/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors * Part of Grbl * * Copyright (c) 2009-2011 Simen Svale Skogsrud * * Grbl is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Grbl is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Grbl. If not, see . */ #ifndef STEPPER_H #define STEPPER_H #include "planner.h" #include "speed_lookuptable.h" #include "stepper_indirection.h" #include "language.h" class Stepper; extern Stepper stepper; // intRes = intIn1 * intIn2 >> 16 // uses: // r26 to store 0 // r27 to store the byte 1 of the 24 bit result #define MultiU16X8toH16(intRes, charIn1, intIn2) \ asm volatile ( \ "clr r26 \n\t" \ "mul %A1, %B2 \n\t" \ "movw %A0, r0 \n\t" \ "mul %A1, %A2 \n\t" \ "add %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "lsr r0 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "clr r1 \n\t" \ : \ "=&r" (intRes) \ : \ "d" (charIn1), \ "d" (intIn2) \ : \ "r26" \ ) class Stepper { public: block_t* current_block = NULL; // A pointer to the block currently being traced #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) bool abort_on_endstop_hit = false; #endif #if ENABLED(Z_DUAL_ENDSTOPS) bool performing_homing = false; #endif #if ENABLED(ADVANCE) long e_steps[4]; #endif private: unsigned char last_direction_bits = 0; // The next stepping-bits to be output unsigned int cleaning_buffer_counter = 0; #if ENABLED(Z_DUAL_ENDSTOPS) bool locked_z_motor = false, locked_z2_motor = false; #endif // Counter variables for the Bresenham line tracer long counter_X = 0, counter_Y = 0, counter_Z = 0, counter_E = 0; volatile unsigned long step_events_completed = 0; // The number of step events executed in the current block #if ENABLED(ADVANCE) unsigned char old_OCR0A; long advance_rate, advance, final_advance = 0; long old_advance = 0; #endif long acceleration_time, deceleration_time; //unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; unsigned short acc_step_rate; // needed for deceleration start point uint8_t step_loops; uint8_t step_loops_nominal; unsigned short OCR1A_nominal; volatile long endstops_trigsteps[3]; volatile long endstops_stepsTotal, endstops_stepsDone; #if HAS_MOTOR_CURRENT_PWM #ifndef PWM_MOTOR_CURRENT #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT #endif const int motor_current_setting[3] = PWM_MOTOR_CURRENT; #endif // // Positions of stepper motors, in step units // volatile long count_position[NUM_AXIS] = { 0 }; // // Current direction of stepper motors (+1 or -1) // volatile signed char count_direction[NUM_AXIS] = { 1 }; public: // // Constructor / initializer // Stepper() {}; // // Initialize stepper hardware // void init(); // // Interrupt Service Routines // void isr(); #if ENABLED(ADVANCE) void advance_isr(); #endif // // Block until all buffered steps are executed // void synchronize(); // // Set the current position in steps // void set_position(const long& x, const long& y, const long& z, const long& e); void set_e_position(const long& e); // // Set direction bits for all steppers // void set_directions(); // // Get the position of a stepper, in steps // long position(AxisEnum axis); // // Report the positions of the steppers, in steps // void report_positions(); // // Get the position (mm) of an axis based on stepper position(s) // float get_axis_position_mm(AxisEnum axis); // // The stepper subsystem goes to sleep when it runs out of things to execute. Call this // to notify the subsystem that it is time to go to work. // void wake_up(); // // Wait for moves to finish and disable all steppers // void finish_and_disable(); // // Quickly stop all steppers and clear the blocks queue // void quick_stop(); // // The direction of a single motor // FORCE_INLINE bool motor_direction(AxisEnum axis) { return TEST(last_direction_bits, axis); } #if HAS_DIGIPOTSS void digitalPotWrite(int address, int value); #endif void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2); void digipot_current(uint8_t driver, int current); void microstep_mode(uint8_t driver, uint8_t stepping); void microstep_readings(); #if ENABLED(Z_DUAL_ENDSTOPS) FORCE_INLINE void set_homing_flag(bool state) { performing_homing = state; } FORCE_INLINE void set_z_lock(bool state) { locked_z_motor = state; } FORCE_INLINE void set_z2_lock(bool state) { locked_z2_motor = state; } #endif #if ENABLED(BABYSTEPPING) void babystep(const uint8_t axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention #endif inline void kill_current_block() { step_events_completed = current_block->step_event_count; } // // Handle a triggered endstop // void endstop_triggered(AxisEnum axis); // // Triggered position of an axis in mm (not core-savvy) // FORCE_INLINE float triggered_position_mm(AxisEnum axis) { return endstops_trigsteps[axis] / planner.axis_steps_per_unit[axis]; } private: FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { unsigned short timer; NOMORE(step_rate, MAX_STEP_FREQUENCY); if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times step_rate = (step_rate >> 2) & 0x3fff; step_loops = 4; } else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times step_rate = (step_rate >> 1) & 0x7fff; step_loops = 2; } else { step_loops = 1; } NOLESS(step_rate, F_CPU / 500000); step_rate -= F_CPU / 500000; // Correct for minimal speed if (step_rate >= (8 * 256)) { // higher step rate unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0]; unsigned char tmp_step_rate = (step_rate & 0x00ff); unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2); MultiU16X8toH16(timer, tmp_step_rate, gain); timer = (unsigned short)pgm_read_word_near(table_address) - timer; } else { // lower step rates unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0]; table_address += ((step_rate) >> 1) & 0xfffc; timer = (unsigned short)pgm_read_word_near(table_address); timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3); } if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen) return timer; } // Initializes the trapezoid generator from the current block. Called whenever a new // block begins. FORCE_INLINE void trapezoid_generator_reset() { static int8_t last_extruder = -1; if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) { last_direction_bits = current_block->direction_bits; last_extruder = current_block->active_extruder; set_directions(); } #if ENABLED(ADVANCE) advance = current_block->initial_advance; final_advance = current_block->final_advance; // Do E steps + advance steps e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); old_advance = advance >>8; #endif deceleration_time = 0; // step_rate to timer interval OCR1A_nominal = calc_timer(current_block->nominal_rate); // make a note of the number of step loops required at nominal speed step_loops_nominal = step_loops; acc_step_rate = current_block->initial_rate; acceleration_time = calc_timer(acc_step_rate); OCR1A = acceleration_time; // SERIAL_ECHO_START; // SERIAL_ECHOPGM("advance :"); // SERIAL_ECHO(current_block->advance/256.0); // SERIAL_ECHOPGM("advance rate :"); // SERIAL_ECHO(current_block->advance_rate/256.0); // SERIAL_ECHOPGM("initial advance :"); // SERIAL_ECHO(current_block->initial_advance/256.0); // SERIAL_ECHOPGM("final advance :"); // SERIAL_ECHOLN(current_block->final_advance/256.0); } void digipot_init(); void microstep_init(); }; #endif // STEPPER_H