#ifndef ULTRALCD_IMPLEMENTATION_HITACHI_HD44780_H #define ULTRALCD_IMPLEMENTATION_HITACHI_HD44780_H /** * Implementation of the LCD display routines for a Hitachi HD44780 display. These are common LCD character displays. **/ static unsigned char blink = 0; // Variable for animation extern volatile uint8_t buttons; //an extended version of the last checked buttons in a bit array. //////////////////////////////////// // Setup button and encode mappings for each panel (into 'buttons' variable // // This is just to map common functions (across different panels) onto the same // macro name. The mapping is independent of whether the button is directly connected or // via a shift/i2c register. #if ENABLED(ULTIPANEL) // All UltiPanels might have an encoder - so this is always be mapped onto first two bits #define BLEN_B 1 #define BLEN_A 0 #define EN_B (_BV(BLEN_B)) // The two encoder pins are connected through BTN_EN1 and BTN_EN2 #define EN_A (_BV(BLEN_A)) #if defined(BTN_ENC) && BTN_ENC > -1 // encoder click is directly connected #define BLEN_C 2 #define EN_C (_BV(BLEN_C)) #endif // // Setup other button mappings of each panel // #if ENABLED(LCD_I2C_VIKI) #define B_I2C_BTN_OFFSET 3 // (the first three bit positions reserved for EN_A, EN_B, EN_C) // button and encoder bit positions within 'buttons' #define B_LE (BUTTON_LEFT< -1 // the pause/stop/restart button is connected to BTN_ENC when used #define B_ST (EN_C) // Map the pause/stop/resume button into its normalized functional name #undef LCD_CLICKED #define LCD_CLICKED (buttons&(B_MI|B_RI|B_ST)) // pause/stop button also acts as click until we implement proper pause/stop. #else #undef LCD_CLICKED #define LCD_CLICKED (buttons&(B_MI|B_RI)) #endif // I2C buttons take too long to read inside an interrupt context and so we read them during lcd_update #define LCD_HAS_SLOW_BUTTONS #elif ENABLED(LCD_I2C_PANELOLU2) // encoder click can be read through I2C if not directly connected #if BTN_ENC <= 0 #define B_I2C_BTN_OFFSET 3 // (the first three bit positions reserved for EN_A, EN_B, EN_C) #define B_MI (PANELOLU2_ENCODER_C< #include #include #define LCD_CLASS LiquidCrystal_I2C LCD_CLASS lcd(LCD_I2C_ADDRESS, LCD_I2C_PIN_EN, LCD_I2C_PIN_RW, LCD_I2C_PIN_RS, LCD_I2C_PIN_D4, LCD_I2C_PIN_D5, LCD_I2C_PIN_D6, LCD_I2C_PIN_D7); #elif ENABLED(LCD_I2C_TYPE_MCP23017) //for the LED indicators (which maybe mapped to different things in lcd_implementation_update_indicators()) #define LED_A 0x04 //100 #define LED_B 0x02 //010 #define LED_C 0x01 //001 #define LCD_HAS_STATUS_INDICATORS #include #include #define LCD_CLASS LiquidTWI2 #if ENABLED(DETECT_DEVICE) LCD_CLASS lcd(LCD_I2C_ADDRESS, 1); #else LCD_CLASS lcd(LCD_I2C_ADDRESS); #endif #elif ENABLED(LCD_I2C_TYPE_MCP23008) #include #include #define LCD_CLASS LiquidTWI2 #if ENABLED(DETECT_DEVICE) LCD_CLASS lcd(LCD_I2C_ADDRESS, 1); #else LCD_CLASS lcd(LCD_I2C_ADDRESS); #endif #elif ENABLED(LCD_I2C_TYPE_PCA8574) #include #define LCD_CLASS LiquidCrystal_I2C LCD_CLASS lcd(LCD_I2C_ADDRESS, LCD_WIDTH, LCD_HEIGHT); // 2 wire Non-latching LCD SR from: // https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection #elif ENABLED(SR_LCD_2W_NL) extern "C" void __cxa_pure_virtual() { while (1); } #include #include #define LCD_CLASS LiquidCrystal_SR LCD_CLASS lcd(SR_DATA_PIN, SR_CLK_PIN); #else // Standard directly connected LCD implementations #include #define LCD_CLASS LiquidCrystal LCD_CLASS lcd(LCD_PINS_RS, LCD_PINS_ENABLE, LCD_PINS_D4, LCD_PINS_D5, LCD_PINS_D6, LCD_PINS_D7); //RS,Enable,D4,D5,D6,D7 #endif #include "utf_mapper.h" #if ENABLED(SHOW_BOOTSCREEN) static void bootscreen(); static bool show_bootscreen = true; #endif #if ENABLED(LCD_PROGRESS_BAR) static millis_t progress_bar_ms = 0; #if PROGRESS_MSG_EXPIRE > 0 static millis_t expire_status_ms = 0; #endif #define LCD_STR_PROGRESS "\x03\x04\x05" #endif #if ENABLED(LCD_HAS_STATUS_INDICATORS) static void lcd_implementation_update_indicators(); #endif static void lcd_set_custom_characters( #if ENABLED(LCD_PROGRESS_BAR) bool progress_bar_set = true #endif ) { byte bedTemp[8] = { B00000, B11111, B10101, B10001, B10101, B11111, B00000, B00000 }; //thanks Sonny Mounicou byte degree[8] = { B01100, B10010, B10010, B01100, B00000, B00000, B00000, B00000 }; byte thermometer[8] = { B00100, B01010, B01010, B01010, B01010, B10001, B10001, B01110 }; byte uplevel[8] = { B00100, B01110, B11111, B00100, B11100, B00000, B00000, B00000 }; //thanks joris byte refresh[8] = { B00000, B00110, B11001, B11000, B00011, B10011, B01100, B00000, }; //thanks joris byte folder[8] = { B00000, B11100, B11111, B10001, B10001, B11111, B00000, B00000 }; //thanks joris byte feedrate[8] = { B11100, B10000, B11000, B10111, B00101, B00110, B00101, B00000 }; //thanks Sonny Mounicou byte clock[8] = { B00000, B01110, B10011, B10101, B10001, B01110, B00000, B00000 }; //thanks Sonny Mounicou #if ENABLED(LCD_PROGRESS_BAR) static bool char_mode = false; byte progress[3][8] = { { B00000, B10000, B10000, B10000, B10000, B10000, B10000, B00000 }, { B00000, B10100, B10100, B10100, B10100, B10100, B10100, B00000 }, { B00000, B10101, B10101, B10101, B10101, B10101, B10101, B00000 } }; if (progress_bar_set != char_mode) { char_mode = progress_bar_set; lcd.createChar(LCD_STR_BEDTEMP[0], bedTemp); lcd.createChar(LCD_STR_DEGREE[0], degree); lcd.createChar(LCD_STR_THERMOMETER[0], thermometer); lcd.createChar(LCD_STR_FEEDRATE[0], feedrate); lcd.createChar(LCD_STR_CLOCK[0], clock); if (progress_bar_set) { // Progress bar characters for info screen for (int i = 3; i--;) lcd.createChar(LCD_STR_PROGRESS[i], progress[i]); } else { // Custom characters for submenus lcd.createChar(LCD_STR_UPLEVEL[0], uplevel); lcd.createChar(LCD_STR_REFRESH[0], refresh); lcd.createChar(LCD_STR_FOLDER[0], folder); } } #else lcd.createChar(LCD_STR_BEDTEMP[0], bedTemp); lcd.createChar(LCD_STR_DEGREE[0], degree); lcd.createChar(LCD_STR_THERMOMETER[0], thermometer); lcd.createChar(LCD_STR_UPLEVEL[0], uplevel); lcd.createChar(LCD_STR_REFRESH[0], refresh); lcd.createChar(LCD_STR_FOLDER[0], folder); lcd.createChar(LCD_STR_FEEDRATE[0], feedrate); lcd.createChar(LCD_STR_CLOCK[0], clock); #endif } static void lcd_implementation_init( #if ENABLED(LCD_PROGRESS_BAR) bool progress_bar_set = true #endif ) { #if ENABLED(LCD_I2C_TYPE_PCF8575) lcd.begin(LCD_WIDTH, LCD_HEIGHT); #ifdef LCD_I2C_PIN_BL lcd.setBacklightPin(LCD_I2C_PIN_BL, POSITIVE); lcd_implementation_update_indicators(); #endif #elif ENABLED(LCD_I2C_TYPE_MCP23017) lcd.setMCPType(LTI_TYPE_MCP23017); lcd.begin(LCD_WIDTH, LCD_HEIGHT); lcd_implementation_update_indicators(); #elif ENABLED(LCD_I2C_TYPE_MCP23008) lcd.setMCPType(LTI_TYPE_MCP23008); lcd.begin(LCD_WIDTH, LCD_HEIGHT); #elif ENABLED(LCD_I2C_TYPE_PCA8574) lcd.init(); lcd.backlight(); #else lcd.begin(LCD_WIDTH, LCD_HEIGHT); #endif #if ENABLED(SHOW_BOOTSCREEN) if (show_bootscreen) bootscreen(); #endif lcd_set_custom_characters( #if ENABLED(LCD_PROGRESS_BAR) progress_bar_set #endif ); lcd.clear(); } static void lcd_implementation_clear() { lcd.clear(); } /* Arduino < 1.0.0 is missing a function to print PROGMEM strings, so we need to implement our own */ char lcd_printPGM(const char* str) { char c, n = 0; while ((c = pgm_read_byte(str++))) n += charset_mapper(c); return n; } char lcd_print(char* str) { char c, n = 0; unsigned char i = 0; while ((c = str[i++])) n += charset_mapper(c); return n; } unsigned lcd_print(char c) { return charset_mapper(c); } #if ENABLED(SHOW_BOOTSCREEN) void lcd_erase_line(int line) { lcd.setCursor(0, line); for (int i = 0; i < LCD_WIDTH; i++) lcd_print(' '); } // Scroll the PSTR 'text' in a 'len' wide field for 'time' milliseconds at position col,line void lcd_scroll(int col, int line, const char* text, int len, int time) { char tmp[LCD_WIDTH + 1] = {0}; int n = max(lcd_strlen_P(text) - len, 0); for (int i = 0; i <= n; i++) { strncpy_P(tmp, text + i, min(len, LCD_WIDTH)); lcd.setCursor(col, line); lcd_print(tmp); delay(time / max(n, 1)); } } static void bootscreen() { show_bootscreen = false; byte top_left[8] = { B00000, B00000, B00000, B00000, B00001, B00010, B00100, B00100 }; byte top_right[8] = { B00000, B00000, B00000, B11100, B11100, B01100, B00100, B00100 }; byte botom_left[8] = { B00100, B00010, B00001, B00000, B00000, B00000, B00000, B00000 }; byte botom_right[8] = { B00100, B01000, B10000, B00000, B00000, B00000, B00000, B00000 }; lcd.createChar(0, top_left); lcd.createChar(1, top_right); lcd.createChar(2, botom_left); lcd.createChar(3, botom_right); lcd.clear(); #define TEXT_SCREEN_LOGO_SHIFT ((LCD_WIDTH/2) - 4) lcd.setCursor(TEXT_SCREEN_LOGO_SHIFT, 0); lcd.print('\x00'); lcd_printPGM(PSTR( "------" )); lcd.print('\x01'); lcd.setCursor(TEXT_SCREEN_LOGO_SHIFT, 1); lcd_printPGM(PSTR("|Marlin|")); lcd.setCursor(TEXT_SCREEN_LOGO_SHIFT, 2); lcd.print('\x02'); lcd_printPGM(PSTR( "------" )); lcd.print('\x03'); delay(2000); #ifdef STRING_SPLASH_LINE1 lcd_erase_line(3); lcd_scroll(0, 3, PSTR(STRING_SPLASH_LINE1), LCD_WIDTH, 1000); #endif #ifdef STRING_SPLASH_LINE2 lcd_erase_line(3); lcd_scroll(0, 3, PSTR(STRING_SPLASH_LINE2), LCD_WIDTH, 1000); #endif } #endif // SHOW_BOOTSCREEN /* Possible status screens: 16x2 |000/000 B000/000| |0123456789012345| 16x4 |000/000 B000/000| |SD100% Z 000.00| |F100% T--:--| |0123456789012345| 20x2 |T000/000D B000/000D | |01234567890123456789| 20x4 |T000/000D B000/000D | |X 000 Y 000 Z 000.00| |F100% SD100% T--:--| |01234567890123456789| 20x4 |T000/000D B000/000D | |T000/000D Z 000.00| |F100% SD100% T--:--| |01234567890123456789| */ static void lcd_implementation_status_screen() { #define LCD_TEMP_ONLY(T1,T2) \ lcd.print(itostr3(T1 + 0.5)); \ lcd.print('/'); \ lcd.print(itostr3left(T2 + 0.5)) #define LCD_TEMP(T1,T2,PREFIX) \ lcd.print(PREFIX); \ LCD_TEMP_ONLY(T1,T2); \ lcd_printPGM(PSTR(LCD_STR_DEGREE " ")); \ if (T2 < 10) lcd.print(' ') // // Line 1 // lcd.setCursor(0, 0); #if LCD_WIDTH < 20 // // Hotend 0 Temperature // LCD_TEMP_ONLY(degHotend(0), degTargetHotend(0)); // // Hotend 1 or Bed Temperature // #if EXTRUDERS > 1 || TEMP_SENSOR_BED != 0 lcd.setCursor(8, 0); #if EXTRUDERS > 1 lcd.print(LCD_STR_THERMOMETER[0]); LCD_TEMP_ONLY(degHotend(1), degTargetHotend(1)); #else lcd.print(LCD_STR_BEDTEMP[0]); LCD_TEMP_ONLY(degBed(), degTargetBed()); #endif #endif // EXTRUDERS > 1 || TEMP_SENSOR_BED != 0 #else // LCD_WIDTH >= 20 // // Hotend 0 Temperature // LCD_TEMP(degHotend(0), degTargetHotend(0), LCD_STR_THERMOMETER[0]); // // Hotend 1 or Bed Temperature // #if EXTRUDERS > 1 || TEMP_SENSOR_BED != 0 lcd.setCursor(10, 0); #if EXTRUDERS > 1 LCD_TEMP(degHotend(1), degTargetHotend(1), LCD_STR_THERMOMETER[0]); #else LCD_TEMP(degBed(), degTargetBed(), LCD_STR_BEDTEMP[0]); #endif #endif // EXTRUDERS > 1 || TEMP_SENSOR_BED != 0 #endif // LCD_WIDTH >= 20 // // Line 2 // #if LCD_HEIGHT > 2 #if LCD_WIDTH < 20 #if ENABLED(SDSUPPORT) lcd.setCursor(0, 2); lcd_printPGM(PSTR("SD")); if (IS_SD_PRINTING) lcd.print(itostr3(card.percentDone())); else lcd_printPGM(PSTR("---")); lcd.print('%'); #endif // SDSUPPORT #else // LCD_WIDTH >= 20 lcd.setCursor(0, 1); #if EXTRUDERS > 1 && TEMP_SENSOR_BED != 0 // If we both have a 2nd extruder and a heated bed, // show the heated bed temp on the left, // since the first line is filled with extruder temps LCD_TEMP(degBed(), degTargetBed(), LCD_STR_BEDTEMP[0]); #else // Before homing the axis letters are blinking 'X' <-> '?'. // When axis is homed but axis_known_position is false the axis letters are blinking 'X' <-> ' '. // When everything is ok you see a constant 'X'. if (blink & 1) lcd_printPGM(PSTR("X")); else { if (!axis_homed[X_AXIS]) lcd_printPGM(PSTR("?")); else #if DISABLED(DISABLE_REDUCED_ACCURACY_WARNING) if (!axis_known_position[X_AXIS]) lcd_printPGM(PSTR(" ")); else #endif lcd_printPGM(PSTR("X")); } lcd.print(ftostr4sign(current_position[X_AXIS])); lcd_printPGM(PSTR(" ")); if (blink & 1) lcd_printPGM(PSTR("Y")); else { if (!axis_homed[Y_AXIS]) lcd_printPGM(PSTR("?")); else #if DISABLED(DISABLE_REDUCED_ACCURACY_WARNING) if (!axis_known_position[Y_AXIS]) lcd_printPGM(PSTR(" ")); else #endif lcd_printPGM(PSTR("Y")); } lcd.print(ftostr4sign(current_position[Y_AXIS])); #endif // EXTRUDERS > 1 || TEMP_SENSOR_BED != 0 #endif // LCD_WIDTH >= 20 lcd.setCursor(LCD_WIDTH - 8, 1); if (blink & 1) lcd_printPGM(PSTR("Z")); else { if (!axis_homed[Z_AXIS]) lcd_printPGM(PSTR("?")); else #if DISABLED(DISABLE_REDUCED_ACCURACY_WARNING) if (!axis_known_position[Z_AXIS]) lcd_printPGM(PSTR(" ")); else #endif lcd_printPGM(PSTR("Z")); } lcd.print(ftostr32sp(current_position[Z_AXIS] + 0.00001)); #endif // LCD_HEIGHT > 2 // // Line 3 // #if LCD_HEIGHT > 3 lcd.setCursor(0, 2); lcd.print(LCD_STR_FEEDRATE[0]); lcd.print(itostr3(feedrate_multiplier)); lcd.print('%'); #if LCD_WIDTH > 19 && ENABLED(SDSUPPORT) lcd.setCursor(7, 2); lcd_printPGM(PSTR("SD")); if (IS_SD_PRINTING) lcd.print(itostr3(card.percentDone())); else lcd_printPGM(PSTR("---")); lcd.print('%'); #endif // LCD_WIDTH > 19 && SDSUPPORT lcd.setCursor(LCD_WIDTH - 6, 2); lcd.print(LCD_STR_CLOCK[0]); if (print_job_start_ms != 0) { uint16_t time = millis() / 60000 - print_job_start_ms / 60000; lcd.print(itostr2(time / 60)); lcd.print(':'); lcd.print(itostr2(time % 60)); } else { lcd_printPGM(PSTR("--:--")); } #endif // LCD_HEIGHT > 3 // // Last Line // Status Message (which may be a Progress Bar or Filament display) // lcd.setCursor(0, LCD_HEIGHT - 1); #if ENABLED(LCD_PROGRESS_BAR) if (card.isFileOpen()) { // Draw the progress bar if the message has shown long enough // or if there is no message set. if (millis() >= progress_bar_ms + PROGRESS_BAR_MSG_TIME || !lcd_status_message[0]) { int tix = (int)(card.percentDone() * (LCD_WIDTH) * 3) / 100, cel = tix / 3, rem = tix % 3, i = LCD_WIDTH; char msg[LCD_WIDTH + 1], b = ' '; msg[i] = '\0'; while (i--) { if (i == cel - 1) b = LCD_STR_PROGRESS[2]; else if (i == cel && rem != 0) b = LCD_STR_PROGRESS[rem - 1]; msg[i] = b; } lcd.print(msg); return; } } //card.isFileOpen #elif ENABLED(FILAMENT_LCD_DISPLAY) // Show Filament Diameter and Volumetric Multiplier % // After allowing lcd_status_message to show for 5 seconds if (millis() >= previous_lcd_status_ms + 5000) { lcd_printPGM(PSTR("Dia ")); lcd.print(ftostr12ns(filament_width_meas)); lcd_printPGM(PSTR(" V")); lcd.print(itostr3(100.0 * volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM])); lcd.print('%'); return; } #endif // FILAMENT_LCD_DISPLAY lcd_print(lcd_status_message); } static void lcd_implementation_drawmenu_generic(bool sel, uint8_t row, const char* pstr, char pre_char, char post_char) { char c; uint8_t n = LCD_WIDTH - 2; lcd.setCursor(0, row); lcd.print(sel ? pre_char : ' '); while ((c = pgm_read_byte(pstr)) && n > 0) { n -= lcd_print(c); pstr++; } while (n--) lcd.print(' '); lcd.print(post_char); } static void lcd_implementation_drawmenu_setting_edit_generic(bool sel, uint8_t row, const char* pstr, char pre_char, char* data) { char c; uint8_t n = LCD_WIDTH - 2 - lcd_strlen(data); lcd.setCursor(0, row); lcd.print(sel ? pre_char : ' '); while ((c = pgm_read_byte(pstr)) && n > 0) { n -= lcd_print(c); pstr++; } lcd.print(':'); while (n--) lcd.print(' '); lcd_print(data); } static void lcd_implementation_drawmenu_setting_edit_generic_P(bool sel, uint8_t row, const char* pstr, char pre_char, const char* data) { char c; uint8_t n = LCD_WIDTH - 2 - lcd_strlen_P(data); lcd.setCursor(0, row); lcd.print(sel ? pre_char : ' '); while ((c = pgm_read_byte(pstr)) && n > 0) { n -= lcd_print(c); pstr++; } lcd.print(':'); while (n--) lcd.print(' '); lcd_printPGM(data); } #define lcd_implementation_drawmenu_setting_edit_int3(sel, row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', itostr3(*(data))) #define lcd_implementation_drawmenu_setting_edit_float3(sel, row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr3(*(data))) #define lcd_implementation_drawmenu_setting_edit_float32(sel, row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr32(*(data))) #define lcd_implementation_drawmenu_setting_edit_float43(sel, row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr43(*(data))) #define lcd_implementation_drawmenu_setting_edit_float5(sel, row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr5(*(data))) #define lcd_implementation_drawmenu_setting_edit_float52(sel, row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr52(*(data))) #define lcd_implementation_drawmenu_setting_edit_float51(sel, row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr51(*(data))) #define lcd_implementation_drawmenu_setting_edit_long5(sel, row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr5(*(data))) #define lcd_implementation_drawmenu_setting_edit_bool(sel, row, pstr, pstr2, data) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, '>', (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF)) //Add version for callback functions #define lcd_implementation_drawmenu_setting_edit_callback_int3(sel, row, pstr, pstr2, data, minValue, maxValue, callback) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', itostr3(*(data))) #define lcd_implementation_drawmenu_setting_edit_callback_float3(sel, row, pstr, pstr2, data, minValue, maxValue, callback) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr3(*(data))) #define lcd_implementation_drawmenu_setting_edit_callback_float32(sel, row, pstr, pstr2, data, minValue, maxValue, callback) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr32(*(data))) #define lcd_implementation_drawmenu_setting_edit_callback_float43(sel, row, pstr, pstr2, data, minValue, maxValue, callback) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr43(*(data))) #define lcd_implementation_drawmenu_setting_edit_callback_float5(sel, row, pstr, pstr2, data, minValue, maxValue, callback) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr5(*(data))) #define lcd_implementation_drawmenu_setting_edit_callback_float52(sel, row, pstr, pstr2, data, minValue, maxValue, callback) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr52(*(data))) #define lcd_implementation_drawmenu_setting_edit_callback_float51(sel, row, pstr, pstr2, data, minValue, maxValue, callback) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr51(*(data))) #define lcd_implementation_drawmenu_setting_edit_callback_long5(sel, row, pstr, pstr2, data, minValue, maxValue, callback) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr5(*(data))) #define lcd_implementation_drawmenu_setting_edit_callback_bool(sel, row, pstr, pstr2, data, callback) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, '>', (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF)) void lcd_implementation_drawedit(const char* pstr, char* value) { lcd.setCursor(1, 1); lcd_printPGM(pstr); lcd.print(':'); lcd.setCursor(LCD_WIDTH - lcd_strlen(value), 1); lcd_print(value); } #if ENABLED(SDSUPPORT) static void lcd_implementation_drawmenu_sd(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename, uint8_t concat, char post_char) { char c; uint8_t n = LCD_WIDTH - concat; lcd.setCursor(0, row); lcd.print(sel ? '>' : ' '); if (longFilename[0]) { filename = longFilename; longFilename[n] = '\0'; } while ((c = *filename) && n > 0) { n -= lcd_print(c); filename++; } while (n--) lcd.print(' '); lcd.print(post_char); } static void lcd_implementation_drawmenu_sdfile(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename) { lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 2, ' '); } static void lcd_implementation_drawmenu_sddirectory(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename) { lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 2, LCD_STR_FOLDER[0]); } #endif //SDSUPPORT #define lcd_implementation_drawmenu_back(sel, row, pstr, data) lcd_implementation_drawmenu_generic(sel, row, pstr, LCD_STR_UPLEVEL[0], LCD_STR_UPLEVEL[0]) #define lcd_implementation_drawmenu_submenu(sel, row, pstr, data) lcd_implementation_drawmenu_generic(sel, row, pstr, '>', LCD_STR_ARROW_RIGHT[0]) #define lcd_implementation_drawmenu_gcode(sel, row, pstr, gcode) lcd_implementation_drawmenu_generic(sel, row, pstr, '>', ' ') #define lcd_implementation_drawmenu_function(sel, row, pstr, data) lcd_implementation_drawmenu_generic(sel, row, pstr, '>', ' ') #if ENABLED(LCD_HAS_STATUS_INDICATORS) static void lcd_implementation_update_indicators() { // Set the LEDS - referred to as backlights by the LiquidTWI2 library static uint8_t ledsprev = 0; uint8_t leds = 0; if (target_temperature_bed > 0) leds |= LED_A; if (target_temperature[0] > 0) leds |= LED_B; if (fanSpeed) leds |= LED_C; #if EXTRUDERS > 1 if (target_temperature[1] > 0) leds |= LED_C; #endif if (leds != ledsprev) { lcd.setBacklight(leds); ledsprev = leds; } } #endif // LCD_HAS_STATUS_INDICATORS #if ENABLED(LCD_HAS_SLOW_BUTTONS) extern millis_t next_button_update_ms; static uint8_t lcd_implementation_read_slow_buttons() { #if ENABLED(LCD_I2C_TYPE_MCP23017) uint8_t slow_buttons; // Reading these buttons this is likely to be too slow to call inside interrupt context // so they are called during normal lcd_update slow_buttons = lcd.readButtons() << B_I2C_BTN_OFFSET; #if ENABLED(LCD_I2C_VIKI) if ((slow_buttons & (B_MI | B_RI)) && millis() < next_button_update_ms) // LCD clicked slow_buttons &= ~(B_MI | B_RI); // Disable LCD clicked buttons if screen is updated #endif return slow_buttons; #endif } #endif // LCD_HAS_SLOW_BUTTONS #endif // ULTRALCD_IMPLEMENTATION_HITACHI_HD44780_H