)
      stepper.synchronize();
      #if ENABLED(EXT_SOLENOID)
        disable_all_solenoids();
        enable_solenoid_on_active_extruder();
      #endif // EXT_SOLENOID
      feedrate_mm_s = old_feedrate_mm_s;
    #else // HOTENDS <= 1
      // Set the new active extruder
      active_extruder = tmp_extruder;
      UNUSED(fr_mm_s);
      UNUSED(no_move);
      #if ENABLED(SWITCHING_EXTRUDER)
        stepper.synchronize();
        move_extruder_servo(active_extruder);
      #endif
    #endif // HOTENDS <= 1
    SERIAL_ECHO_START;
    SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
}
/**
 * T0-T3: Switch tool, usually switching extruders
 *
 *   F[units/min] Set the movement feedrate
 *   S1           Don't move the tool in XY after change
 */
inline void gcode_T(uint8_t tmp_extruder) {
  #if ENABLED(DEBUG_LEVELING_FEATURE)
    if (DEBUGGING(LEVELING)) {
      SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
      SERIAL_CHAR(')');
      SERIAL_EOL;
      DEBUG_POS("BEFORE", current_position);
    }
  #endif
  #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
    tool_change(tmp_extruder);
  #elif HOTENDS > 1
    tool_change(
      tmp_extruder,
      parser.seen('F') ? MMM_TO_MMS(parser.value_linear_units()) : 0.0,
      (tmp_extruder == active_extruder) || (parser.seen('S') && parser.value_bool())
    );
  #endif
  #if ENABLED(DEBUG_LEVELING_FEATURE)
    if (DEBUGGING(LEVELING)) {
      DEBUG_POS("AFTER", current_position);
      SERIAL_ECHOLNPGM("<<< gcode_T");
    }
  #endif
}
/**
 * Process a single command and dispatch it to its handler
 * This is called from the main loop()
 */
void process_next_command() {
  char * const current_command = command_queue[cmd_queue_index_r];
  if (DEBUGGING(ECHO)) {
    SERIAL_ECHO_START;
    SERIAL_ECHOLN(current_command);
    #if ENABLED(M100_FREE_MEMORY_WATCHER)
      SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
      M100_dump_routine("   Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
    #endif
  }
  KEEPALIVE_STATE(IN_HANDLER);
  // Parse the next command in the queue
  parser.parse(current_command);
  // Handle a known G, M, or T
  switch (parser.command_letter) {
    case 'G': switch (parser.codenum) {
      // G0, G1
      case 0:
      case 1:
        #if IS_SCARA
          gcode_G0_G1(parser.codenum == 0);
        #else
          gcode_G0_G1();
        #endif
        break;
      // G2, G3
      #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
        case 2: // G2  - CW ARC
        case 3: // G3  - CCW ARC
          gcode_G2_G3(parser.codenum == 2);
          break;
      #endif
      // G4 Dwell
      case 4:
        gcode_G4();
        break;
      #if ENABLED(BEZIER_CURVE_SUPPORT)
        // G5
        case 5: // G5  - Cubic B_spline
          gcode_G5();
          break;
      #endif // BEZIER_CURVE_SUPPORT
      #if ENABLED(FWRETRACT)
        case 10: // G10: retract
        case 11: // G11: retract_recover
          gcode_G10_G11(parser.codenum == 10);
          break;
      #endif // FWRETRACT
      #if ENABLED(NOZZLE_CLEAN_FEATURE)
        case 12:
          gcode_G12(); // G12: Nozzle Clean
          break;
      #endif // NOZZLE_CLEAN_FEATURE
      #if ENABLED(INCH_MODE_SUPPORT)
        case 20: //G20: Inch Mode
          gcode_G20();
          break;
        case 21: //G21: MM Mode
          gcode_G21();
          break;
      #endif // INCH_MODE_SUPPORT
      #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
        case 26: // G26: Mesh Validation Pattern generation
          gcode_G26();
          break;
      #endif // AUTO_BED_LEVELING_UBL
      #if ENABLED(NOZZLE_PARK_FEATURE)
        case 27: // G27: Nozzle Park
          gcode_G27();
          break;
      #endif // NOZZLE_PARK_FEATURE
      case 28: // G28: Home all axes, one at a time
        gcode_G28(false);
        break;
      #if HAS_LEVELING
        case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
                 // or provides access to the UBL System if enabled.
          gcode_G29();
          break;
      #endif // HAS_LEVELING
      #if HAS_BED_PROBE
        case 30: // G30 Single Z probe
          gcode_G30();
          break;
        #if ENABLED(Z_PROBE_SLED)
            case 31: // G31: dock the sled
              gcode_G31();
              break;
            case 32: // G32: undock the sled
              gcode_G32();
              break;
        #endif // Z_PROBE_SLED
        #if ENABLED(DELTA_AUTO_CALIBRATION)
          case 33: // G33: Delta Auto-Calibration
            gcode_G33();
            break;
        #endif // DELTA_AUTO_CALIBRATION
      #endif // HAS_BED_PROBE
      #if ENABLED(G38_PROBE_TARGET)
        case 38: // G38.2 & G38.3
          if (subcode == 2 || subcode == 3)
            gcode_G38(subcode == 2);
          break;
      #endif
      case 90: // G90
        relative_mode = false;
        break;
      case 91: // G91
        relative_mode = true;
        break;
      case 92: // G92
        gcode_G92();
        break;
      #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
        case 42:
          gcode_G42();
          break;
      #endif
      #if ENABLED(DEBUG_GCODE_PARSER)
        case 800:
          parser.debug(); // GCode Parser Test for G
          break;
      #endif
    }
    break;
    case 'M': switch (parser.codenum) {
      #if HAS_RESUME_CONTINUE
        case 0: // M0: Unconditional stop - Wait for user button press on LCD
        case 1: // M1: Conditional stop - Wait for user button press on LCD
          gcode_M0_M1();
          break;
      #endif // ULTIPANEL
      #if ENABLED(SPINDLE_LASER_ENABLE)
        case 3:
          gcode_M3_M4(true);   // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
          break;               // synchronizes with movement commands
        case 4:
          gcode_M3_M4(false);  // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
          break;               // synchronizes with movement commands
        case 5:
          gcode_M5();     // M5 - turn spindle/laser off
          break;          // synchronizes with movement commands
      #endif
      case 17: // M17: Enable all stepper motors
        gcode_M17();
        break;
      #if ENABLED(SDSUPPORT)
        case 20: // M20: list SD card
          gcode_M20(); break;
        case 21: // M21: init SD card
          gcode_M21(); break;
        case 22: // M22: release SD card
          gcode_M22(); break;
        case 23: // M23: Select file
          gcode_M23(); break;
        case 24: // M24: Start SD print
          gcode_M24(); break;
        case 25: // M25: Pause SD print
          gcode_M25(); break;
        case 26: // M26: Set SD index
          gcode_M26(); break;
        case 27: // M27: Get SD status
          gcode_M27(); break;
        case 28: // M28: Start SD write
          gcode_M28(); break;
        case 29: // M29: Stop SD write
          gcode_M29(); break;
        case 30: // M30  Delete File
          gcode_M30(); break;
        case 32: // M32: Select file and start SD print
          gcode_M32(); break;
        #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
          case 33: // M33: Get the long full path to a file or folder
            gcode_M33(); break;
        #endif
        #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
          case 34: //M34 - Set SD card sorting options
            gcode_M34(); break;
        #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
        case 928: // M928: Start SD write
          gcode_M928(); break;
      #endif // SDSUPPORT
      case 31: // M31: Report time since the start of SD print or last M109
        gcode_M31(); break;
      case 42: // M42: Change pin state
        gcode_M42(); break;
      #if ENABLED(PINS_DEBUGGING)
        case 43: // M43: Read pin state
          gcode_M43(); break;
      #endif
      #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
        case 48: // M48: Z probe repeatability test
          gcode_M48();
          break;
      #endif // Z_MIN_PROBE_REPEATABILITY_TEST
      #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
        case 49: // M49: Turn on or off G26 debug flag for verbose output
          gcode_M49();
          break;
      #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
      case 75: // M75: Start print timer
        gcode_M75(); break;
      case 76: // M76: Pause print timer
        gcode_M76(); break;
      case 77: // M77: Stop print timer
        gcode_M77(); break;
      #if ENABLED(PRINTCOUNTER)
        case 78: // M78: Show print statistics
          gcode_M78(); break;
      #endif
      #if ENABLED(M100_FREE_MEMORY_WATCHER)
        case 100: // M100: Free Memory Report
          gcode_M100();
          break;
      #endif
      case 104: // M104: Set hot end temperature
        gcode_M104();
        break;
      case 110: // M110: Set Current Line Number
        gcode_M110();
        break;
      case 111: // M111: Set debug level
        gcode_M111();
        break;
      #if DISABLED(EMERGENCY_PARSER)
        case 108: // M108: Cancel Waiting
          gcode_M108();
          break;
        case 112: // M112: Emergency Stop
          gcode_M112();
          break;
        case 410: // M410 quickstop - Abort all the planned moves.
          gcode_M410();
          break;
      #endif
      #if ENABLED(HOST_KEEPALIVE_FEATURE)
        case 113: // M113: Set Host Keepalive interval
          gcode_M113();
          break;
      #endif
      case 140: // M140: Set bed temperature
        gcode_M140();
        break;
      case 105: // M105: Report current temperature
        gcode_M105();
        KEEPALIVE_STATE(NOT_BUSY);
        return; // "ok" already printed
      #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
        case 155: // M155: Set temperature auto-report interval
          gcode_M155();
          break;
      #endif
      case 109: // M109: Wait for hotend temperature to reach target
        gcode_M109();
        break;
      #if HAS_TEMP_BED
        case 190: // M190: Wait for bed temperature to reach target
          gcode_M190();
          break;
      #endif // HAS_TEMP_BED
      #if FAN_COUNT > 0
        case 106: // M106: Fan On
          gcode_M106();
          break;
        case 107: // M107: Fan Off
          gcode_M107();
          break;
      #endif // FAN_COUNT > 0
      #if ENABLED(PARK_HEAD_ON_PAUSE)
        case 125: // M125: Store current position and move to filament change position
          gcode_M125(); break;
      #endif
      #if ENABLED(BARICUDA)
        // PWM for HEATER_1_PIN
        #if HAS_HEATER_1
          case 126: // M126: valve open
            gcode_M126();
            break;
          case 127: // M127: valve closed
            gcode_M127();
            break;
        #endif // HAS_HEATER_1
        // PWM for HEATER_2_PIN
        #if HAS_HEATER_2
          case 128: // M128: valve open
            gcode_M128();
            break;
          case 129: // M129: valve closed
            gcode_M129();
            break;
        #endif // HAS_HEATER_2
      #endif // BARICUDA
      #if HAS_POWER_SWITCH
        case 80: // M80: Turn on Power Supply
          gcode_M80();
          break;
      #endif // HAS_POWER_SWITCH
      case 81: // M81: Turn off Power, including Power Supply, if possible
        gcode_M81();
        break;
      case 82: // M82: Set E axis normal mode (same as other axes)
        gcode_M82();
        break;
      case 83: // M83: Set E axis relative mode
        gcode_M83();
        break;
      case 18: // M18 => M84
      case 84: // M84: Disable all steppers or set timeout
        gcode_M18_M84();
        break;
      case 85: // M85: Set inactivity stepper shutdown timeout
        gcode_M85();
        break;
      case 92: // M92: Set the steps-per-unit for one or more axes
        gcode_M92();
        break;
      case 114: // M114: Report current position
        gcode_M114();
        break;
      case 115: // M115: Report capabilities
        gcode_M115();
        break;
      case 117: // M117: Set LCD message text, if possible
        gcode_M117();
        break;
      case 119: // M119: Report endstop states
        gcode_M119();
        break;
      case 120: // M120: Enable endstops
        gcode_M120();
        break;
      case 121: // M121: Disable endstops
        gcode_M121();
        break;
      #if ENABLED(ULTIPANEL)
        case 145: // M145: Set material heatup parameters
          gcode_M145();
          break;
      #endif
      #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
        case 149: // M149: Set temperature units
          gcode_M149();
          break;
      #endif
      #if HAS_COLOR_LEDS
        case 150: // M150: Set Status LED Color
          gcode_M150();
          break;
      #endif // BLINKM
      #if ENABLED(MIXING_EXTRUDER)
        case 163: // M163: Set a component weight for mixing extruder
          gcode_M163();
          break;
        #if MIXING_VIRTUAL_TOOLS > 1
          case 164: // M164: Save current mix as a virtual extruder
            gcode_M164();
            break;
        #endif
        #if ENABLED(DIRECT_MIXING_IN_G1)
          case 165: // M165: Set multiple mix weights
            gcode_M165();
            break;
        #endif
      #endif
      case 200: // M200: Set filament diameter, E to cubic units
        gcode_M200();
        break;
      case 201: // M201: Set max acceleration for print moves (units/s^2)
        gcode_M201();
        break;
      #if 0 // Not used for Sprinter/grbl gen6
        case 202: // M202
          gcode_M202();
          break;
      #endif
      case 203: // M203: Set max feedrate (units/sec)
        gcode_M203();
        break;
      case 204: // M204: Set acceleration
        gcode_M204();
        break;
      case 205: //M205: Set advanced settings
        gcode_M205();
        break;
      #if HAS_M206_COMMAND
        case 206: // M206: Set home offsets
          gcode_M206();
          break;
      #endif
      #if ENABLED(DELTA)
        case 665: // M665: Set delta configurations
          gcode_M665();
          break;
      #endif
      #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
        case 666: // M666: Set delta or dual endstop adjustment
          gcode_M666();
          break;
      #endif
      #if ENABLED(FWRETRACT)
        case 207: // M207: Set Retract Length, Feedrate, and Z lift
          gcode_M207();
          break;
        case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
          gcode_M208();
          break;
        case 209: // M209: Turn Automatic Retract Detection on/off
          gcode_M209();
          break;
      #endif // FWRETRACT
      case 211: // M211: Enable, Disable, and/or Report software endstops
        gcode_M211();
        break;
      #if HOTENDS > 1
        case 218: // M218: Set a tool offset
          gcode_M218();
          break;
      #endif
      case 220: // M220: Set Feedrate Percentage: S ("FR" on your LCD)
        gcode_M220();
        break;
      case 221: // M221: Set Flow Percentage
        gcode_M221();
        break;
      case 226: // M226: Wait until a pin reaches a state
        gcode_M226();
        break;
      #if HAS_SERVOS
        case 280: // M280: Set servo position absolute
          gcode_M280();
          break;
      #endif // HAS_SERVOS
      #if HAS_BUZZER
        case 300: // M300: Play beep tone
          gcode_M300();
          break;
      #endif // HAS_BUZZER
      #if ENABLED(PIDTEMP)
        case 301: // M301: Set hotend PID parameters
          gcode_M301();
          break;
      #endif // PIDTEMP
      #if ENABLED(PIDTEMPBED)
        case 304: // M304: Set bed PID parameters
          gcode_M304();
          break;
      #endif // PIDTEMPBED
      #if defined(CHDK) || HAS_PHOTOGRAPH
        case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
          gcode_M240();
          break;
      #endif // CHDK || PHOTOGRAPH_PIN
      #if HAS_LCD_CONTRAST
        case 250: // M250: Set LCD contrast
          gcode_M250();
          break;
      #endif // HAS_LCD_CONTRAST
      #if ENABLED(EXPERIMENTAL_I2CBUS)
        case 260: // M260: Send data to an i2c slave
          gcode_M260();
          break;
        case 261: // M261: Request data from an i2c slave
          gcode_M261();
          break;
      #endif // EXPERIMENTAL_I2CBUS
      #if ENABLED(PREVENT_COLD_EXTRUSION)
        case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
          gcode_M302();
          break;
      #endif // PREVENT_COLD_EXTRUSION
      case 303: // M303: PID autotune
        gcode_M303();
        break;
      #if ENABLED(MORGAN_SCARA)
        case 360:  // M360: SCARA Theta pos1
          if (gcode_M360()) return;
          break;
        case 361:  // M361: SCARA Theta pos2
          if (gcode_M361()) return;
          break;
        case 362:  // M362: SCARA Psi pos1
          if (gcode_M362()) return;
          break;
        case 363:  // M363: SCARA Psi pos2
          if (gcode_M363()) return;
          break;
        case 364:  // M364: SCARA Psi pos3 (90 deg to Theta)
          if (gcode_M364()) return;
          break;
      #endif // SCARA
      case 400: // M400: Finish all moves
        gcode_M400();
        break;
      #if HAS_BED_PROBE
        case 401: // M401: Deploy probe
          gcode_M401();
          break;
        case 402: // M402: Stow probe
          gcode_M402();
          break;
      #endif // HAS_BED_PROBE
      #if ENABLED(FILAMENT_WIDTH_SENSOR)
        case 404:  // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
          gcode_M404();
          break;
        case 405:  // M405: Turn on filament sensor for control
          gcode_M405();
          break;
        case 406:  // M406: Turn off filament sensor for control
          gcode_M406();
          break;
        case 407:   // M407: Display measured filament diameter
          gcode_M407();
          break;
      #endif // FILAMENT_WIDTH_SENSOR
      #if HAS_LEVELING
        case 420: // M420: Enable/Disable Bed Leveling
          gcode_M420();
          break;
      #endif
      #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
        case 421: // M421: Set a Mesh Bed Leveling Z coordinate
          gcode_M421();
          break;
      #endif
      #if HAS_M206_COMMAND
        case 428: // M428: Apply current_position to home_offset
          gcode_M428();
          break;
      #endif
      case 500: // M500: Store settings in EEPROM
        gcode_M500();
        break;
      case 501: // M501: Read settings from EEPROM
        gcode_M501();
        break;
      case 502: // M502: Revert to default settings
        gcode_M502();
        break;
      case 503: // M503: print settings currently in memory
        gcode_M503();
        break;
      #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
        case 540: // M540: Set abort on endstop hit for SD printing
          gcode_M540();
          break;
      #endif
      #if HAS_BED_PROBE
        case 851: // M851: Set Z Probe Z Offset
          gcode_M851();
          break;
      #endif // HAS_BED_PROBE
      #if ENABLED(ADVANCED_PAUSE_FEATURE)
        case 600: // M600: Pause for filament change
          gcode_M600();
          break;
      #endif // ADVANCED_PAUSE_FEATURE
      #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
        case 605: // M605: Set Dual X Carriage movement mode
          gcode_M605();
          break;
      #endif // DUAL_X_CARRIAGE
      #if ENABLED(LIN_ADVANCE)
        case 900: // M900: Set advance K factor.
          gcode_M900();
          break;
      #endif
      #if ENABLED(HAVE_TMC2130)
        case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
          gcode_M906();
          break;
      #endif
      case 907: // M907: Set digital trimpot motor current using axis codes.
        gcode_M907();
        break;
      #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
        case 908: // M908: Control digital trimpot directly.
          gcode_M908();
          break;
        #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
          case 909: // M909: Print digipot/DAC current value
            gcode_M909();
            break;
          case 910: // M910: Commit digipot/DAC value to external EEPROM
            gcode_M910();
            break;
        #endif
      #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
      #if ENABLED(HAVE_TMC2130)
        case 911: // M911: Report TMC2130 prewarn triggered flags
          gcode_M911();
          break;
        case 912: // M911: Clear TMC2130 prewarn triggered flags
          gcode_M912();
          break;
        #if ENABLED(HYBRID_THRESHOLD)
          case 913: // M913: Set HYBRID_THRESHOLD speed.
            gcode_M913();
            break;
        #endif
        #if ENABLED(SENSORLESS_HOMING)
          case 914: // M914: Set SENSORLESS_HOMING sensitivity.
            gcode_M914();
            break;
        #endif
      #endif
      #if HAS_MICROSTEPS
        case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
          gcode_M350();
          break;
        case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
          gcode_M351();
          break;
      #endif // HAS_MICROSTEPS
      case 355: // M355 set case light brightness
        gcode_M355();
        break;
      #if ENABLED(DEBUG_GCODE_PARSER)
        case 800:
          parser.debug(); // GCode Parser Test for M
          break;
      #endif
      case 999: // M999: Restart after being Stopped
        gcode_M999();
        break;
    }
    break;
    case 'T':
      gcode_T(parser.codenum);
      break;
    default: parser.unknown_command_error();
  }
  KEEPALIVE_STATE(NOT_BUSY);
  ok_to_send();
}
/**
 * Send a "Resend: nnn" message to the host to
 * indicate that a command needs to be re-sent.
 */
void FlushSerialRequestResend() {
  //char command_queue[cmd_queue_index_r][100]="Resend:";
  MYSERIAL.flush();
  SERIAL_PROTOCOLPGM(MSG_RESEND);
  SERIAL_PROTOCOLLN(gcode_LastN + 1);
  ok_to_send();
}
/**
 * Send an "ok" message to the host, indicating
 * that a command was successfully processed.
 *
 * If ADVANCED_OK is enabled also include:
 *   N  Line number of the command, if any
 *   P  Planner space remaining
 *   B  Block queue space remaining
 */
void ok_to_send() {
  refresh_cmd_timeout();
  if (!send_ok[cmd_queue_index_r]) return;
  SERIAL_PROTOCOLPGM(MSG_OK);
  #if ENABLED(ADVANCED_OK)
    char* p = command_queue[cmd_queue_index_r];
    if (*p == 'N') {
      SERIAL_PROTOCOL(' ');
      SERIAL_ECHO(*p++);
      while (NUMERIC_SIGNED(*p))
        SERIAL_ECHO(*p++);
    }
    SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
    SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  #endif
  SERIAL_EOL;
}
#if HAS_SOFTWARE_ENDSTOPS
  /**
   * Constrain the given coordinates to the software endstops.
   */
  // NOTE: This makes no sense for delta beds other than Z-axis.
  //       For delta the X/Y would need to be clamped at
  //       DELTA_PRINTABLE_RADIUS from center of bed, but delta
  //       now enforces is_position_reachable for X/Y regardless
  //       of HAS_SOFTWARE_ENDSTOPS, so that enforcement would be
  //       redundant here.  Probably should #ifdef out the X/Y
  //       axis clamps here for delta and just leave the Z clamp.
  void clamp_to_software_endstops(float target[XYZ]) {
    if (!soft_endstops_enabled) return;
    #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
      NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
      NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
      NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
    #endif
    #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
      NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
      NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
      NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
    #endif
  }
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  #if ENABLED(ABL_BILINEAR_SUBDIVISION)
    #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
    #define ABL_BG_FACTOR(A)  bilinear_grid_factor_virt[A]
    #define ABL_BG_POINTS_X   ABL_GRID_POINTS_VIRT_X
    #define ABL_BG_POINTS_Y   ABL_GRID_POINTS_VIRT_Y
    #define ABL_BG_GRID(X,Y)  z_values_virt[X][Y]
  #else
    #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
    #define ABL_BG_FACTOR(A)  bilinear_grid_factor[A]
    #define ABL_BG_POINTS_X   GRID_MAX_POINTS_X
    #define ABL_BG_POINTS_Y   GRID_MAX_POINTS_Y
    #define ABL_BG_GRID(X,Y)  z_values[X][Y]
  #endif
  // Get the Z adjustment for non-linear bed leveling
  float bilinear_z_offset(const float logical[XYZ]) {
    static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
                 last_x = -999.999, last_y = -999.999;
    // Whole units for the grid line indices. Constrained within bounds.
    static int8_t gridx, gridy, nextx, nexty,
                  last_gridx = -99, last_gridy = -99;
    // XY relative to the probed area
    const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
                y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
    #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
      // Keep using the last grid box
      #define FAR_EDGE_OR_BOX 2
    #else
      // Just use the grid far edge
      #define FAR_EDGE_OR_BOX 1
    #endif
    if (last_x != x) {
      last_x = x;
      ratio_x = x * ABL_BG_FACTOR(X_AXIS);
      const float gx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
      ratio_x -= gx;      // Subtract whole to get the ratio within the grid box
      #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
        // Beyond the grid maintain height at grid edges
        NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
      #endif
      gridx = gx;
      nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
    }
    if (last_y != y || last_gridx != gridx) {
      if (last_y != y) {
        last_y = y;
        ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
        const float gy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
        ratio_y -= gy;
        #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
          // Beyond the grid maintain height at grid edges
          NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
        #endif
        gridy = gy;
        nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
      }
      if (last_gridx != gridx || last_gridy != gridy) {
        last_gridx = gridx;
        last_gridy = gridy;
        // Z at the box corners
        z1 = ABL_BG_GRID(gridx, gridy);       // left-front
        d2 = ABL_BG_GRID(gridx, nexty) - z1;  // left-back (delta)
        z3 = ABL_BG_GRID(nextx, gridy);       // right-front
        d4 = ABL_BG_GRID(nextx, nexty) - z3;  // right-back (delta)
      }
      // Bilinear interpolate. Needed since y or gridx has changed.
                  L = z1 + d2 * ratio_y;   // Linear interp. LF -> LB
      const float R = z3 + d4 * ratio_y;   // Linear interp. RF -> RB
      D = R - L;
    }
    const float offset = L + ratio_x * D;   // the offset almost always changes
    /*
    static float last_offset = 0;
    if (fabs(last_offset - offset) > 0.2) {
      SERIAL_ECHOPGM("Sudden Shift at ");
      SERIAL_ECHOPAIR("x=", x);
      SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
      SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
      SERIAL_ECHOPAIR(" y=", y);
      SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
      SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
      SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
      SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
      SERIAL_ECHOPAIR(" z1=", z1);
      SERIAL_ECHOPAIR(" z2=", z2);
      SERIAL_ECHOPAIR(" z3=", z3);
      SERIAL_ECHOLNPAIR(" z4=", z4);
      SERIAL_ECHOPAIR(" L=", L);
      SERIAL_ECHOPAIR(" R=", R);
      SERIAL_ECHOLNPAIR(" offset=", offset);
    }
    last_offset = offset;
    //*/
    return offset;
  }
#endif // AUTO_BED_LEVELING_BILINEAR
#if ENABLED(DELTA)
  /**
   * Recalculate factors used for delta kinematics whenever
   * settings have been changed (e.g., by M665).
   */
  void recalc_delta_settings(float radius, float diagonal_rod) {
    const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
                drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
    delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
    delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
    delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
    delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
    delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
    delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
    delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
    delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
    delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
  }
  #if ENABLED(DELTA_FAST_SQRT)
    /**
     * Fast inverse sqrt from Quake III Arena
     * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
     */
    float Q_rsqrt(float number) {
      long i;
      float x2, y;
      const float threehalfs = 1.5f;
      x2 = number * 0.5f;
      y  = number;
      i  = * ( long * ) &y;                       // evil floating point bit level hacking
      i  = 0x5F3759DF - ( i >> 1 );               // what the f***?
      y  = * ( float * ) &i;
      y  = y * ( threehalfs - ( x2 * y * y ) );   // 1st iteration
      // y  = y * ( threehalfs - ( x2 * y * y ) );   // 2nd iteration, this can be removed
      return y;
    }
    #define _SQRT(n) (1.0f / Q_rsqrt(n))
  #else
    #define _SQRT(n) sqrt(n)
  #endif
  /**
   * Delta Inverse Kinematics
   *
   * Calculate the tower positions for a given logical
   * position, storing the result in the delta[] array.
   *
   * This is an expensive calculation, requiring 3 square
   * roots per segmented linear move, and strains the limits
   * of a Mega2560 with a Graphical Display.
   *
   * Suggested optimizations include:
   *
   * - Disable the home_offset (M206) and/or position_shift (G92)
   *   features to remove up to 12 float additions.
   *
   * - Use a fast-inverse-sqrt function and add the reciprocal.
   *   (see above)
   */
  // Macro to obtain the Z position of an individual tower
  #define DELTA_Z(T) raw[Z_AXIS] + _SQRT(     \
    delta_diagonal_rod_2_tower[T] - HYPOT2(   \
        delta_tower[T][X_AXIS] - raw[X_AXIS], \
        delta_tower[T][Y_AXIS] - raw[Y_AXIS]  \
      )                                       \
    )
  #define DELTA_RAW_IK() do {        \
    delta[A_AXIS] = DELTA_Z(A_AXIS); \
    delta[B_AXIS] = DELTA_Z(B_AXIS); \
    delta[C_AXIS] = DELTA_Z(C_AXIS); \
  } while(0)
  #define DELTA_LOGICAL_IK() do {      \
    const float raw[XYZ] = {           \
      RAW_X_POSITION(logical[X_AXIS]), \
      RAW_Y_POSITION(logical[Y_AXIS]), \
      RAW_Z_POSITION(logical[Z_AXIS])  \
    };                                 \
    DELTA_RAW_IK();                    \
  } while(0)
  #define DELTA_DEBUG() do { \
      SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
      SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]);          \
      SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]);        \
      SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]);   \
      SERIAL_ECHOPAIR(" B:", delta[B_AXIS]);        \
      SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]);      \
    } while(0)
  void inverse_kinematics(const float logical[XYZ]) {
    DELTA_LOGICAL_IK();
    // DELTA_DEBUG();
  }
  /**
   * Calculate the highest Z position where the
   * effector has the full range of XY motion.
   */
  float delta_safe_distance_from_top() {
    float cartesian[XYZ] = {
      LOGICAL_X_POSITION(0),
      LOGICAL_Y_POSITION(0),
      LOGICAL_Z_POSITION(0)
    };
    inverse_kinematics(cartesian);
    float distance = delta[A_AXIS];
    cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
    inverse_kinematics(cartesian);
    return abs(distance - delta[A_AXIS]);
  }
  /**
   * Delta Forward Kinematics
   *
   * See the Wikipedia article "Trilateration"
   * https://en.wikipedia.org/wiki/Trilateration
   *
   * Establish a new coordinate system in the plane of the
   * three carriage points. This system has its origin at
   * tower1, with tower2 on the X axis. Tower3 is in the X-Y
   * plane with a Z component of zero.
   * We will define unit vectors in this coordinate system
   * in our original coordinate system. Then when we calculate
   * the Xnew, Ynew and Znew values, we can translate back into
   * the original system by moving along those unit vectors
   * by the corresponding values.
   *
   * Variable names matched to Marlin, c-version, and avoid the
   * use of any vector library.
   *
   * by Andreas Hardtung 2016-06-07
   * based on a Java function from "Delta Robot Kinematics V3"
   * by Steve Graves
   *
   * The result is stored in the cartes[] array.
   */
  void forward_kinematics_DELTA(float z1, float z2, float z3) {
    // Create a vector in old coordinates along x axis of new coordinate
    float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
    // Get the Magnitude of vector.
    float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
    // Create unit vector by dividing by magnitude.
    float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
    // Get the vector from the origin of the new system to the third point.
    float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
    // Use the dot product to find the component of this vector on the X axis.
    float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
    // Create a vector along the x axis that represents the x component of p13.
    float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
    // Subtract the X component from the original vector leaving only Y. We use the
    // variable that will be the unit vector after we scale it.
    float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
    // The magnitude of Y component
    float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
    // Convert to a unit vector
    ey[0] /= j; ey[1] /= j;  ey[2] /= j;
    // The cross product of the unit x and y is the unit z
    // float[] ez = vectorCrossProd(ex, ey);
    float ez[3] = {
      ex[1] * ey[2] - ex[2] * ey[1],
      ex[2] * ey[0] - ex[0] * ey[2],
      ex[0] * ey[1] - ex[1] * ey[0]
    };
    // We now have the d, i and j values defined in Wikipedia.
    // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
    float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
          Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
          Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
    // Start from the origin of the old coordinates and add vectors in the
    // old coords that represent the Xnew, Ynew and Znew to find the point
    // in the old system.
    cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
    cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
    cartes[Z_AXIS] =             z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  }
  void forward_kinematics_DELTA(float point[ABC]) {
    forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  }
#endif // DELTA
/**
 * Get the stepper positions in the cartes[] array.
 * Forward kinematics are applied for DELTA and SCARA.
 *
 * The result is in the current coordinate space with
 * leveling applied. The coordinates need to be run through
 * unapply_leveling to obtain the "ideal" coordinates
 * suitable for current_position, etc.
 */
void get_cartesian_from_steppers() {
  #if ENABLED(DELTA)
    forward_kinematics_DELTA(
      stepper.get_axis_position_mm(A_AXIS),
      stepper.get_axis_position_mm(B_AXIS),
      stepper.get_axis_position_mm(C_AXIS)
    );
    cartes[X_AXIS] += LOGICAL_X_POSITION(0);
    cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
    cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  #elif IS_SCARA
    forward_kinematics_SCARA(
      stepper.get_axis_position_degrees(A_AXIS),
      stepper.get_axis_position_degrees(B_AXIS)
    );
    cartes[X_AXIS] += LOGICAL_X_POSITION(0);
    cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
    cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  #else
    cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
    cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
    cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  #endif
}
/**
 * Set the current_position for an axis based on
 * the stepper positions, removing any leveling that
 * may have been applied.
 */
void set_current_from_steppers_for_axis(const AxisEnum axis) {
  get_cartesian_from_steppers();
  #if PLANNER_LEVELING
    planner.unapply_leveling(cartes);
  #endif
  if (axis == ALL_AXES)
    COPY(current_position, cartes);
  else
    current_position[axis] = cartes[axis];
}
#if ENABLED(MESH_BED_LEVELING)
  /**
   * Prepare a mesh-leveled linear move in a Cartesian setup,
   * splitting the move where it crosses mesh borders.
   */
  void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
    int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
        cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
        cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
        cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
    NOMORE(cx1, GRID_MAX_POINTS_X - 2);
    NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
    NOMORE(cx2, GRID_MAX_POINTS_X - 2);
    NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
    if (cx1 == cx2 && cy1 == cy2) {
      // Start and end on same mesh square
      line_to_destination(fr_mm_s);
      set_current_to_destination();
      return;
    }
    #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
    float normalized_dist, end[XYZE];
    // Split at the left/front border of the right/top square
    const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
    if (cx2 != cx1 && TEST(x_splits, gcx)) {
      COPY(end, destination);
      destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
      normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
      destination[Y_AXIS] = MBL_SEGMENT_END(Y);
      CBI(x_splits, gcx);
    }
    else if (cy2 != cy1 && TEST(y_splits, gcy)) {
      COPY(end, destination);
      destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
      normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
      destination[X_AXIS] = MBL_SEGMENT_END(X);
      CBI(y_splits, gcy);
    }
    else {
      // Already split on a border
      line_to_destination(fr_mm_s);
      set_current_to_destination();
      return;
    }
    destination[Z_AXIS] = MBL_SEGMENT_END(Z);
    destination[E_AXIS] = MBL_SEGMENT_END(E);
    // Do the split and look for more borders
    mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
    // Restore destination from stack
    COPY(destination, end);
    mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  }
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  /**
   * Prepare a bilinear-leveled linear move on Cartesian,
   * splitting the move where it crosses grid borders.
   */
  void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
    int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
        cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
        cx2 = CELL_INDEX(X, destination[X_AXIS]),
        cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
    cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
    cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
    cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
    cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
    if (cx1 == cx2 && cy1 == cy2) {
      // Start and end on same mesh square
      line_to_destination(fr_mm_s);
      set_current_to_destination();
      return;
    }
    #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
    float normalized_dist, end[XYZE];
    // Split at the left/front border of the right/top square
    const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
    if (cx2 != cx1 && TEST(x_splits, gcx)) {
      COPY(end, destination);
      destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
      normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
      destination[Y_AXIS] = LINE_SEGMENT_END(Y);
      CBI(x_splits, gcx);
    }
    else if (cy2 != cy1 && TEST(y_splits, gcy)) {
      COPY(end, destination);
      destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
      normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
      destination[X_AXIS] = LINE_SEGMENT_END(X);
      CBI(y_splits, gcy);
    }
    else {
      // Already split on a border
      line_to_destination(fr_mm_s);
      set_current_to_destination();
      return;
    }
    destination[Z_AXIS] = LINE_SEGMENT_END(Z);
    destination[E_AXIS] = LINE_SEGMENT_END(E);
    // Do the split and look for more borders
    bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
    // Restore destination from stack
    COPY(destination, end);
    bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  }
#endif // AUTO_BED_LEVELING_BILINEAR
#if IS_KINEMATIC && !UBL_DELTA
  /**
   * Prepare a linear move in a DELTA or SCARA setup.
   *
   * This calls planner.buffer_line several times, adding
   * small incremental moves for DELTA or SCARA.
   */
  inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
    // Get the top feedrate of the move in the XY plane
    const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
    // If the move is only in Z/E don't split up the move
    if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
      planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
      return false;
    }
    // Fail if attempting move outside printable radius
    if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) return true;
    // Get the cartesian distances moved in XYZE
    const float difference[XYZE] = {
      ltarget[X_AXIS] - current_position[X_AXIS],
      ltarget[Y_AXIS] - current_position[Y_AXIS],
      ltarget[Z_AXIS] - current_position[Z_AXIS],
      ltarget[E_AXIS] - current_position[E_AXIS]
    };
    // Get the linear distance in XYZ
    float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
    // If the move is very short, check the E move distance
    if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
    // No E move either? Game over.
    if (UNEAR_ZERO(cartesian_mm)) return true;
    // Minimum number of seconds to move the given distance
    const float seconds = cartesian_mm / _feedrate_mm_s;
    // The number of segments-per-second times the duration
    // gives the number of segments
    uint16_t segments = delta_segments_per_second * seconds;
    // For SCARA minimum segment size is 0.25mm
    #if IS_SCARA
      NOMORE(segments, cartesian_mm * 4);
    #endif
    // At least one segment is required
    NOLESS(segments, 1);
    // The approximate length of each segment
    const float inv_segments = 1.0 / float(segments),
                segment_distance[XYZE] = {
                  difference[X_AXIS] * inv_segments,
                  difference[Y_AXIS] * inv_segments,
                  difference[Z_AXIS] * inv_segments,
                  difference[E_AXIS] * inv_segments
                };
    // SERIAL_ECHOPAIR("mm=", cartesian_mm);
    // SERIAL_ECHOPAIR(" seconds=", seconds);
    // SERIAL_ECHOLNPAIR(" segments=", segments);
    #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
      // SCARA needs to scale the feed rate from mm/s to degrees/s
      const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
                  feed_factor = inv_segment_length * _feedrate_mm_s;
      float oldA = stepper.get_axis_position_degrees(A_AXIS),
            oldB = stepper.get_axis_position_degrees(B_AXIS);
    #endif
    // Get the logical current position as starting point
    float logical[XYZE];
    COPY(logical, current_position);
    // Drop one segment so the last move is to the exact target.
    // If there's only 1 segment, loops will be skipped entirely.
    --segments;
    // Calculate and execute the segments
    for (uint16_t s = segments + 1; --s;) {
      LOOP_XYZE(i) logical[i] += segment_distance[i];
      #if ENABLED(DELTA)
        DELTA_LOGICAL_IK(); // Delta can inline its kinematics
      #else
        inverse_kinematics(logical);
      #endif
      ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
      #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
        // For SCARA scale the feed rate from mm/s to degrees/s
        // Use ratio between the length of the move and the larger angle change
        const float adiff = abs(delta[A_AXIS] - oldA),
                    bdiff = abs(delta[B_AXIS] - oldB);
        planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
        oldA = delta[A_AXIS];
        oldB = delta[B_AXIS];
      #else
        planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
      #endif
    }
    // Since segment_distance is only approximate,
    // the final move must be to the exact destination.
    #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
      // For SCARA scale the feed rate from mm/s to degrees/s
      // With segments > 1 length is 1 segment, otherwise total length
      inverse_kinematics(ltarget);
      ADJUST_DELTA(ltarget);
      const float adiff = abs(delta[A_AXIS] - oldA),
                  bdiff = abs(delta[B_AXIS] - oldB);
      planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
    #else
      planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
    #endif
    return false;
  }
#else // !IS_KINEMATIC || UBL_DELTA
  /**
   * Prepare a linear move in a Cartesian setup.
   * If Mesh Bed Leveling is enabled, perform a mesh move.
   *
   * Returns true if the caller didn't update current_position.
   */
  inline bool prepare_move_to_destination_cartesian() {
    #if ENABLED(AUTO_BED_LEVELING_UBL)
      const float fr_scaled = MMS_SCALED(feedrate_mm_s);
      if (ubl.state.active) { // direct use of ubl.state.active for speed
        ubl.line_to_destination_cartesian(fr_scaled, active_extruder);
        return true;
      }
      else
        line_to_destination(fr_scaled);
    #else
      // Do not use feedrate_percentage for E or Z only moves
      if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS])
        line_to_destination();
      else {
        const float fr_scaled = MMS_SCALED(feedrate_mm_s);
        #if ENABLED(MESH_BED_LEVELING)
          if (mbl.active()) { // direct used of mbl.active() for speed
            mesh_line_to_destination(fr_scaled);
            return true;
          }
          else
        #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
          if (planner.abl_enabled) { // direct use of abl_enabled for speed
            bilinear_line_to_destination(fr_scaled);
            return true;
          }
          else
        #endif
            line_to_destination(fr_scaled);
      }
    #endif
    return false;
  }
#endif // !IS_KINEMATIC || UBL_DELTA
#if ENABLED(DUAL_X_CARRIAGE)
  /**
   * Prepare a linear move in a dual X axis setup
   */
  inline bool prepare_move_to_destination_dualx() {
    if (active_extruder_parked) {
      switch (dual_x_carriage_mode) {
        case DXC_FULL_CONTROL_MODE:
          break;
        case DXC_AUTO_PARK_MODE:
          if (current_position[E_AXIS] == destination[E_AXIS]) {
            // This is a travel move (with no extrusion)
            // Skip it, but keep track of the current position
            // (so it can be used as the start of the next non-travel move)
            if (delayed_move_time != 0xFFFFFFFFUL) {
              set_current_to_destination();
              NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
              delayed_move_time = millis();
              return true;
            }
          }
          // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
          for (uint8_t i = 0; i < 3; i++)
            planner.buffer_line(
              i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
              i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
              i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
              current_position[E_AXIS],
              i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
              active_extruder
            );
          delayed_move_time = 0;
          active_extruder_parked = false;
          #if ENABLED(DEBUG_LEVELING_FEATURE)
            if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
          #endif
          break;
        case DXC_DUPLICATION_MODE:
          if (active_extruder == 0) {
            #if ENABLED(DEBUG_LEVELING_FEATURE)
              if (DEBUGGING(LEVELING)) {
                SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
                SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
              }
            #endif
            // move duplicate extruder into correct duplication position.
            planner.set_position_mm(
              LOGICAL_X_POSITION(inactive_extruder_x_pos),
              current_position[Y_AXIS],
              current_position[Z_AXIS],
              current_position[E_AXIS]
            );
            planner.buffer_line(
              current_position[X_AXIS] + duplicate_extruder_x_offset,
              current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
              planner.max_feedrate_mm_s[X_AXIS], 1
            );
            SYNC_PLAN_POSITION_KINEMATIC();
            stepper.synchronize();
            extruder_duplication_enabled = true;
            active_extruder_parked = false;
            #if ENABLED(DEBUG_LEVELING_FEATURE)
              if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
            #endif
          }
          else {
            #if ENABLED(DEBUG_LEVELING_FEATURE)
              if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
            #endif
          }
          break;
      }
    }
    return false;
  }
#endif // DUAL_X_CARRIAGE
/**
 * Prepare a single move and get ready for the next one
 *
 * This may result in several calls to planner.buffer_line to
 * do smaller moves for DELTA, SCARA, mesh moves, etc.
 */
void prepare_move_to_destination() {
  clamp_to_software_endstops(destination);
  refresh_cmd_timeout();
  #if ENABLED(PREVENT_COLD_EXTRUSION)
    if (!DEBUGGING(DRYRUN)) {
      if (destination[E_AXIS] != current_position[E_AXIS]) {
        if (thermalManager.tooColdToExtrude(active_extruder)) {
          current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
          SERIAL_ECHO_START;
          SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
        }
        #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
          if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
            current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
            SERIAL_ECHO_START;
            SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
          }
        #endif
      }
    }
  #endif
  if (
    #if IS_KINEMATIC
      #if UBL_DELTA
        ubl.prepare_segmented_line_to(destination, feedrate_mm_s)
      #else
        prepare_kinematic_move_to(destination)
      #endif
    #elif ENABLED(DUAL_X_CARRIAGE)
      prepare_move_to_destination_dualx()
    #elif UBL_DELTA // will work for CARTESIAN too (smaller segments follow mesh more closely)
      ubl.prepare_segmented_line_to(destination, feedrate_mm_s)
    #else
      prepare_move_to_destination_cartesian()
    #endif
  ) return;
  set_current_to_destination();
}
#if ENABLED(ARC_SUPPORT)
  /**
   * Plan an arc in 2 dimensions
   *
   * The arc is approximated by generating many small linear segments.
   * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
   * Arcs should only be made relatively large (over 5mm), as larger arcs with
   * larger segments will tend to be more efficient. Your slicer should have
   * options for G2/G3 arc generation. In future these options may be GCode tunable.
   */
  void plan_arc(
    float logical[XYZE], // Destination position
    float *offset,       // Center of rotation relative to current_position
    uint8_t clockwise    // Clockwise?
  ) {
    float r_X = -offset[X_AXIS],  // Radius vector from center to current location
          r_Y = -offset[Y_AXIS];
    const float radius = HYPOT(r_X, r_Y),
                center_X = current_position[X_AXIS] - r_X,
                center_Y = current_position[Y_AXIS] - r_Y,
                rt_X = logical[X_AXIS] - center_X,
                rt_Y = logical[Y_AXIS] - center_Y,
                linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
                extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
    // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
    float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
    if (angular_travel < 0) angular_travel += RADIANS(360);
    if (clockwise) angular_travel -= RADIANS(360);
    // Make a circle if the angular rotation is 0
    if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
      angular_travel += RADIANS(360);
    const float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
    if (mm_of_travel < 0.001) return;
    uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
    if (segments == 0) segments = 1;
    /**
     * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
     * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
     *     r_T = [cos(phi) -sin(phi);
     *            sin(phi)  cos(phi)] * r ;
     *
     * For arc generation, the center of the circle is the axis of rotation and the radius vector is
     * defined from the circle center to the initial position. Each line segment is formed by successive
     * vector rotations. This requires only two cos() and sin() computations to form the rotation
     * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
     * all double numbers are single precision on the Arduino. (True double precision will not have
     * round off issues for CNC applications.) Single precision error can accumulate to be greater than
     * tool precision in some cases. Therefore, arc path correction is implemented.
     *
     * Small angle approximation may be used to reduce computation overhead further. This approximation
     * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
     * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
     * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
     * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
     * issue for CNC machines with the single precision Arduino calculations.
     *
     * This approximation also allows plan_arc to immediately insert a line segment into the planner
     * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
     * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
     * This is important when there are successive arc motions.
     */
    // Vector rotation matrix values
    float arc_target[XYZE];
    const float theta_per_segment = angular_travel / segments,
                linear_per_segment = linear_travel / segments,
                extruder_per_segment = extruder_travel / segments,
                sin_T = theta_per_segment,
                cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
    // Initialize the linear axis
    arc_target[Z_AXIS] = current_position[Z_AXIS];
    // Initialize the extruder axis
    arc_target[E_AXIS] = current_position[E_AXIS];
    const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
    millis_t next_idle_ms = millis() + 200UL;
    int8_t count = 0;
    for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
      thermalManager.manage_heater();
      if (ELAPSED(millis(), next_idle_ms)) {
        next_idle_ms = millis() + 200UL;
        idle();
      }
      if (++count < N_ARC_CORRECTION) {
        // Apply vector rotation matrix to previous r_X / 1
        const float r_new_Y = r_X * sin_T + r_Y * cos_T;
        r_X = r_X * cos_T - r_Y * sin_T;
        r_Y = r_new_Y;
      }
      else {
        // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
        // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
        // To reduce stuttering, the sin and cos could be computed at different times.
        // For now, compute both at the same time.
        const float cos_Ti = cos(i * theta_per_segment),
                    sin_Ti = sin(i * theta_per_segment);
        r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
        r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
        count = 0;
      }
      // Update arc_target location
      arc_target[X_AXIS] = center_X + r_X;
      arc_target[Y_AXIS] = center_Y + r_Y;
      arc_target[Z_AXIS] += linear_per_segment;
      arc_target[E_AXIS] += extruder_per_segment;
      clamp_to_software_endstops(arc_target);
      planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
    }
    // Ensure last segment arrives at target location.
    planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
    // As far as the parser is concerned, the position is now == target. In reality the
    // motion control system might still be processing the action and the real tool position
    // in any intermediate location.
    set_current_to_destination();
  }
#endif
#if ENABLED(BEZIER_CURVE_SUPPORT)
  void plan_cubic_move(const float offset[4]) {
    cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
    // As far as the parser is concerned, the position is now == destination. In reality the
    // motion control system might still be processing the action and the real tool position
    // in any intermediate location.
    set_current_to_destination();
  }
#endif // BEZIER_CURVE_SUPPORT
#if ENABLED(USE_CONTROLLER_FAN)
  void controllerFan() {
    static millis_t lastMotorOn = 0, // Last time a motor was turned on
                    nextMotorCheck = 0; // Last time the state was checked
    const millis_t ms = millis();
    if (ELAPSED(ms, nextMotorCheck)) {
      nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
      if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
          || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
          #if E_STEPPERS > 1
            || E1_ENABLE_READ == E_ENABLE_ON
            #if HAS_X2_ENABLE
              || X2_ENABLE_READ == X_ENABLE_ON
            #endif
            #if E_STEPPERS > 2
              || E2_ENABLE_READ == E_ENABLE_ON
              #if E_STEPPERS > 3
                || E3_ENABLE_READ == E_ENABLE_ON
                #if E_STEPPERS > 4
                  || E4_ENABLE_READ == E_ENABLE_ON
                #endif // E_STEPPERS > 4
              #endif // E_STEPPERS > 3
            #endif // E_STEPPERS > 2
          #endif // E_STEPPERS > 1
      ) {
        lastMotorOn = ms; //... set time to NOW so the fan will turn on
      }
      // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
      uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
      // allows digital or PWM fan output to be used (see M42 handling)
      WRITE(CONTROLLER_FAN_PIN, speed);
      analogWrite(CONTROLLER_FAN_PIN, speed);
    }
  }
#endif // USE_CONTROLLER_FAN
#if ENABLED(MORGAN_SCARA)
  /**
   * Morgan SCARA Forward Kinematics. Results in cartes[].
   * Maths and first version by QHARLEY.
   * Integrated into Marlin and slightly restructured by Joachim Cerny.
   */
  void forward_kinematics_SCARA(const float &a, const float &b) {
    float a_sin = sin(RADIANS(a)) * L1,
          a_cos = cos(RADIANS(a)) * L1,
          b_sin = sin(RADIANS(b)) * L2,
          b_cos = cos(RADIANS(b)) * L2;
    cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X;  //theta
    cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y;  //theta+phi
    /*
      SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
      SERIAL_ECHOPAIR(" b=", b);
      SERIAL_ECHOPAIR(" a_sin=", a_sin);
      SERIAL_ECHOPAIR(" a_cos=", a_cos);
      SERIAL_ECHOPAIR(" b_sin=", b_sin);
      SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
      SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
      SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
    //*/
  }
  /**
   * Morgan SCARA Inverse Kinematics. Results in delta[].
   *
   * See http://forums.reprap.org/read.php?185,283327
   *
   * Maths and first version by QHARLEY.
   * Integrated into Marlin and slightly restructured by Joachim Cerny.
   */
  void inverse_kinematics(const float logical[XYZ]) {
    static float C2, S2, SK1, SK2, THETA, PSI;
    float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X,  // Translate SCARA to standard X Y
          sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y;  // With scaling factor.
    if (L1 == L2)
      C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
    else
      C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
    S2 = sqrt(1 - sq(C2));
    // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
    SK1 = L1 + L2 * C2;
    // Rotated Arm2 gives the distance from Arm1 to Arm2
    SK2 = L2 * S2;
    // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
    THETA = atan2(SK1, SK2) - atan2(sx, sy);
    // Angle of Arm2
    PSI = atan2(S2, C2);
    delta[A_AXIS] = DEGREES(THETA);        // theta is support arm angle
    delta[B_AXIS] = DEGREES(THETA + PSI);  // equal to sub arm angle (inverted motor)
    delta[C_AXIS] = logical[Z_AXIS];
    /*
      DEBUG_POS("SCARA IK", logical);
      DEBUG_POS("SCARA IK", delta);
      SERIAL_ECHOPAIR("  SCARA (x,y) ", sx);
      SERIAL_ECHOPAIR(",", sy);
      SERIAL_ECHOPAIR(" C2=", C2);
      SERIAL_ECHOPAIR(" S2=", S2);
      SERIAL_ECHOPAIR(" Theta=", THETA);
      SERIAL_ECHOLNPAIR(" Phi=", PHI);
    //*/
  }
#endif // MORGAN_SCARA
#if ENABLED(TEMP_STAT_LEDS)
  static bool red_led = false;
  static millis_t next_status_led_update_ms = 0;
  void handle_status_leds(void) {
    if (ELAPSED(millis(), next_status_led_update_ms)) {
      next_status_led_update_ms += 500; // Update every 0.5s
      float max_temp = 0.0;
      #if HAS_TEMP_BED
        max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
      #endif
      HOTEND_LOOP()
        max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
      bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
      if (new_led != red_led) {
        red_led = new_led;
        #if PIN_EXISTS(STAT_LED_RED)
          WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
          #if PIN_EXISTS(STAT_LED_BLUE)
            WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
          #endif
        #else
          WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
        #endif
      }
    }
  }
#endif
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
  void handle_filament_runout() {
    if (!filament_ran_out) {
      filament_ran_out = true;
      enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
      stepper.synchronize();
    }
  }
#endif // FILAMENT_RUNOUT_SENSOR
#if ENABLED(FAST_PWM_FAN)
  void setPwmFrequency(uint8_t pin, int val) {
    val &= 0x07;
    switch (digitalPinToTimer(pin)) {
      #ifdef TCCR0A
        case TIMER0A:
        case TIMER0B:
          //_SET_CS(0, val);
          break;
      #endif
      #ifdef TCCR1A
        case TIMER1A:
        case TIMER1B:
          //_SET_CS(1, val);
          break;
      #endif
      #ifdef TCCR2
        case TIMER2:
        case TIMER2:
          _SET_CS(2, val);
          break;
      #endif
      #ifdef TCCR2A
        case TIMER2A:
        case TIMER2B:
          _SET_CS(2, val);
          break;
      #endif
      #ifdef TCCR3A
        case TIMER3A:
        case TIMER3B:
        case TIMER3C:
          _SET_CS(3, val);
          break;
      #endif
      #ifdef TCCR4A
        case TIMER4A:
        case TIMER4B:
        case TIMER4C:
          _SET_CS(4, val);
          break;
      #endif
      #ifdef TCCR5A
        case TIMER5A:
        case TIMER5B:
        case TIMER5C:
          _SET_CS(5, val);
          break;
      #endif
    }
  }
#endif // FAST_PWM_FAN
float calculate_volumetric_multiplier(float diameter) {
  if (!volumetric_enabled || diameter == 0) return 1.0;
  return 1.0 / (M_PI * sq(diameter * 0.5));
}
void calculate_volumetric_multipliers() {
  for (uint8_t i = 0; i < COUNT(filament_size); i++)
    volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
}
void enable_all_steppers() {
  enable_X();
  enable_Y();
  enable_Z();
  enable_E0();
  enable_E1();
  enable_E2();
  enable_E3();
  enable_E4();
}
void disable_e_steppers() {
  disable_E0();
  disable_E1();
  disable_E2();
  disable_E3();
  disable_E4();
}
void disable_all_steppers() {
  disable_X();
  disable_Y();
  disable_Z();
  disable_e_steppers();
}
#if ENABLED(HAVE_TMC2130)
  void automatic_current_control(TMC2130Stepper &st, String axisID) {
    // Check otpw even if we don't use automatic control. Allows for flag inspection.
    const bool is_otpw = st.checkOT();
    // Report if a warning was triggered
    static bool previous_otpw = false;
    if (is_otpw && !previous_otpw) {
      char timestamp[10];
      duration_t elapsed = print_job_timer.duration();
      const bool has_days = (elapsed.value > 60*60*24L);
      (void)elapsed.toDigital(timestamp, has_days);
      SERIAL_ECHO(timestamp);
      SERIAL_ECHO(": ");
      SERIAL_ECHO(axisID);
      SERIAL_ECHOLNPGM(" driver overtemperature warning!");
    }
    previous_otpw = is_otpw;
    #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
      // Return if user has not enabled current control start with M906 S1.
      if (!auto_current_control) return;
      /**
       * Decrease current if is_otpw is true.
       * Bail out if driver is disabled.
       * Increase current if OTPW has not been triggered yet.
       */
      uint16_t current = st.getCurrent();
      if (is_otpw) {
        st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
        #if ENABLED(REPORT_CURRENT_CHANGE)
          SERIAL_ECHO(axisID);
          SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
        #endif
      }
      else if (!st.isEnabled())
        return;
      else if (!is_otpw && !st.getOTPW()) {
        current += CURRENT_STEP;
        if (current <= AUTO_ADJUST_MAX) {
          st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
          #if ENABLED(REPORT_CURRENT_CHANGE)
            SERIAL_ECHO(axisID);
            SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
          #endif
        }
      }
      SERIAL_EOL;
    #endif
  }
  void checkOverTemp() {
    static millis_t next_cOT = 0;
    if (ELAPSED(millis(), next_cOT)) {
      next_cOT = millis() + 5000;
      #if ENABLED(X_IS_TMC2130)
        automatic_current_control(stepperX, "X");
      #endif
      #if ENABLED(Y_IS_TMC2130)
        automatic_current_control(stepperY, "Y");
      #endif
      #if ENABLED(Z_IS_TMC2130)
        automatic_current_control(stepperZ, "Z");
      #endif
      #if ENABLED(X2_IS_TMC2130)
        automatic_current_control(stepperX2, "X2");
      #endif
      #if ENABLED(Y2_IS_TMC2130)
        automatic_current_control(stepperY2, "Y2");
      #endif
      #if ENABLED(Z2_IS_TMC2130)
        automatic_current_control(stepperZ2, "Z2");
      #endif
      #if ENABLED(E0_IS_TMC2130)
        automatic_current_control(stepperE0, "E0");
      #endif
      #if ENABLED(E1_IS_TMC2130)
        automatic_current_control(stepperE1, "E1");
      #endif
      #if ENABLED(E2_IS_TMC2130)
        automatic_current_control(stepperE2, "E2");
      #endif
      #if ENABLED(E3_IS_TMC2130)
        automatic_current_control(stepperE3, "E3");
      #endif
      #if ENABLED(E4_IS_TMC2130)
        automatic_current_control(stepperE4, "E4");
      #endif
      #if ENABLED(E4_IS_TMC2130)
        automatic_current_control(stepperE4);
      #endif
    }
  }
#endif // HAVE_TMC2130
/**
 * Manage several activities:
 *  - Check for Filament Runout
 *  - Keep the command buffer full
 *  - Check for maximum inactive time between commands
 *  - Check for maximum inactive time between stepper commands
 *  - Check if pin CHDK needs to go LOW
 *  - Check for KILL button held down
 *  - Check for HOME button held down
 *  - Check if cooling fan needs to be switched on
 *  - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
 */
void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  #if ENABLED(FILAMENT_RUNOUT_SENSOR)
    if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
      handle_filament_runout();
  #endif
  if (commands_in_queue < BUFSIZE) get_available_commands();
  const millis_t ms = millis();
  if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
    SERIAL_ERROR_START;
    SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
    kill(PSTR(MSG_KILLED));
  }
  // Prevent steppers timing-out in the middle of M600
  #if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
    #define MOVE_AWAY_TEST !move_away_flag
  #else
    #define MOVE_AWAY_TEST true
  #endif
  if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
      && !ignore_stepper_queue && !planner.blocks_queued()) {
    #if ENABLED(DISABLE_INACTIVE_X)
      disable_X();
    #endif
    #if ENABLED(DISABLE_INACTIVE_Y)
      disable_Y();
    #endif
    #if ENABLED(DISABLE_INACTIVE_Z)
      disable_Z();
    #endif
    #if ENABLED(DISABLE_INACTIVE_E)
      disable_e_steppers();
    #endif
  }
  #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
    if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
      chdkActive = false;
      WRITE(CHDK, LOW);
    }
  #endif
  #if HAS_KILL
    // Check if the kill button was pressed and wait just in case it was an accidental
    // key kill key press
    // -------------------------------------------------------------------------------
    static int killCount = 0;   // make the inactivity button a bit less responsive
    const int KILL_DELAY = 750;
    if (!READ(KILL_PIN))
      killCount++;
    else if (killCount > 0)
      killCount--;
    // Exceeded threshold and we can confirm that it was not accidental
    // KILL the machine
    // ----------------------------------------------------------------
    if (killCount >= KILL_DELAY) {
      SERIAL_ERROR_START;
      SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
      kill(PSTR(MSG_KILLED));
    }
  #endif
  #if HAS_HOME
    // Check to see if we have to home, use poor man's debouncer
    // ---------------------------------------------------------
    static int homeDebounceCount = 0;   // poor man's debouncing count
    const int HOME_DEBOUNCE_DELAY = 2500;
    if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
      if (!homeDebounceCount) {
        enqueue_and_echo_commands_P(PSTR("G28"));
        LCD_MESSAGEPGM(MSG_AUTO_HOME);
      }
      if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
        homeDebounceCount++;
      else
        homeDebounceCount = 0;
    }
  #endif
  #if ENABLED(USE_CONTROLLER_FAN)
    controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  #endif
  #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
    if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
      && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
      bool oldstatus;
      #if ENABLED(SWITCHING_EXTRUDER)
        oldstatus = E0_ENABLE_READ;
        enable_E0();
      #else // !SWITCHING_EXTRUDER
        switch (active_extruder) {
          case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break;
          #if E_STEPPERS > 1
            case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
            #if E_STEPPERS > 2
              case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
              #if E_STEPPERS > 3
                case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
                #if E_STEPPERS > 4
                  case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
                #endif // E_STEPPERS > 4
              #endif // E_STEPPERS > 3
            #endif // E_STEPPERS > 2
          #endif // E_STEPPERS > 1
        }
      #endif // !SWITCHING_EXTRUDER
      previous_cmd_ms = ms; // refresh_cmd_timeout()
      const float olde = current_position[E_AXIS];
      current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
      planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
      current_position[E_AXIS] = olde;
      planner.set_e_position_mm(olde);
      stepper.synchronize();
      #if ENABLED(SWITCHING_EXTRUDER)
        E0_ENABLE_WRITE(oldstatus);
      #else
        switch (active_extruder) {
          case 0: E0_ENABLE_WRITE(oldstatus); break;
          #if E_STEPPERS > 1
            case 1: E1_ENABLE_WRITE(oldstatus); break;
            #if E_STEPPERS > 2
              case 2: E2_ENABLE_WRITE(oldstatus); break;
              #if E_STEPPERS > 3
                case 3: E3_ENABLE_WRITE(oldstatus); break;
                #if E_STEPPERS > 4
                  case 4: E4_ENABLE_WRITE(oldstatus); break;
                #endif // E_STEPPERS > 4
              #endif // E_STEPPERS > 3
            #endif // E_STEPPERS > 2
          #endif // E_STEPPERS > 1
        }
      #endif // !SWITCHING_EXTRUDER
    }
  #endif // EXTRUDER_RUNOUT_PREVENT
  #if ENABLED(DUAL_X_CARRIAGE)
    // handle delayed move timeout
    if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
      // travel moves have been received so enact them
      delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
      set_destination_to_current();
      prepare_move_to_destination();
    }
  #endif
  #if ENABLED(TEMP_STAT_LEDS)
    handle_status_leds();
  #endif
  #if ENABLED(HAVE_TMC2130)
    checkOverTemp();
  #endif
  planner.check_axes_activity();
}
/**
 * Standard idle routine keeps the machine alive
 */
void idle(
  #if ENABLED(ADVANCED_PAUSE_FEATURE)
    bool no_stepper_sleep/*=false*/
  #endif
) {
  lcd_update();
  host_keepalive();
  #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
    auto_report_temperatures();
  #endif
  manage_inactivity(
    #if ENABLED(ADVANCED_PAUSE_FEATURE)
      no_stepper_sleep
    #endif
  );
  thermalManager.manage_heater();
  #if ENABLED(PRINTCOUNTER)
    print_job_timer.tick();
  #endif
  #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
    buzzer.tick();
  #endif
}
/**
 * Kill all activity and lock the machine.
 * After this the machine will need to be reset.
 */
void kill(const char* lcd_msg) {
  SERIAL_ERROR_START;
  SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  thermalManager.disable_all_heaters();
  disable_all_steppers();
  #if ENABLED(ULTRA_LCD)
    kill_screen(lcd_msg);
  #else
    UNUSED(lcd_msg);
  #endif
  _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  cli(); // Stop interrupts
  _delay_ms(250); //Wait to ensure all interrupts routines stopped
  thermalManager.disable_all_heaters(); //turn off heaters again
  #if HAS_POWER_SWITCH
    SET_INPUT(PS_ON_PIN);
  #endif
  suicide();
  while (1) {
    #if ENABLED(USE_WATCHDOG)
      watchdog_reset();
    #endif
  } // Wait for reset
}
/**
 * Turn off heaters and stop the print in progress
 * After a stop the machine may be resumed with M999
 */
void stop() {
  thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
  #if ENABLED(PROBING_FANS_OFF)
    if (fans_paused) fans_pause(false); // put things back the way they were
  #endif
  if (IsRunning()) {
    Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
    SERIAL_ERROR_START;
    SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
    LCD_MESSAGEPGM(MSG_STOPPED);
    safe_delay(350);       // allow enough time for messages to get out before stopping
    Running = false;
  }
}
/**
 * Marlin entry-point: Set up before the program loop
 *  - Set up the kill pin, filament runout, power hold
 *  - Start the serial port
 *  - Print startup messages and diagnostics
 *  - Get EEPROM or default settings
 *  - Initialize managers for:
 *    • temperature
 *    • planner
 *    • watchdog
 *    • stepper
 *    • photo pin
 *    • servos
 *    • LCD controller
 *    • Digipot I2C
 *    • Z probe sled
 *    • status LEDs
 */
void setup() {
  #ifdef DISABLE_JTAG
    // Disable JTAG on AT90USB chips to free up pins for IO
    MCUCR = 0x80;
    MCUCR = 0x80;
  #endif
  #if ENABLED(FILAMENT_RUNOUT_SENSOR)
    setup_filrunoutpin();
  #endif
  setup_killpin();
  setup_powerhold();
  #if HAS_STEPPER_RESET
    disableStepperDrivers();
  #endif
  MYSERIAL.begin(BAUDRATE);
  SERIAL_PROTOCOLLNPGM("start");
  SERIAL_ECHO_START;
  // Check startup - does nothing if bootloader sets MCUSR to 0
  byte mcu = MCUSR;
  if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  MCUSR = 0;
  SERIAL_ECHOPGM(MSG_MARLIN);
  SERIAL_CHAR(' ');
  SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  SERIAL_EOL;
  #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
    SERIAL_ECHO_START;
    SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
    SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
    SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
    SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  #endif
  SERIAL_ECHO_START;
  SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  // Send "ok" after commands by default
  for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  // Load data from EEPROM if available (or use defaults)
  // This also updates variables in the planner, elsewhere
  (void)settings.load();
  #if HAS_M206_COMMAND
    // Initialize current position based on home_offset
    COPY(current_position, home_offset);
  #else
    ZERO(current_position);
  #endif
  // Vital to init stepper/planner equivalent for current_position
  SYNC_PLAN_POSITION_KINEMATIC();
  thermalManager.init();    // Initialize temperature loop
  #if ENABLED(USE_WATCHDOG)
    watchdog_init();
  #endif
  stepper.init();    // Initialize stepper, this enables interrupts!
  servo_init();
  #if HAS_PHOTOGRAPH
    OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  #endif
  #if HAS_CASE_LIGHT
    case_light_on = CASE_LIGHT_DEFAULT_ON;
    case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
    update_case_light();
  #endif
  #if ENABLED(SPINDLE_LASER_ENABLE)
    OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);  // init spindle to off
    #if SPINDLE_DIR_CHANGE
      OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0);  // init rotation to clockwise (M3)
    #endif
    #if ENABLED(SPINDLE_LASER_PWM)
      SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
      analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0);  // set to lowest speed
    #endif
  #endif
  #if HAS_BED_PROBE
    endstops.enable_z_probe(false);
  #endif
  #if ENABLED(USE_CONTROLLER_FAN)
    SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  #endif
  #if HAS_STEPPER_RESET
    enableStepperDrivers();
  #endif
  #if ENABLED(DIGIPOT_I2C)
    digipot_i2c_init();
  #endif
  #if ENABLED(DAC_STEPPER_CURRENT)
    dac_init();
  #endif
  #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
    OUT_WRITE(SOL1_PIN, LOW); // turn it off
  #endif
  setup_homepin();
  #if PIN_EXISTS(STAT_LED_RED)
    OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  #endif
  #if PIN_EXISTS(STAT_LED_BLUE)
    OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  #endif
  #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
    SET_OUTPUT(RGB_LED_R_PIN);
    SET_OUTPUT(RGB_LED_G_PIN);
    SET_OUTPUT(RGB_LED_B_PIN);
    #if ENABLED(RGBW_LED)
      SET_OUTPUT(RGB_LED_W_PIN);
    #endif
  #endif
  lcd_init();
  #if ENABLED(SHOW_BOOTSCREEN)
    #if ENABLED(DOGLCD)
      safe_delay(BOOTSCREEN_TIMEOUT);
    #elif ENABLED(ULTRA_LCD)
      bootscreen();
      #if DISABLED(SDSUPPORT)
        lcd_init();
      #endif
    #endif
  #endif
  #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
    // Initialize mixing to 100% color 1
    for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
      mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
    for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
      for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
        mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  #endif
  #if ENABLED(BLTOUCH)
    // Make sure any BLTouch error condition is cleared
    bltouch_command(BLTOUCH_RESET);
    set_bltouch_deployed(true);
    set_bltouch_deployed(false);
  #endif
  #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
    i2c.onReceive(i2c_on_receive);
    i2c.onRequest(i2c_on_request);
  #endif
  #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
    setup_endstop_interrupts();
  #endif
  #if ENABLED(SWITCHING_EXTRUDER)
    move_extruder_servo(0);  // Initialize extruder servo
  #endif
  #if ENABLED(SWITCHING_NOZZLE)
    move_nozzle_servo(0);  // Initialize nozzle servo
  #endif
}
/**
 * The main Marlin program loop
 *
 *  - Save or log commands to SD
 *  - Process available commands (if not saving)
 *  - Call heater manager
 *  - Call inactivity manager
 *  - Call endstop manager
 *  - Call LCD update
 */
void loop() {
  if (commands_in_queue < BUFSIZE) get_available_commands();
  #if ENABLED(SDSUPPORT)
    card.checkautostart(false);
  #endif
  if (commands_in_queue) {
    #if ENABLED(SDSUPPORT)
      if (card.saving) {
        char* command = command_queue[cmd_queue_index_r];
        if (strstr_P(command, PSTR("M29"))) {
          // M29 closes the file
          card.closefile();
          SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
          ok_to_send();
        }
        else {
          // Write the string from the read buffer to SD
          card.write_command(command);
          if (card.logging)
            process_next_command(); // The card is saving because it's logging
          else
            ok_to_send();
        }
      }
      else
        process_next_command();
    #else
      process_next_command();
    #endif // SDSUPPORT
    // The queue may be reset by a command handler or by code invoked by idle() within a handler
    if (commands_in_queue) {
      --commands_in_queue;
      if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
    }
  }
  endstops.report_state();
  idle();
}