/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * endstops.cpp - A singleton object to manage endstops */ #include "Marlin.h" #include "cardreader.h" #include "endstops.h" #include "temperature.h" #include "stepper.h" #include "ultralcd.h" // TEST_ENDSTOP: test the old and the current status of an endstop #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits & old_endstop_bits, ENDSTOP)) Endstops endstops; Endstops::Endstops() { enable_globally( #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING) true #else false #endif ); enable(true); #if HAS_BED_PROBE enable_z_probe(false); #endif } // Endstops::Endstops void Endstops::init() { #if HAS_X_MIN SET_INPUT(X_MIN_PIN); #if ENABLED(ENDSTOPPULLUP_XMIN) WRITE(X_MIN_PIN,HIGH); #endif #endif #if HAS_Y_MIN SET_INPUT(Y_MIN_PIN); #if ENABLED(ENDSTOPPULLUP_YMIN) WRITE(Y_MIN_PIN,HIGH); #endif #endif #if HAS_Z_MIN SET_INPUT(Z_MIN_PIN); #if ENABLED(ENDSTOPPULLUP_ZMIN) WRITE(Z_MIN_PIN,HIGH); #endif #endif #if HAS_Z2_MIN SET_INPUT(Z2_MIN_PIN); #if ENABLED(ENDSTOPPULLUP_ZMIN) WRITE(Z2_MIN_PIN,HIGH); #endif #endif #if HAS_X_MAX SET_INPUT(X_MAX_PIN); #if ENABLED(ENDSTOPPULLUP_XMAX) WRITE(X_MAX_PIN,HIGH); #endif #endif #if HAS_Y_MAX SET_INPUT(Y_MAX_PIN); #if ENABLED(ENDSTOPPULLUP_YMAX) WRITE(Y_MAX_PIN,HIGH); #endif #endif #if HAS_Z_MAX SET_INPUT(Z_MAX_PIN); #if ENABLED(ENDSTOPPULLUP_ZMAX) WRITE(Z_MAX_PIN,HIGH); #endif #endif #if HAS_Z2_MAX SET_INPUT(Z2_MAX_PIN); #if ENABLED(ENDSTOPPULLUP_ZMAX) WRITE(Z2_MAX_PIN,HIGH); #endif #endif #if HAS_Z_MIN_PROBE_PIN && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used. SET_INPUT(Z_MIN_PROBE_PIN); #if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE) WRITE(Z_MIN_PROBE_PIN,HIGH); #endif #endif } // Endstops::init void Endstops::report_state() { if (endstop_hit_bits) { #if ENABLED(ULTRA_LCD) char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' '; #define _SET_STOP_CHAR(A,C) (chr## A = C) #else #define _SET_STOP_CHAR(A,C) ; #endif #define _ENDSTOP_HIT_ECHO(A,C) do{ \ SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", stepper.triggered_position_mm(A ##_AXIS)); \ _SET_STOP_CHAR(A,C); }while(0) #define _ENDSTOP_HIT_TEST(A,C) \ if (TEST(endstop_hit_bits, A ##_MIN) || TEST(endstop_hit_bits, A ##_MAX)) \ _ENDSTOP_HIT_ECHO(A,C) SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT); _ENDSTOP_HIT_TEST(X, 'X'); _ENDSTOP_HIT_TEST(Y, 'Y'); _ENDSTOP_HIT_TEST(Z, 'Z'); #if ENABLED(Z_MIN_PROBE_ENDSTOP) #define P_AXIS Z_AXIS if (TEST(endstop_hit_bits, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P'); #endif SERIAL_EOL; #if ENABLED(ULTRA_LCD) char msg[3 * strlen(MSG_LCD_ENDSTOPS) + 8 + 1]; // Room for a UTF 8 string sprintf_P(msg, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP); lcd_setstatus(msg); #endif hit_on_purpose(); #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT) if (stepper.abort_on_endstop_hit) { card.sdprinting = false; card.closefile(); stepper.quick_stop(); thermalManager.disable_all_heaters(); // switch off all heaters. } #endif } } // Endstops::report_state void Endstops::M119() { SERIAL_PROTOCOLLN(MSG_M119_REPORT); #if HAS_X_MIN SERIAL_PROTOCOLPGM(MSG_X_MIN); SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_X_MAX SERIAL_PROTOCOLPGM(MSG_X_MAX); SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Y_MIN SERIAL_PROTOCOLPGM(MSG_Y_MIN); SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Y_MAX SERIAL_PROTOCOLPGM(MSG_Y_MAX); SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Z_MIN SERIAL_PROTOCOLPGM(MSG_Z_MIN); SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Z_MAX SERIAL_PROTOCOLPGM(MSG_Z_MAX); SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Z2_MAX SERIAL_PROTOCOLPGM(MSG_Z2_MAX); SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Z_MIN_PROBE_PIN SERIAL_PROTOCOLPGM(MSG_Z_PROBE); SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif } // Endstops::M119 #if ENABLED(Z_DUAL_ENDSTOPS) // Pass the result of the endstop test void Endstops::test_dual_z_endstops(EndstopEnum es1, EndstopEnum es2) { byte z_test = TEST_ENDSTOP(es1) | (TEST_ENDSTOP(es2) << 1); // bit 0 for Z, bit 1 for Z2 if (stepper.current_block->steps[Z_AXIS] > 0) { stepper.endstop_triggered(Z_AXIS); SBI(endstop_hit_bits, Z_MIN); if (!stepper.performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing... stepper.kill_current_block(); } } #endif // Check endstops - Called from ISR! void Endstops::update() { #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING #define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN)) #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX // UPDATE_ENDSTOP_BIT: set the current endstop bits for an endstop to its status #define UPDATE_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX))) // COPY_BIT: copy the value of COPY_BIT to BIT in bits #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT)) #define UPDATE_ENDSTOP(AXIS,MINMAX) do { \ UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \ if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && stepper.current_block->steps[_AXIS(AXIS)] > 0) { \ _ENDSTOP_HIT(AXIS); \ stepper.endstop_triggered(_AXIS(AXIS)); \ } \ } while(0) #if ENABLED(COREXY) || ENABLED(COREXZ) // Head direction in -X axis for CoreXY and CoreXZ bots. // If Delta1 == -Delta2, the movement is only in Y or Z axis if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[CORE_AXIS_2]) || (stepper.motor_direction(A_AXIS) == stepper.motor_direction(CORE_AXIS_2))) { if (stepper.motor_direction(X_HEAD)) #else if (stepper.motor_direction(X_AXIS)) // stepping along -X axis (regular Cartesian bot) #endif { // -direction #if ENABLED(DUAL_X_CARRIAGE) // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR == -1) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR == -1)) #endif { #if HAS_X_MIN UPDATE_ENDSTOP(X, MIN); #endif } } else { // +direction #if ENABLED(DUAL_X_CARRIAGE) // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR == 1) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR == 1)) #endif { #if HAS_X_MAX UPDATE_ENDSTOP(X, MAX); #endif } } #if ENABLED(COREXY) || ENABLED(COREXZ) } #endif #if ENABLED(COREXY) // Head direction in -Y axis for CoreXY bots. // If DeltaX == DeltaY, the movement is only in X axis if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[B_AXIS]) || (stepper.motor_direction(A_AXIS) != stepper.motor_direction(B_AXIS))) { if (stepper.motor_direction(Y_HEAD)) #else if (stepper.motor_direction(Y_AXIS)) // -direction #endif { // -direction #if HAS_Y_MIN UPDATE_ENDSTOP(Y, MIN); #endif } else { // +direction #if HAS_Y_MAX UPDATE_ENDSTOP(Y, MAX); #endif } #if ENABLED(COREXY) } #endif #if ENABLED(COREXZ) // Head direction in -Z axis for CoreXZ bots. // If DeltaX == DeltaZ, the movement is only in X axis if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[C_AXIS]) || (stepper.motor_direction(A_AXIS) != stepper.motor_direction(C_AXIS))) { if (stepper.motor_direction(Z_HEAD)) #else if (stepper.motor_direction(Z_AXIS)) #endif { // z -direction #if HAS_Z_MIN #if ENABLED(Z_DUAL_ENDSTOPS) UPDATE_ENDSTOP_BIT(Z, MIN); #if HAS_Z2_MIN UPDATE_ENDSTOP_BIT(Z2, MIN); #else COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN); #endif test_dual_z_endstops(Z_MIN, Z2_MIN); #else // !Z_DUAL_ENDSTOPS #if HAS_BED_PROBE && ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) if (z_probe_enabled) UPDATE_ENDSTOP(Z, MIN); #else UPDATE_ENDSTOP(Z, MIN); #endif #endif // !Z_DUAL_ENDSTOPS #endif // HAS_Z_MIN #if HAS_BED_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) && DISABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) if (z_probe_enabled) { UPDATE_ENDSTOP(Z, MIN_PROBE); if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE); } #endif } else { // z +direction #if HAS_Z_MAX #if ENABLED(Z_DUAL_ENDSTOPS) UPDATE_ENDSTOP_BIT(Z, MAX); #if HAS_Z2_MAX UPDATE_ENDSTOP_BIT(Z2, MAX); #else COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX); #endif test_dual_z_endstops(Z_MAX, Z2_MAX); #else // !Z_DUAL_ENDSTOPS UPDATE_ENDSTOP(Z, MAX); #endif // !Z_DUAL_ENDSTOPS #endif // Z_MAX_PIN } #if ENABLED(COREXZ) } #endif old_endstop_bits = current_endstop_bits; } // Endstops::update()