/** * Marlin 3D Printer Firmware * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ #ifndef UNIFIED_BED_LEVELING_H #define UNIFIED_BED_LEVELING_H #include "MarlinConfig.h" #if ENABLED(AUTO_BED_LEVELING_UBL) //#define UBL_DEVEL_DEBUGGING #include "Marlin.h" #include "planner.h" #include "math.h" #include "vector_3.h" #include "configuration_store.h" #define UBL_VERSION "1.01" #define UBL_OK false #define UBL_ERR true #define USE_NOZZLE_AS_REFERENCE 0 #define USE_PROBE_AS_REFERENCE 1 // ubl_motion.cpp #if ENABLED(UBL_DEVEL_DEBUGGING) void debug_current_and_destination(const char * const title); #else FORCE_INLINE void debug_current_and_destination(const char * const title) { UNUSED(title); } #endif // ubl_G29.cpp enum MeshPointType { INVALID, REAL, SET_IN_BITMAP }; // External references char *ftostr43sign(const float&, char); void home_all_axes(); extern uint8_t ubl_cnt; /////////////////////////////////////////////////////////////////////////////////////////////////////// #if ENABLED(ULTRA_LCD) extern char lcd_status_message[]; void lcd_quick_feedback(); #endif #define MESH_X_DIST (float(MESH_MAX_X - (MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1)) #define MESH_Y_DIST (float(MESH_MAX_Y - (MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1)) class unified_bed_leveling { private: static int g29_verbose_level, g29_phase_value, g29_repetition_cnt, g29_storage_slot, g29_map_type; static bool g29_c_flag, g29_x_flag, g29_y_flag; static float g29_x_pos, g29_y_pos, g29_card_thickness, g29_constant; #if HAS_BED_PROBE static int g29_grid_size; #endif #if ENABLED(NEWPANEL) static void move_z_with_encoder(const float &multiplier); static float measure_point_with_encoder(); static float measure_business_card_thickness(const float&); static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool); static void fine_tune_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map); #endif static bool g29_parameter_parsing(); static void find_mean_mesh_height(); static void shift_mesh_height(); static void probe_entire_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest); static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3); static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map); static void g29_what_command(); static void g29_eeprom_dump(); static void g29_compare_current_mesh_to_stored_mesh(); static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir); static void smart_fill_mesh(); public: static void echo_name(); static void report_state(); static void save_ubl_active_state_and_disable(); static void restore_ubl_active_state_and_leave(); static void display_map(const int); static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, uint16_t[16]); static mesh_index_pair find_furthest_invalid_mesh_point(); static void reset(); static void invalidate(); static void set_all_mesh_points_to_value(const float); static bool sanity_check(); static void G29() _O0; // O0 for no optimization static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560 static int8_t storage_slot; static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // 15 is the maximum nubmer of grid points supported + 1 safety margin for now, // until determinism prevails constexpr static float _mesh_index_to_xpos[16] PROGMEM = { MESH_MIN_X + 0 * (MESH_X_DIST), MESH_MIN_X + 1 * (MESH_X_DIST), MESH_MIN_X + 2 * (MESH_X_DIST), MESH_MIN_X + 3 * (MESH_X_DIST), MESH_MIN_X + 4 * (MESH_X_DIST), MESH_MIN_X + 5 * (MESH_X_DIST), MESH_MIN_X + 6 * (MESH_X_DIST), MESH_MIN_X + 7 * (MESH_X_DIST), MESH_MIN_X + 8 * (MESH_X_DIST), MESH_MIN_X + 9 * (MESH_X_DIST), MESH_MIN_X + 10 * (MESH_X_DIST), MESH_MIN_X + 11 * (MESH_X_DIST), MESH_MIN_X + 12 * (MESH_X_DIST), MESH_MIN_X + 13 * (MESH_X_DIST), MESH_MIN_X + 14 * (MESH_X_DIST), MESH_MIN_X + 15 * (MESH_X_DIST) }; constexpr static float _mesh_index_to_ypos[16] PROGMEM = { MESH_MIN_Y + 0 * (MESH_Y_DIST), MESH_MIN_Y + 1 * (MESH_Y_DIST), MESH_MIN_Y + 2 * (MESH_Y_DIST), MESH_MIN_Y + 3 * (MESH_Y_DIST), MESH_MIN_Y + 4 * (MESH_Y_DIST), MESH_MIN_Y + 5 * (MESH_Y_DIST), MESH_MIN_Y + 6 * (MESH_Y_DIST), MESH_MIN_Y + 7 * (MESH_Y_DIST), MESH_MIN_Y + 8 * (MESH_Y_DIST), MESH_MIN_Y + 9 * (MESH_Y_DIST), MESH_MIN_Y + 10 * (MESH_Y_DIST), MESH_MIN_Y + 11 * (MESH_Y_DIST), MESH_MIN_Y + 12 * (MESH_Y_DIST), MESH_MIN_Y + 13 * (MESH_Y_DIST), MESH_MIN_Y + 14 * (MESH_Y_DIST), MESH_MIN_Y + 15 * (MESH_Y_DIST) }; #if ENABLED(ULTIPANEL) static bool lcd_map_control; #endif static volatile int encoder_diff; // Volatile because it's changed at interrupt time. unified_bed_leveling(); FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } static int8_t get_cell_index_x(const float &x) { const int8_t cx = (x - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)); return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX } // position. But with this defined this way, it is possible // to extrapolate off of this point even further out. Probably // that is OK because something else should be keeping that from // happening and should not be worried about at this level. static int8_t get_cell_index_y(const float &y) { const int8_t cy = (y - (MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST)); return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX } // position. But with this defined this way, it is possible // to extrapolate off of this point even further out. Probably // that is OK because something else should be keeping that from // happening and should not be worried about at this level. static int8_t find_closest_x_index(const float &x) { const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST)); return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1; } static int8_t find_closest_y_index(const float &y) { const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST)); return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1; } /** * z2 --| * z0 | | * | | + (z2-z1) * z1 | | | * ---+-------------+--------+-- --| * a1 a0 a2 * |<---delta_a---------->| * * calc_z0 is the basis for all the Mesh Based correction. It is used to * find the expected Z Height at a position between two known Z-Height locations. * * It is fairly expensive with its 4 floating point additions and 2 floating point * multiplications. */ FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1); } /** * z_correction_for_x_on_horizontal_mesh_line is an optimization for * the case where the printer is making a vertical line that only crosses horizontal mesh lines. */ inline static float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) { if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1_i") : PSTR("yi") ); SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(rx0=", rx0); SERIAL_ECHOPAIR(",x1_i=", x1_i); SERIAL_ECHOPAIR(",yi=", yi); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif return NAN; } const float xratio = (rx0 - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)), z1 = z_values[x1_i][yi]; return z1 + xratio * (z_values[min(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array // If it is, it is clamped to the last element of the // z_values[][] array and no correction is applied. } // // See comments above for z_correction_for_x_on_horizontal_mesh_line // inline static float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) { if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("y1_i") ); SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ry0=", ry0); SERIAL_ECHOPAIR(", xi=", xi); SERIAL_ECHOPAIR(", y1_i=", y1_i); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif return NAN; } const float yratio = (ry0 - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)), z1 = z_values[xi][y1_i]; return z1 + yratio * (z_values[xi][min(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array // If it is, it is clamped to the last element of the // z_values[][] array and no correction is applied. } /** * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first * does a linear interpolation along both of the bounding X-Mesh-Lines to find the * Z-Height at both ends. Then it does a linear interpolation of these heights based * on the Y position within the cell. */ static float get_z_correction(const float &rx0, const float &ry0) { const int8_t cx = get_cell_index_x(rx0), cy = get_cell_index_y(ry0); // return values are clamped const float z1 = calc_z0(rx0, mesh_index_to_xpos(cx), z_values[cx][cy], mesh_index_to_xpos(cx + 1), z_values[min(cx, GRID_MAX_POINTS_X - 2) + 1][cy]); const float z2 = calc_z0(rx0, mesh_index_to_xpos(cx), z_values[cx][min(cy, GRID_MAX_POINTS_Y - 2) + 1], mesh_index_to_xpos(cx + 1), z_values[min(cx, GRID_MAX_POINTS_X - 2) + 1][min(cy, GRID_MAX_POINTS_Y - 2) + 1]); float z0 = calc_z0(ry0, mesh_index_to_ypos(cy), z1, mesh_index_to_ypos(cy + 1), z2); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(MESH_ADJUST)) { SERIAL_ECHOPAIR(" raw get_z_correction(", rx0); SERIAL_CHAR(','); SERIAL_ECHO(ry0); SERIAL_ECHOPGM(") = "); SERIAL_ECHO_F(z0, 6); } #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(MESH_ADJUST)) { SERIAL_ECHOPGM(" >>>---> "); SERIAL_ECHO_F(z0, 6); SERIAL_EOL(); } #endif if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN z0 = 0.0; // in ubl.z_values[][] and propagate through the // calculations. If our correction is NAN, we throw it out // because part of the Mesh is undefined and we don't have the // information we need to complete the height correction. #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(MESH_ADJUST)) { SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", rx0); SERIAL_CHAR(','); SERIAL_ECHO(ry0); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif } return z0; } FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) { return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : MESH_MIN_X + i * (MESH_X_DIST); } FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) { return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST); } #if UBL_SEGMENTED static bool prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate); #else static void line_to_destination_cartesian(const float &fr, const uint8_t e); #endif #define _CMPZ(a,b) (z_values[a][b] == z_values[a][b+1]) #define CMPZ(a) (_CMPZ(a, 0) && _CMPZ(a, 1)) #define ZZER(a) (z_values[a][0] == 0) FORCE_INLINE bool mesh_is_valid() { return !( ( CMPZ(0) && CMPZ(1) && CMPZ(2) // adjacent z values all equal? && ZZER(0) && ZZER(1) && ZZER(2) // all zero at the edge? ) || isnan(z_values[0][0]) ); } }; // class unified_bed_leveling extern unified_bed_leveling ubl; FORCE_INLINE void gcode_G29() { ubl.G29(); } #endif // AUTO_BED_LEVELING_UBL #endif // UNIFIED_BED_LEVELING_H