/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #ifndef MARLIN_H #define MARLIN_H #include #include #include #include #include #include #include #include #include #include "MarlinConfig.h" #include "enum.h" #include "types.h" #include "fastio.h" #include "utility.h" #ifdef USBCON #include "HardwareSerial.h" #if ENABLED(BLUETOOTH) #define MYSERIAL bluetoothSerial #else #define MYSERIAL Serial #endif // BLUETOOTH #else #include "MarlinSerial.h" #define MYSERIAL customizedSerial #endif #include "WString.h" #if ENABLED(PRINTCOUNTER) #include "printcounter.h" #else #include "stopwatch.h" #endif extern const char echomagic[] PROGMEM; extern const char errormagic[] PROGMEM; #define SERIAL_CHAR(x) (MYSERIAL.write(x)) #define SERIAL_EOL SERIAL_CHAR('\n') #define SERIAL_PROTOCOLCHAR(x) SERIAL_CHAR(x) #define SERIAL_PROTOCOL(x) (MYSERIAL.print(x)) #define SERIAL_PROTOCOL_F(x,y) (MYSERIAL.print(x,y)) #define SERIAL_PROTOCOLPGM(x) (serialprintPGM(PSTR(x))) #define SERIAL_PROTOCOLLN(x) do{ MYSERIAL.print(x); SERIAL_EOL; }while(0) #define SERIAL_PROTOCOLLNPGM(x) (serialprintPGM(PSTR(x "\n"))) #define SERIAL_PROTOCOLPAIR(name, value) (serial_echopair_P(PSTR(name),(value))) #define SERIAL_PROTOCOLLNPAIR(name, value) do{ SERIAL_PROTOCOLPAIR(name, value); SERIAL_EOL; }while(0) #define SERIAL_ECHO_START (serialprintPGM(echomagic)) #define SERIAL_ECHO(x) SERIAL_PROTOCOL(x) #define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x) #define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x) #define SERIAL_ECHOLNPGM(x) SERIAL_PROTOCOLLNPGM(x) #define SERIAL_ECHOPAIR(name,value) SERIAL_PROTOCOLPAIR(name, value) #define SERIAL_ECHOLNPAIR(name, value) SERIAL_PROTOCOLLNPAIR(name, value) #define SERIAL_ECHO_F(x,y) SERIAL_PROTOCOL_F(x,y) #define SERIAL_ERROR_START (serialprintPGM(errormagic)) #define SERIAL_ERROR(x) SERIAL_PROTOCOL(x) #define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x) #define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x) #define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x) void serial_echopair_P(const char* s_P, const char *v); void serial_echopair_P(const char* s_P, char v); void serial_echopair_P(const char* s_P, int v); void serial_echopair_P(const char* s_P, long v); void serial_echopair_P(const char* s_P, float v); void serial_echopair_P(const char* s_P, double v); void serial_echopair_P(const char* s_P, unsigned int v); void serial_echopair_P(const char* s_P, unsigned long v); FORCE_INLINE void serial_echopair_P(const char* s_P, uint8_t v) { serial_echopair_P(s_P, (int)v); } FORCE_INLINE void serial_echopair_P(const char* s_P, uint16_t v) { serial_echopair_P(s_P, (int)v); } FORCE_INLINE void serial_echopair_P(const char* s_P, bool v) { serial_echopair_P(s_P, (int)v); } FORCE_INLINE void serial_echopair_P(const char* s_P, void *v) { serial_echopair_P(s_P, (unsigned long)v); } // Things to write to serial from Program memory. Saves 400 to 2k of RAM. FORCE_INLINE void serialprintPGM(const char* str) { while (char ch = pgm_read_byte(str++)) MYSERIAL.write(ch); } void idle( #if ENABLED(FILAMENT_CHANGE_FEATURE) bool no_stepper_sleep = false // pass true to keep steppers from disabling on timeout #endif ); void manage_inactivity(bool ignore_stepper_queue = false); #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE) extern bool extruder_duplication_enabled; #endif #if HAS_X2_ENABLE #define enable_x() do{ X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); }while(0) #define disable_x() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0) #elif HAS_X_ENABLE #define enable_x() X_ENABLE_WRITE( X_ENABLE_ON) #define disable_x() do{ X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0) #else #define enable_x() NOOP #define disable_x() NOOP #endif #if HAS_Y2_ENABLE #define enable_y() do{ Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }while(0) #define disable_y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0) #elif HAS_Y_ENABLE #define enable_y() Y_ENABLE_WRITE( Y_ENABLE_ON) #define disable_y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0) #else #define enable_y() NOOP #define disable_y() NOOP #endif #if HAS_Z2_ENABLE #define enable_z() do{ Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }while(0) #define disable_z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0) #elif HAS_Z_ENABLE #define enable_z() Z_ENABLE_WRITE( Z_ENABLE_ON) #define disable_z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0) #else #define enable_z() NOOP #define disable_z() NOOP #endif #if ENABLED(MIXING_EXTRUDER) /** * Mixing steppers synchronize their enable (and direction) together */ #if MIXING_STEPPERS > 3 #define enable_e0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); } #define disable_e0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); } #elif MIXING_STEPPERS > 2 #define enable_e0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); } #define disable_e0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); } #else #define enable_e0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); } #define disable_e0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); } #endif #define enable_e1() NOOP #define disable_e1() NOOP #define enable_e2() NOOP #define disable_e2() NOOP #define enable_e3() NOOP #define disable_e3() NOOP #else // !MIXING_EXTRUDER #if HAS_E0_ENABLE #define enable_e0() E0_ENABLE_WRITE( E_ENABLE_ON) #define disable_e0() E0_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_e0() NOOP #define disable_e0() NOOP #endif #if E_STEPPERS > 1 && HAS_E1_ENABLE #define enable_e1() E1_ENABLE_WRITE( E_ENABLE_ON) #define disable_e1() E1_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_e1() NOOP #define disable_e1() NOOP #endif #if E_STEPPERS > 2 && HAS_E2_ENABLE #define enable_e2() E2_ENABLE_WRITE( E_ENABLE_ON) #define disable_e2() E2_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_e2() NOOP #define disable_e2() NOOP #endif #if E_STEPPERS > 3 && HAS_E3_ENABLE #define enable_e3() E3_ENABLE_WRITE( E_ENABLE_ON) #define disable_e3() E3_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_e3() NOOP #define disable_e3() NOOP #endif #endif // !MIXING_EXTRUDER #if ENABLED(G38_PROBE_TARGET) extern bool G38_move, // flag to tell the interrupt handler that a G38 command is being run G38_endstop_hit; // flag from the interrupt handler to indicate if the endstop went active #endif /** * The axis order in all axis related arrays is X, Y, Z, E */ #define _AXIS(AXIS) AXIS ##_AXIS void enable_all_steppers(); void disable_e_steppers(); void disable_all_steppers(); void FlushSerialRequestResend(); void ok_to_send(); void kill(const char*); void quickstop_stepper(); #if ENABLED(FILAMENT_RUNOUT_SENSOR) void handle_filament_runout(); #endif extern uint8_t marlin_debug_flags; #define DEBUGGING(F) (marlin_debug_flags & (DEBUG_## F)) extern bool Running; inline bool IsRunning() { return Running; } inline bool IsStopped() { return !Running; } bool enqueue_and_echo_command(const char* cmd, bool say_ok=false); //put a single ASCII command at the end of the current buffer or return false when it is full void enqueue_and_echo_command_now(const char* cmd); // enqueue now, only return when the command has been enqueued void enqueue_and_echo_commands_P(const char* cmd); //put one or many ASCII commands at the end of the current buffer, read from flash void clear_command_queue(); extern millis_t previous_cmd_ms; inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); } #if ENABLED(FAST_PWM_FAN) void setPwmFrequency(uint8_t pin, int val); #endif /** * Feedrate scaling and conversion */ extern int feedrate_percentage; #define MMM_TO_MMS(MM_M) ((MM_M)/60.0) #define MMS_TO_MMM(MM_S) ((MM_S)*60.0) #define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01) extern bool axis_relative_modes[]; extern bool volumetric_enabled; extern int flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder. extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner extern bool axis_known_position[XYZ]; // axis[n].is_known extern bool axis_homed[XYZ]; // axis[n].is_homed extern volatile bool wait_for_heatup; #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL) extern volatile bool wait_for_user; #endif extern float current_position[NUM_AXIS]; // Workspace offsets #if DISABLED(NO_WORKSPACE_OFFSETS) extern float position_shift[XYZ], home_offset[XYZ], workspace_offset[XYZ]; #define LOGICAL_POSITION(POS, AXIS) ((POS) + workspace_offset[AXIS]) #define RAW_POSITION(POS, AXIS) ((POS) - workspace_offset[AXIS]) #else #define LOGICAL_POSITION(POS, AXIS) (POS) #define RAW_POSITION(POS, AXIS) (POS) #endif #define LOGICAL_X_POSITION(POS) LOGICAL_POSITION(POS, X_AXIS) #define LOGICAL_Y_POSITION(POS) LOGICAL_POSITION(POS, Y_AXIS) #define LOGICAL_Z_POSITION(POS) LOGICAL_POSITION(POS, Z_AXIS) #define RAW_X_POSITION(POS) RAW_POSITION(POS, X_AXIS) #define RAW_Y_POSITION(POS) RAW_POSITION(POS, Y_AXIS) #define RAW_Z_POSITION(POS) RAW_POSITION(POS, Z_AXIS) #define RAW_CURRENT_POSITION(AXIS) RAW_POSITION(current_position[AXIS], AXIS) #if HOTENDS > 1 extern float hotend_offset[XYZ][HOTENDS]; #endif // Software Endstops extern float soft_endstop_min[XYZ]; extern float soft_endstop_max[XYZ]; #if HAS_SOFTWARE_ENDSTOPS extern bool soft_endstops_enabled; void clamp_to_software_endstops(float target[XYZ]); #else #define soft_endstops_enabled false #define clamp_to_software_endstops(x) NOOP #endif #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA) void update_software_endstops(const AxisEnum axis); #endif // GCode support for external objects bool code_seen(char); int code_value_int(); float code_value_temp_abs(); float code_value_temp_diff(); #if IS_KINEMATIC extern float delta[ABC]; void inverse_kinematics(const float logical[XYZ]); #endif #if ENABLED(DELTA) extern float endstop_adj[ABC], delta_radius, delta_diagonal_rod, delta_segments_per_second, delta_diagonal_rod_trim[ABC], delta_tower_angle_trim[ABC], delta_clip_start_height; void recalc_delta_settings(float radius, float diagonal_rod); #elif IS_SCARA void forward_kinematics_SCARA(const float &a, const float &b); #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) extern int bilinear_grid_spacing[2], bilinear_start[2]; extern float bed_level_grid[ABL_GRID_MAX_POINTS_X][ABL_GRID_MAX_POINTS_Y]; float bilinear_z_offset(float logical[XYZ]); void set_bed_leveling_enabled(bool enable=true); #endif #if PLANNER_LEVELING void reset_bed_level(); #endif #if ENABLED(Z_DUAL_ENDSTOPS) extern float z_endstop_adj; #endif #if HAS_BED_PROBE extern float zprobe_zoffset; #endif #if ENABLED(HOST_KEEPALIVE_FEATURE) extern MarlinBusyState busy_state; #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0) #else #define KEEPALIVE_STATE(n) NOOP #endif #if FAN_COUNT > 0 extern int fanSpeeds[FAN_COUNT]; #endif #if ENABLED(BARICUDA) extern int baricuda_valve_pressure; extern int baricuda_e_to_p_pressure; #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) extern bool filament_sensor; // Flag that filament sensor readings should control extrusion extern float filament_width_nominal, // Theoretical filament diameter i.e., 3.00 or 1.75 filament_width_meas; // Measured filament diameter extern int8_t measurement_delay[]; // Ring buffer to delay measurement extern int filwidth_delay_index[2]; // Ring buffer indexes. Used by planner, temperature, and main code extern int meas_delay_cm; // Delay distance #endif #if ENABLED(FILAMENT_CHANGE_FEATURE) extern FilamentChangeMenuResponse filament_change_menu_response; #endif #if ENABLED(PID_EXTRUSION_SCALING) extern int lpq_len; #endif #if ENABLED(FWRETRACT) extern bool autoretract_enabled; extern bool retracted[EXTRUDERS]; // extruder[n].retracted extern float retract_length, retract_length_swap, retract_feedrate_mm_s, retract_zlift; extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate_mm_s; #endif // Print job timer #if ENABLED(PRINTCOUNTER) extern PrintCounter print_job_timer; #else extern Stopwatch print_job_timer; #endif // Handling multiple extruders pins extern uint8_t active_extruder; #if HAS_TEMP_HOTEND || HAS_TEMP_BED void print_heaterstates(); #endif #if ENABLED(MIXING_EXTRUDER) extern float mixing_factor[MIXING_STEPPERS]; #endif void calculate_volumetric_multipliers(); /** * Blocking movement and shorthand functions */ void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s=0.0); void do_blocking_move_to_x(const float &x, const float &fr_mm_s=0.0); void do_blocking_move_to_z(const float &z, const float &fr_mm_s=0.0); void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s=0.0); #endif //MARLIN_H