/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "MarlinConfig.h" #if ENABLED(AUTO_BED_LEVELING_UBL) #include "Marlin.h" #include "UBL.h" #include "planner.h" #include #include extern float destination[XYZE]; extern void set_current_to_destination(); static void debug_echo_axis(const AxisEnum axis) { if (current_position[axis] == destination[axis]) SERIAL_ECHOPGM("-------------"); else SERIAL_ECHO_F(destination[X_AXIS], 6); } void debug_current_and_destination(char *title) { // if the title message starts with a '!' it is so important, we are going to // ignore the status of the g26_debug_flag if (*title != '!' && !ubl.g26_debug_flag) return; const float de = destination[E_AXIS] - current_position[E_AXIS]; if (de == 0.0) return; const float dx = current_position[X_AXIS] - destination[X_AXIS], dy = current_position[Y_AXIS] - destination[Y_AXIS], xy_dist = HYPOT(dx, dy); if (xy_dist == 0.0) { return; //SERIAL_ECHOPGM(" FPMM="); //const float fpmm = de / xy_dist; //SERIAL_PROTOCOL_F(fpmm, 6); } else { SERIAL_ECHOPGM(" fpmm="); const float fpmm = de / xy_dist; SERIAL_ECHO_F(fpmm, 6); } SERIAL_ECHOPGM(" current=( "); SERIAL_ECHO_F(current_position[X_AXIS], 6); SERIAL_ECHOPGM(", "); SERIAL_ECHO_F(current_position[Y_AXIS], 6); SERIAL_ECHOPGM(", "); SERIAL_ECHO_F(current_position[Z_AXIS], 6); SERIAL_ECHOPGM(", "); SERIAL_ECHO_F(current_position[E_AXIS], 6); SERIAL_ECHOPGM(" ) destination=( "); debug_echo_axis(X_AXIS); SERIAL_ECHOPGM(", "); debug_echo_axis(Y_AXIS); SERIAL_ECHOPGM(", "); debug_echo_axis(Z_AXIS); SERIAL_ECHOPGM(", "); debug_echo_axis(E_AXIS); SERIAL_ECHOPGM(" ) "); SERIAL_ECHO(title); SERIAL_EOL; SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66. Right Switch is on pin 65 //if (been_to_2_6) { //while ((digitalRead(66) & 0x01) != 0) // idle(); //} } void ubl_line_to_destination(const float &feed_rate, uint8_t extruder) { /** * Much of the nozzle movement will be within the same cell. So we will do as little computation * as possible to determine if this is the case. If this move is within the same cell, we will * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave */ const float start[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] }, end[XYZE] = { destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS] }; const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(start[X_AXIS])), cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])), cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(end[X_AXIS])), cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS])); if (ubl.g26_debug_flag) { SERIAL_ECHOPAIR(" ubl_line_to_destination(xe=", end[X_AXIS]); SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]); SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]); SERIAL_ECHOPAIR(", ee=", end[E_AXIS]); SERIAL_CHAR(')'); SERIAL_EOL; debug_current_and_destination((char*)"Start of ubl_line_to_destination()"); } if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell, /** * we don't need to break up the move * * If we are moving off the print bed, we are going to allow the move at this level. * But we detect it and isolate it. For now, we just pass along the request. */ if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) { // Note: There is no Z Correction in this case. We are off the grid and don't know what // a reasonable correction would be. planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder); set_current_to_destination(); if (ubl.g26_debug_flag) debug_current_and_destination((char*)"out of bounds in ubl_line_to_destination()"); return; } FINAL_MOVE: /** * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function. * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once. * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And, * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide. */ const float xratio = (RAW_X_POSITION(end[X_AXIS]) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)), z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio * (ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]), z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio * (ubl.z_values[cell_dest_xi + 1][cell_dest_yi + 1] - ubl.z_values[cell_dest_xi][cell_dest_yi + 1]); // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we // are going to apply the Y-Distance into the cell to interpolate the final Z correction. const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST)); float z0 = z1 + (z2 - z1) * yratio; /** * Debug code to use non-optimized get_z_correction() and to do a sanity check * that the correct value is being passed to planner.buffer_line() */ /* z_optimized = z0; z0 = ubl.get_z_correction(end[X_AXIS], end[Y_AXIS]); if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) { debug_current_and_destination((char*)"FINAL_MOVE: z_correction()"); if (isnan(z0)) SERIAL_ECHO(" z0==NAN "); if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN "); SERIAL_ECHOPAIR(" end[X_AXIS]=", end[X_AXIS]); SERIAL_ECHOPAIR(" end[Y_AXIS]=", end[Y_AXIS]); SERIAL_ECHOPAIR(" z0=", z0); SERIAL_ECHOPAIR(" z_optimized=", z_optimized); SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0)); SERIAL_EOL; } //*/ z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN * in z_values[][] and propagate through the * calculations. If our correction is NAN, we throw it out * because part of the Mesh is undefined and we don't have the * information we need to complete the height correction. */ if (isnan(z0)) z0 = 0.0; planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder); if (ubl.g26_debug_flag) debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()"); set_current_to_destination(); return; } /** * If we get here, we are processing a move that crosses at least one Mesh Line. We will check * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less * computation and in fact most lines are of this nature. We will check for that in the following * blocks of code: */ const float dx = end[X_AXIS] - start[X_AXIS], dy = end[Y_AXIS] - start[Y_AXIS]; const int left_flag = dx < 0.0 ? 1 : 0, down_flag = dy < 0.0 ? 1 : 0; const float adx = left_flag ? -dx : dx, ady = down_flag ? -dy : dy; const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1, dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1; /** * Compute the scaling factor for the extruder for each partial move. * We need to watch out for zero length moves because it will cause us to * have an infinate scaling factor. We are stuck doing a floating point * divide to get our scaling factor, but after that, we just multiply by this * number. We also pick our scaling factor based on whether the X or Y * component is larger. We use the biggest of the two to preserve precision. */ const bool use_x_dist = adx > ady; float on_axis_distance = use_x_dist ? dx : dy, e_position = end[E_AXIS] - start[E_AXIS], z_position = end[Z_AXIS] - start[Z_AXIS]; const float e_normalized_dist = e_position / on_axis_distance, z_normalized_dist = z_position / on_axis_distance; int current_xi = cell_start_xi, current_yi = cell_start_yi; const float m = dy / dx, c = start[Y_AXIS] - m * start[X_AXIS]; const bool inf_normalized_flag = NEAR_ZERO(on_axis_distance), inf_m_flag = NEAR_ZERO(dx); /** * This block handles vertical lines. These are lines that stay within the same * X Cell column. They do not need to be perfectly vertical. They just can * not cross into another X Cell column. */ if (dxi == 0) { // Check for a vertical line current_yi += down_flag; // Line is heading down, we just want to go to the bottom while (current_yi != cell_dest_yi + down_flag) { current_yi += dyi; const float next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]); /** * inf_m_flag? the slope of the line is infinite, we won't do the calculations * else, we know the next X is the same so we can recover and continue! * Calculate X at the next Y mesh line */ const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m; float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi); /** * Debug code to use non-optimized get_z_correction() and to do a sanity check * that the correct value is being passed to planner.buffer_line() */ /* z_optimized = z0; z0 = ubl.get_z_correction(x, next_mesh_line_y); if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) { debug_current_and_destination((char*)"VERTICAL z_correction()"); if (isnan(z0)) SERIAL_ECHO(" z0==NAN "); if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN "); SERIAL_ECHOPAIR(" x=", x); SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y); SERIAL_ECHOPAIR(" z0=", z0); SERIAL_ECHOPAIR(" z_optimized=", z_optimized); SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0)); SERIAL_ECHO("\n"); } //*/ z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN * in z_values[][] and propagate through the * calculations. If our correction is NAN, we throw it out * because part of the Mesh is undefined and we don't have the * information we need to complete the height correction. */ if (isnan(z0)) z0 = 0.0; const float y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]); /** * Without this check, it is possible for the algorithm to generate a zero length move in the case * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that * happens, it might be best to remove the check and always 'schedule' the move because * the planner.buffer_line() routine will filter it if that happens. */ if (y != start[Y_AXIS]) { if (!inf_normalized_flag) { on_axis_distance = y - start[Y_AXIS]; // we don't need to check if the extruder position e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; } else { e_position = start[E_AXIS]; z_position = start[Z_AXIS]; } planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); } //else printf("FIRST MOVE PRUNED "); } if (ubl.g26_debug_flag) debug_current_and_destination((char*)"vertical move done in ubl_line_to_destination()"); // // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done. // if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) goto FINAL_MOVE; set_current_to_destination(); return; } /** * * This block handles horizontal lines. These are lines that stay within the same * Y Cell row. They do not need to be perfectly horizontal. They just can * not cross into another Y Cell row. * */ if (dyi == 0) { // Check for a horizontal line current_xi += left_flag; // Line is heading left, we just want to go to the left // edge of this cell for the first move. while (current_xi != cell_dest_xi + left_flag) { current_xi += dxi; const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]), y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi); /** * Debug code to use non-optimized get_z_correction() and to do a sanity check * that the correct value is being passed to planner.buffer_line() */ /* z_optimized = z0; z0 = ubl.get_z_correction(next_mesh_line_x, y); if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) { debug_current_and_destination((char*)"HORIZONTAL z_correction()"); if (isnan(z0)) SERIAL_ECHO(" z0==NAN "); if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN "); SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x); SERIAL_ECHOPAIR(" y=", y); SERIAL_ECHOPAIR(" z0=", z0); SERIAL_ECHOPAIR(" z_optimized=", z_optimized); SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0)); SERIAL_ECHO("\n"); } //*/ z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN * in z_values[][] and propagate through the * calculations. If our correction is NAN, we throw it out * because part of the Mesh is undefined and we don't have the * information we need to complete the height correction. */ if (isnan(z0)) z0 = 0.0; const float x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]); /** * Without this check, it is possible for the algorithm to generate a zero length move in the case * where the line is heading left and it is starting right on a Mesh Line boundary. For how often * that happens, it might be best to remove the check and always 'schedule' the move because * the planner.buffer_line() routine will filter it if that happens. */ if (x != start[X_AXIS]) { if (!inf_normalized_flag) { on_axis_distance = x - start[X_AXIS]; // we don't need to check if the extruder position e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; } else { e_position = start[E_AXIS]; z_position = start[Z_AXIS]; } planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); } //else printf("FIRST MOVE PRUNED "); } if (ubl.g26_debug_flag) debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()"); if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) goto FINAL_MOVE; set_current_to_destination(); return; } /** * * This block handles the generic case of a line crossing both X and Y Mesh lines. * */ int xi_cnt = cell_start_xi - cell_dest_xi, yi_cnt = cell_start_yi - cell_dest_yi; if (xi_cnt < 0) xi_cnt = -xi_cnt; if (yi_cnt < 0) yi_cnt = -yi_cnt; current_xi += left_flag; current_yi += down_flag; while (xi_cnt > 0 || yi_cnt > 0) { const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi + dxi]), next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi + dyi]), y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line // (No need to worry about m being zero. // If that was the case, it was already detected // as a vertical line move above.) if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first // // Yes! Crossing a Y Mesh Line next // float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi); /** * Debug code to use non-optimized get_z_correction() and to do a sanity check * that the correct value is being passed to planner.buffer_line() */ /* z_optimized = z0; z0 = ubl.get_z_correction(x, next_mesh_line_y); if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) { debug_current_and_destination((char*)"General_1: z_correction()"); if (isnan(z0)) SERIAL_ECHO(" z0==NAN "); if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN "); { SERIAL_ECHOPAIR(" x=", x); } SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y); SERIAL_ECHOPAIR(" z0=", z0); SERIAL_ECHOPAIR(" z_optimized=", z_optimized); SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0)); SERIAL_ECHO("\n"); } //*/ z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN * in z_values[][] and propagate through the * calculations. If our correction is NAN, we throw it out * because part of the Mesh is undefined and we don't have the * information we need to complete the height correction. */ if (isnan(z0)) z0 = 0.0; if (!inf_normalized_flag) { on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS]; e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; } else { e_position = start[E_AXIS]; z_position = start[Z_AXIS]; } planner.buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); current_yi += dyi; yi_cnt--; } else { // // Yes! Crossing a X Mesh Line next // float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag); /** * Debug code to use non-optimized get_z_correction() and to do a sanity check * that the correct value is being passed to planner.buffer_line() */ /* z_optimized = z0; z0 = ubl.get_z_correction(next_mesh_line_x, y); if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) { debug_current_and_destination((char*)"General_2: z_correction()"); if (isnan(z0)) SERIAL_ECHO(" z0==NAN "); if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN "); SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x); SERIAL_ECHOPAIR(" y=", y); SERIAL_ECHOPAIR(" z0=", z0); SERIAL_ECHOPAIR(" z_optimized=", z_optimized); SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0)); SERIAL_ECHO("\n"); } //*/ z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN * in z_values[][] and propagate through the * calculations. If our correction is NAN, we throw it out * because part of the Mesh is undefined and we don't have the * information we need to complete the height correction. */ if (isnan(z0)) z0 = 0.0; if (!inf_normalized_flag) { on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS]; e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; } else { e_position = start[E_AXIS]; z_position = start[Z_AXIS]; } planner.buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); current_xi += dxi; xi_cnt--; } } if (ubl.g26_debug_flag) debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()"); if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) goto FINAL_MOVE; set_current_to_destination(); } #endif