/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * planner.cpp * * Buffer movement commands and manage the acceleration profile plan * * Derived from Grbl * Copyright (c) 2009-2011 Simen Svale Skogsrud * * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. * * * Reasoning behind the mathematics in this module (in the key of 'Mathematica'): * * s == speed, a == acceleration, t == time, d == distance * * Basic definitions: * Speed[s_, a_, t_] := s + (a*t) * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t] * * Distance to reach a specific speed with a constant acceleration: * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t] * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance() * * Speed after a given distance of travel with constant acceleration: * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t] * m -> Sqrt[2 a d + s^2] * * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2] * * When to start braking (di) to reach a specified destination speed (s2) after accelerating * from initial speed s1 without ever stopping at a plateau: * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di] * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance() * * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) * */ #include "planner.h" #include "stepper.h" #include "temperature.h" #include "ultralcd.h" #include "language.h" #include "Marlin.h" #if ENABLED(MESH_BED_LEVELING) #include "mesh_bed_leveling.h" #endif Planner planner; // public: /** * A ring buffer of moves described in steps */ block_t Planner::block_buffer[BLOCK_BUFFER_SIZE]; volatile uint8_t Planner::block_buffer_head = 0; // Index of the next block to be pushed volatile uint8_t Planner::block_buffer_tail = 0; float Planner::max_feedrate_mm_s[NUM_AXIS], // Max speeds in mm per second Planner::axis_steps_per_mm[NUM_AXIS], Planner::steps_to_mm[NUM_AXIS]; unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS], Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software millis_t Planner::min_segment_time; float Planner::min_feedrate_mm_s, Planner::acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX Planner::retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX Planner::travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX Planner::max_jerk[XYZE], // The largest speed change requiring no acceleration Planner::min_travel_feedrate_mm_s; #if HAS_ABL bool Planner::abl_enabled = false; // Flag that auto bed leveling is enabled #endif #if ABL_PLANAR matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level #endif #if ENABLED(AUTOTEMP) float Planner::autotemp_max = 250, Planner::autotemp_min = 210, Planner::autotemp_factor = 0.1; bool Planner::autotemp_enabled = false; #endif // private: long Planner::position[NUM_AXIS] = { 0 }; float Planner::previous_speed[NUM_AXIS], Planner::previous_nominal_speed; #if ENABLED(DISABLE_INACTIVE_EXTRUDER) uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 }; #endif // DISABLE_INACTIVE_EXTRUDER #ifdef XY_FREQUENCY_LIMIT // Old direction bits. Used for speed calculations unsigned char Planner::old_direction_bits = 0; // Segment times (in µs). Used for speed calculations long Planner::axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} }; #endif /** * Class and Instance Methods */ Planner::Planner() { init(); } void Planner::init() { block_buffer_head = block_buffer_tail = 0; memset(position, 0, sizeof(position)); memset(previous_speed, 0, sizeof(previous_speed)); previous_nominal_speed = 0.0; #if ABL_PLANAR bed_level_matrix.set_to_identity(); #endif } /** * Calculate trapezoid parameters, multiplying the entry- and exit-speeds * by the provided factors. */ void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) { unsigned long initial_rate = ceil(block->nominal_rate * entry_factor), final_rate = ceil(block->nominal_rate * exit_factor); // (steps per second) // Limit minimal step rate (Otherwise the timer will overflow.) NOLESS(initial_rate, 120); NOLESS(final_rate, 120); long accel = block->acceleration_steps_per_s2; int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)); int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)); // Calculate the size of Plateau of Nominal Rate. int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps; // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will // have to use intersection_distance() to calculate when to abort accel and start braking // in order to reach the final_rate exactly at the end of this block. if (plateau_steps < 0) { accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, accel, block->step_event_count)); accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero) plateau_steps = 0; } #if ENABLED(ADVANCE) volatile long initial_advance = block->advance * sq(entry_factor); volatile long final_advance = block->advance * sq(exit_factor); #endif // ADVANCE // block->accelerate_until = accelerate_steps; // block->decelerate_after = accelerate_steps+plateau_steps; CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section if (!block->busy) { // Don't update variables if block is busy. block->accelerate_until = accelerate_steps; block->decelerate_after = accelerate_steps + plateau_steps; block->initial_rate = initial_rate; block->final_rate = final_rate; #if ENABLED(ADVANCE) block->initial_advance = initial_advance; block->final_advance = final_advance; #endif } CRITICAL_SECTION_END; } // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks. // This method will calculate the junction jerk as the euclidean distance between the nominal // velocities of the respective blocks. //inline float junction_jerk(block_t *before, block_t *after) { // return sqrt( // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2)); //} // The kernel called by recalculate() when scanning the plan from last to first entry. void Planner::reverse_pass_kernel(block_t* current, block_t* next) { if (!current) return; if (next) { // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and // check for maximum allowable speed reductions to ensure maximum possible planned speed. float max_entry_speed = current->max_entry_speed; if (current->entry_speed != max_entry_speed) { // If nominal length true, max junction speed is guaranteed to be reached. Only compute // for max allowable speed if block is decelerating and nominal length is false. if (!current->nominal_length_flag && max_entry_speed > next->entry_speed) { current->entry_speed = min(max_entry_speed, max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters)); } else { current->entry_speed = max_entry_speed; } current->recalculate_flag = true; } } // Skip last block. Already initialized and set for recalculation. } /** * recalculate() needs to go over the current plan twice. * Once in reverse and once forward. This implements the reverse pass. */ void Planner::reverse_pass() { if (movesplanned() > 3) { block_t* block[3] = { NULL, NULL, NULL }; // Make a local copy of block_buffer_tail, because the interrupt can alter it CRITICAL_SECTION_START; uint8_t tail = block_buffer_tail; CRITICAL_SECTION_END uint8_t b = BLOCK_MOD(block_buffer_head - 3); while (b != tail) { b = prev_block_index(b); block[2] = block[1]; block[1] = block[0]; block[0] = &block_buffer[b]; reverse_pass_kernel(block[1], block[2]); } } } // The kernel called by recalculate() when scanning the plan from first to last entry. void Planner::forward_pass_kernel(block_t* previous, block_t* current) { if (!previous) return; // If the previous block is an acceleration block, but it is not long enough to complete the // full speed change within the block, we need to adjust the entry speed accordingly. Entry // speeds have already been reset, maximized, and reverse planned by reverse planner. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck. if (!previous->nominal_length_flag) { if (previous->entry_speed < current->entry_speed) { double entry_speed = min(current->entry_speed, max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters)); // Check for junction speed change if (current->entry_speed != entry_speed) { current->entry_speed = entry_speed; current->recalculate_flag = true; } } } } /** * recalculate() needs to go over the current plan twice. * Once in reverse and once forward. This implements the forward pass. */ void Planner::forward_pass() { block_t* block[3] = { NULL, NULL, NULL }; for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { block[0] = block[1]; block[1] = block[2]; block[2] = &block_buffer[b]; forward_pass_kernel(block[0], block[1]); } forward_pass_kernel(block[1], block[2]); } /** * Recalculate the trapezoid speed profiles for all blocks in the plan * according to the entry_factor for each junction. Must be called by * recalculate() after updating the blocks. */ void Planner::recalculate_trapezoids() { int8_t block_index = block_buffer_tail; block_t* current; block_t* next = NULL; while (block_index != block_buffer_head) { current = next; next = &block_buffer[block_index]; if (current) { // Recalculate if current block entry or exit junction speed has changed. if (current->recalculate_flag || next->recalculate_flag) { // NOTE: Entry and exit factors always > 0 by all previous logic operations. float nom = current->nominal_speed; calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom); current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed } } block_index = next_block_index(block_index); } // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated. if (next) { float nom = next->nominal_speed; calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom); next->recalculate_flag = false; } } /* * Recalculate the motion plan according to the following algorithm: * * 1. Go over every block in reverse order... * * Calculate a junction speed reduction (block_t.entry_factor) so: * * a. The junction jerk is within the set limit, and * * b. No speed reduction within one block requires faster * deceleration than the one, true constant acceleration. * * 2. Go over every block in chronological order... * * Dial down junction speed reduction values if: * a. The speed increase within one block would require faster * acceleration than the one, true constant acceleration. * * After that, all blocks will have an entry_factor allowing all speed changes to * be performed using only the one, true constant acceleration, and where no junction * jerk is jerkier than the set limit, Jerky. Finally it will: * * 3. Recalculate "trapezoids" for all blocks. */ void Planner::recalculate() { reverse_pass(); forward_pass(); recalculate_trapezoids(); } #if ENABLED(AUTOTEMP) void Planner::getHighESpeed() { static float oldt = 0; if (!autotemp_enabled) return; if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero. float high = 0.0; for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { block_t* block = &block_buffer[b]; if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) { float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec; NOLESS(high, se); } } float t = autotemp_min + high * autotemp_factor; t = constrain(t, autotemp_min, autotemp_max); if (oldt > t) { t *= (1 - (AUTOTEMP_OLDWEIGHT)); t += (AUTOTEMP_OLDWEIGHT) * oldt; } oldt = t; thermalManager.setTargetHotend(t, 0); } #endif //AUTOTEMP /** * Maintain fans, paste extruder pressure, */ void Planner::check_axes_activity() { unsigned char axis_active[NUM_AXIS] = { 0 }, tail_fan_speed[FAN_COUNT]; #if FAN_COUNT > 0 for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i]; #endif #if ENABLED(BARICUDA) #if HAS_HEATER_1 unsigned char tail_valve_pressure = baricuda_valve_pressure; #endif #if HAS_HEATER_2 unsigned char tail_e_to_p_pressure = baricuda_e_to_p_pressure; #endif #endif if (blocks_queued()) { #if FAN_COUNT > 0 for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i]; #endif block_t* block; #if ENABLED(BARICUDA) block = &block_buffer[block_buffer_tail]; #if HAS_HEATER_1 tail_valve_pressure = block->valve_pressure; #endif #if HAS_HEATER_2 tail_e_to_p_pressure = block->e_to_p_pressure; #endif #endif for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { block = &block_buffer[b]; LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++; } } #if ENABLED(DISABLE_X) if (!axis_active[X_AXIS]) disable_x(); #endif #if ENABLED(DISABLE_Y) if (!axis_active[Y_AXIS]) disable_y(); #endif #if ENABLED(DISABLE_Z) if (!axis_active[Z_AXIS]) disable_z(); #endif #if ENABLED(DISABLE_E) if (!axis_active[E_AXIS]) { disable_e0(); disable_e1(); disable_e2(); disable_e3(); } #endif #if FAN_COUNT > 0 #if defined(FAN_MIN_PWM) #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0) #else #define CALC_FAN_SPEED(f) tail_fan_speed[f] #endif #ifdef FAN_KICKSTART_TIME static millis_t fan_kick_end[FAN_COUNT] = { 0 }; #define KICKSTART_FAN(f) \ if (tail_fan_speed[f]) { \ millis_t ms = millis(); \ if (fan_kick_end[f] == 0) { \ fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \ tail_fan_speed[f] = 255; \ } else { \ if (PENDING(ms, fan_kick_end[f])) { \ tail_fan_speed[f] = 255; \ } \ } \ } else { \ fan_kick_end[f] = 0; \ } #if HAS_FAN0 KICKSTART_FAN(0); #endif #if HAS_FAN1 KICKSTART_FAN(1); #endif #if HAS_FAN2 KICKSTART_FAN(2); #endif #endif //FAN_KICKSTART_TIME #if ENABLED(FAN_SOFT_PWM) #if HAS_FAN0 thermalManager.fanSpeedSoftPwm[0] = CALC_FAN_SPEED(0); #endif #if HAS_FAN1 thermalManager.fanSpeedSoftPwm[1] = CALC_FAN_SPEED(1); #endif #if HAS_FAN2 thermalManager.fanSpeedSoftPwm[2] = CALC_FAN_SPEED(2); #endif #else #if HAS_FAN0 analogWrite(FAN_PIN, CALC_FAN_SPEED(0)); #endif #if HAS_FAN1 analogWrite(FAN1_PIN, CALC_FAN_SPEED(1)); #endif #if HAS_FAN2 analogWrite(FAN2_PIN, CALC_FAN_SPEED(2)); #endif #endif #endif // FAN_COUNT > 0 #if ENABLED(AUTOTEMP) getHighESpeed(); #endif #if ENABLED(BARICUDA) #if HAS_HEATER_1 analogWrite(HEATER_1_PIN, tail_valve_pressure); #endif #if HAS_HEATER_2 analogWrite(HEATER_2_PIN, tail_e_to_p_pressure); #endif #endif } #if PLANNER_LEVELING void Planner::apply_leveling(float &lx, float &ly, float &lz) { #if HAS_ABL if (!abl_enabled) return; #endif #if ENABLED(MESH_BED_LEVELING) if (mbl.active()) lz += mbl.get_z(RAW_X_POSITION(lx), RAW_Y_POSITION(ly)); #elif ABL_PLANAR float dx = RAW_X_POSITION(lx) - (X_TILT_FULCRUM), dy = RAW_Y_POSITION(ly) - (Y_TILT_FULCRUM), dz = RAW_Z_POSITION(lz); apply_rotation_xyz(bed_level_matrix, dx, dy, dz); lx = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM); ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM); lz = LOGICAL_Z_POSITION(dz); #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) float tmp[XYZ] = { lx, ly, 0 }; #if ENABLED(DELTA) float offset = bilinear_z_offset(tmp); lx += offset; ly += offset; lz += offset; #else lz += bilinear_z_offset(tmp); #endif #endif } void Planner::unapply_leveling(float logical[XYZ]) { #if HAS_ABL if (!abl_enabled) return; #endif #if ENABLED(MESH_BED_LEVELING) if (mbl.active()) logical[Z_AXIS] -= mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS])); #elif ABL_PLANAR matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix); float dx = RAW_X_POSITION(logical[X_AXIS]) - (X_TILT_FULCRUM), dy = RAW_Y_POSITION(logical[Y_AXIS]) - (Y_TILT_FULCRUM), dz = RAW_Z_POSITION(logical[Z_AXIS]); apply_rotation_xyz(inverse, dx, dy, dz); logical[X_AXIS] = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM); logical[Y_AXIS] = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM); logical[Z_AXIS] = LOGICAL_Z_POSITION(dz); #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) logical[Z_AXIS] -= bilinear_z_offset(logical); #endif } #endif // PLANNER_LEVELING /** * Planner::buffer_line * * Add a new linear movement to the buffer. * * x,y,z,e - target position in mm * fr_mm_s - (target) speed of the move * extruder - target extruder */ void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, const uint8_t extruder) { // Calculate the buffer head after we push this byte int next_buffer_head = next_block_index(block_buffer_head); // If the buffer is full: good! That means we are well ahead of the robot. // Rest here until there is room in the buffer. while (block_buffer_tail == next_buffer_head) idle(); #if PLANNER_LEVELING apply_leveling(lx, ly, lz); #endif // The target position of the tool in absolute steps // Calculate target position in absolute steps //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow long target[NUM_AXIS] = { lround(lx * axis_steps_per_mm[X_AXIS]), lround(ly * axis_steps_per_mm[Y_AXIS]), lround(lz * axis_steps_per_mm[Z_AXIS]), lround(e * axis_steps_per_mm[E_AXIS]) }; long dx = target[X_AXIS] - position[X_AXIS], dy = target[Y_AXIS] - position[Y_AXIS], dz = target[Z_AXIS] - position[Z_AXIS]; /* SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s); SERIAL_CHAR(' '); #if IS_KINEMATIC SERIAL_ECHOPAIR("A:", lx); SERIAL_ECHOPAIR(" (", dx); SERIAL_ECHOPAIR(") B:", ly); #else SERIAL_ECHOPAIR("X:", lx); SERIAL_ECHOPAIR(" (", dx); SERIAL_ECHOPAIR(") Y:", ly); #endif SERIAL_ECHOPAIR(" (", dy); #if ENABLED(DELTA) SERIAL_ECHOPAIR(") C:", lz); #else SERIAL_ECHOPAIR(") Z:", lz); #endif SERIAL_ECHOPAIR(" (", dz); SERIAL_CHAR(')'); SERIAL_EOL; //*/ // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied if (DEBUGGING(DRYRUN)) position[E_AXIS] = target[E_AXIS]; long de = target[E_AXIS] - position[E_AXIS]; #if ENABLED(PREVENT_COLD_EXTRUSION) if (de) { if (thermalManager.tooColdToExtrude(extruder)) { position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part de = 0; // no difference SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); } #if ENABLED(PREVENT_LENGTHY_EXTRUDE) if (labs(de) > axis_steps_per_mm[E_AXIS] * (EXTRUDE_MAXLENGTH)) { position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part de = 0; // no difference SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); } #endif } #endif // Prepare to set up new block block_t* block = &block_buffer[block_buffer_head]; // Mark block as not busy (Not executed by the stepper interrupt) block->busy = false; // Number of steps for each axis #if ENABLED(COREXY) // corexy planning // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html block->steps[A_AXIS] = labs(dx + dy); block->steps[B_AXIS] = labs(dx - dy); block->steps[Z_AXIS] = labs(dz); #elif ENABLED(COREXZ) // corexz planning block->steps[A_AXIS] = labs(dx + dz); block->steps[Y_AXIS] = labs(dy); block->steps[C_AXIS] = labs(dx - dz); #elif ENABLED(COREYZ) // coreyz planning block->steps[X_AXIS] = labs(dx); block->steps[B_AXIS] = labs(dy + dz); block->steps[C_AXIS] = labs(dy - dz); #else // default non-h-bot planning block->steps[X_AXIS] = labs(dx); block->steps[Y_AXIS] = labs(dy); block->steps[Z_AXIS] = labs(dz); #endif block->steps[E_AXIS] = labs(de) * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01 + 0.5; block->step_event_count = MAX4(block->steps[X_AXIS], block->steps[Y_AXIS], block->steps[Z_AXIS], block->steps[E_AXIS]); // Bail if this is a zero-length block if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return; // For a mixing extruder, get a magnified step_event_count for each #if ENABLED(MIXING_EXTRUDER) for (uint8_t i = 0; i < MIXING_STEPPERS; i++) block->mix_event_count[i] = UNEAR_ZERO(mixing_factor[i]) ? 0 : block->step_event_count / mixing_factor[i]; #endif #if FAN_COUNT > 0 for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i]; #endif #if ENABLED(BARICUDA) block->valve_pressure = baricuda_valve_pressure; block->e_to_p_pressure = baricuda_e_to_p_pressure; #endif // Compute direction bits for this block uint8_t db = 0; #if ENABLED(COREXY) if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis if (dy < 0) SBI(db, Y_HEAD); // ...and Y if (dz < 0) SBI(db, Z_AXIS); if (dx + dy < 0) SBI(db, A_AXIS); // Motor A direction if (dx - dy < 0) SBI(db, B_AXIS); // Motor B direction #elif ENABLED(COREXZ) if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis if (dy < 0) SBI(db, Y_AXIS); if (dz < 0) SBI(db, Z_HEAD); // ...and Z if (dx + dz < 0) SBI(db, A_AXIS); // Motor A direction if (dx - dz < 0) SBI(db, C_AXIS); // Motor C direction #elif ENABLED(COREYZ) if (dx < 0) SBI(db, X_AXIS); if (dy < 0) SBI(db, Y_HEAD); // Save the real Extruder (head) direction in Y Axis if (dz < 0) SBI(db, Z_HEAD); // ...and Z if (dy + dz < 0) SBI(db, B_AXIS); // Motor B direction if (dy - dz < 0) SBI(db, C_AXIS); // Motor C direction #else if (dx < 0) SBI(db, X_AXIS); if (dy < 0) SBI(db, Y_AXIS); if (dz < 0) SBI(db, Z_AXIS); #endif if (de < 0) SBI(db, E_AXIS); block->direction_bits = db; block->active_extruder = extruder; //enable active axes #if ENABLED(COREXY) if (block->steps[A_AXIS] || block->steps[B_AXIS]) { enable_x(); enable_y(); } #if DISABLED(Z_LATE_ENABLE) if (block->steps[Z_AXIS]) enable_z(); #endif #elif ENABLED(COREXZ) if (block->steps[A_AXIS] || block->steps[C_AXIS]) { enable_x(); enable_z(); } if (block->steps[Y_AXIS]) enable_y(); #else if (block->steps[X_AXIS]) enable_x(); if (block->steps[Y_AXIS]) enable_y(); #if DISABLED(Z_LATE_ENABLE) if (block->steps[Z_AXIS]) enable_z(); #endif #endif // Enable extruder(s) if (block->steps[E_AXIS]) { #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder for (int i = 0; i < EXTRUDERS; i++) if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--; switch(extruder) { case 0: enable_e0(); #if ENABLED(DUAL_X_CARRIAGE) if (extruder_duplication_enabled) { enable_e1(); g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2; } #endif g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2; #if EXTRUDERS > 1 if (g_uc_extruder_last_move[1] == 0) disable_e1(); #if EXTRUDERS > 2 if (g_uc_extruder_last_move[2] == 0) disable_e2(); #if EXTRUDERS > 3 if (g_uc_extruder_last_move[3] == 0) disable_e3(); #endif #endif #endif break; #if EXTRUDERS > 1 case 1: enable_e1(); g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2; if (g_uc_extruder_last_move[0] == 0) disable_e0(); #if EXTRUDERS > 2 if (g_uc_extruder_last_move[2] == 0) disable_e2(); #if EXTRUDERS > 3 if (g_uc_extruder_last_move[3] == 0) disable_e3(); #endif #endif break; #if EXTRUDERS > 2 case 2: enable_e2(); g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2; if (g_uc_extruder_last_move[0] == 0) disable_e0(); if (g_uc_extruder_last_move[1] == 0) disable_e1(); #if EXTRUDERS > 3 if (g_uc_extruder_last_move[3] == 0) disable_e3(); #endif break; #if EXTRUDERS > 3 case 3: enable_e3(); g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2; if (g_uc_extruder_last_move[0] == 0) disable_e0(); if (g_uc_extruder_last_move[1] == 0) disable_e1(); if (g_uc_extruder_last_move[2] == 0) disable_e2(); break; #endif // EXTRUDERS > 3 #endif // EXTRUDERS > 2 #endif // EXTRUDERS > 1 } #else enable_e0(); enable_e1(); enable_e2(); enable_e3(); #endif } if (block->steps[E_AXIS]) NOLESS(fr_mm_s, min_feedrate_mm_s); else NOLESS(fr_mm_s, min_travel_feedrate_mm_s); /** * This part of the code calculates the total length of the movement. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed. */ #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ) float delta_mm[7]; #if ENABLED(COREXY) delta_mm[X_HEAD] = dx * steps_to_mm[A_AXIS]; delta_mm[Y_HEAD] = dy * steps_to_mm[B_AXIS]; delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS]; delta_mm[A_AXIS] = (dx + dy) * steps_to_mm[A_AXIS]; delta_mm[B_AXIS] = (dx - dy) * steps_to_mm[B_AXIS]; #elif ENABLED(COREXZ) delta_mm[X_HEAD] = dx * steps_to_mm[A_AXIS]; delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS]; delta_mm[Z_HEAD] = dz * steps_to_mm[C_AXIS]; delta_mm[A_AXIS] = (dx + dz) * steps_to_mm[A_AXIS]; delta_mm[C_AXIS] = (dx - dz) * steps_to_mm[C_AXIS]; #elif ENABLED(COREYZ) delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS]; delta_mm[Y_HEAD] = dy * steps_to_mm[B_AXIS]; delta_mm[Z_HEAD] = dz * steps_to_mm[C_AXIS]; delta_mm[B_AXIS] = (dy + dz) * steps_to_mm[B_AXIS]; delta_mm[C_AXIS] = (dy - dz) * steps_to_mm[C_AXIS]; #endif #else float delta_mm[4]; delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS]; delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS]; delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS]; #endif delta_mm[E_AXIS] = 0.01 * (de * steps_to_mm[E_AXIS]) * volumetric_multiplier[extruder] * flow_percentage[extruder]; if (block->steps[X_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Y_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Z_AXIS] < MIN_STEPS_PER_SEGMENT) { block->millimeters = fabs(delta_mm[E_AXIS]); } else { block->millimeters = sqrt( #if ENABLED(COREXY) sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS]) #elif ENABLED(COREXZ) sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD]) #elif ENABLED(COREYZ) sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD]) #else sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS]) #endif ); } float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides // Calculate moves/second for this move. No divide by zero due to previous checks. float inverse_mm_s = fr_mm_s * inverse_millimeters; int moves_queued = movesplanned(); // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill #if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN) bool mq = moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2; #if ENABLED(OLD_SLOWDOWN) if (mq) fr_mm_s *= 2.0 * moves_queued / (BLOCK_BUFFER_SIZE); #endif #if ENABLED(SLOWDOWN) // segment time im micro seconds unsigned long segment_time = lround(1000000.0/inverse_mm_s); if (mq) { if (segment_time < min_segment_time) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more. inverse_mm_s = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued)); #ifdef XY_FREQUENCY_LIMIT segment_time = lround(1000000.0 / inverse_mm_s); #endif } } #endif #endif block->nominal_speed = block->millimeters * inverse_mm_s; // (mm/sec) Always > 0 block->nominal_rate = ceil(block->step_event_count * inverse_mm_s); // (step/sec) Always > 0 #if ENABLED(FILAMENT_WIDTH_SENSOR) static float filwidth_e_count = 0, filwidth_delay_dist = 0; //FMM update ring buffer used for delay with filament measurements if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized const int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10; // increment counters with next move in e axis filwidth_e_count += delta_mm[E_AXIS]; filwidth_delay_dist += delta_mm[E_AXIS]; // Only get new measurements on forward E movement if (filwidth_e_count > 0.0001) { // Loop the delay distance counter (modulus by the mm length) while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM; // Convert into an index into the measurement array filwidth_delay_index[0] = (int)(filwidth_delay_dist * 0.1 + 0.0001); // If the index has changed (must have gone forward)... if (filwidth_delay_index[0] != filwidth_delay_index[1]) { filwidth_e_count = 0; // Reset the E movement counter int8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char do { filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement } while (filwidth_delay_index[0] != filwidth_delay_index[1]); // More slots to fill? } } } #endif // Calculate and limit speed in mm/sec for each axis float current_speed[NUM_AXIS]; float speed_factor = 1.0; //factor <=1 do decrease speed LOOP_XYZE(i) { current_speed[i] = delta_mm[i] * inverse_mm_s; float cs = fabs(current_speed[i]), mf = max_feedrate_mm_s[i]; if (cs > mf) speed_factor = min(speed_factor, mf / cs); } // Max segement time in us. #ifdef XY_FREQUENCY_LIMIT // Check and limit the xy direction change frequency unsigned char direction_change = block->direction_bits ^ old_direction_bits; old_direction_bits = block->direction_bits; segment_time = lround((float)segment_time / speed_factor); long xs0 = axis_segment_time[X_AXIS][0], xs1 = axis_segment_time[X_AXIS][1], xs2 = axis_segment_time[X_AXIS][2], ys0 = axis_segment_time[Y_AXIS][0], ys1 = axis_segment_time[Y_AXIS][1], ys2 = axis_segment_time[Y_AXIS][2]; if (TEST(direction_change, X_AXIS)) { xs2 = axis_segment_time[X_AXIS][2] = xs1; xs1 = axis_segment_time[X_AXIS][1] = xs0; xs0 = 0; } xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time; if (TEST(direction_change, Y_AXIS)) { ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1]; ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0]; ys0 = 0; } ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time; long max_x_segment_time = MAX3(xs0, xs1, xs2), max_y_segment_time = MAX3(ys0, ys1, ys2), min_xy_segment_time = min(max_x_segment_time, max_y_segment_time); if (min_xy_segment_time < MAX_FREQ_TIME) { float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME); speed_factor = min(speed_factor, low_sf); } #endif // XY_FREQUENCY_LIMIT // Correct the speed if (speed_factor < 1.0) { LOOP_XYZE(i) current_speed[i] *= speed_factor; block->nominal_speed *= speed_factor; block->nominal_rate *= speed_factor; } // Compute and limit the acceleration rate for the trapezoid generator. float steps_per_mm = block->step_event_count / block->millimeters; if (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) { block->acceleration_steps_per_s2 = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 } else { // Limit acceleration per axis block->acceleration_steps_per_s2 = ceil((block->steps[E_AXIS] ? acceleration : travel_acceleration) * steps_per_mm); if (max_acceleration_steps_per_s2[X_AXIS] < (block->acceleration_steps_per_s2 * block->steps[X_AXIS]) / block->step_event_count) block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[X_AXIS] * block->step_event_count) / block->steps[X_AXIS]; if (max_acceleration_steps_per_s2[Y_AXIS] < (block->acceleration_steps_per_s2 * block->steps[Y_AXIS]) / block->step_event_count) block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[Y_AXIS] * block->step_event_count) / block->steps[Y_AXIS]; if (max_acceleration_steps_per_s2[Z_AXIS] < (block->acceleration_steps_per_s2 * block->steps[Z_AXIS]) / block->step_event_count) block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[Z_AXIS] * block->step_event_count) / block->steps[Z_AXIS]; if (max_acceleration_steps_per_s2[E_AXIS] < (block->acceleration_steps_per_s2 * block->steps[E_AXIS]) / block->step_event_count) block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[E_AXIS] * block->step_event_count) / block->steps[E_AXIS]; } block->acceleration = block->acceleration_steps_per_s2 / steps_per_mm; block->acceleration_rate = (long)(block->acceleration_steps_per_s2 * 16777216.0 / ((F_CPU) * 0.125)); #if 0 // Use old jerk for now float junction_deviation = 0.1; // Compute path unit vector double unit_vec[XYZ]; unit_vec[X_AXIS] = delta_mm[X_AXIS] * inverse_millimeters; unit_vec[Y_AXIS] = delta_mm[Y_AXIS] * inverse_millimeters; unit_vec[Z_AXIS] = delta_mm[Z_AXIS] * inverse_millimeters; // Compute maximum allowable entry speed at junction by centripetal acceleration approximation. // Let a circle be tangent to both previous and current path line segments, where the junction // deviation is defined as the distance from the junction to the closest edge of the circle, // collinear with the circle center. The circular segment joining the two paths represents the // path of centripetal acceleration. Solve for max velocity based on max acceleration about the // radius of the circle, defined indirectly by junction deviation. This may be also viewed as // path width or max_jerk in the previous grbl version. This approach does not actually deviate // from path, but used as a robust way to compute cornering speeds, as it takes into account the // nonlinearities of both the junction angle and junction velocity. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) { // Compute cosine of angle between previous and current path. (prev_unit_vec is negative) // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS] - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS] - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ; // Skip and use default max junction speed for 0 degree acute junction. if (cos_theta < 0.95) { vmax_junction = min(previous_nominal_speed, block->nominal_speed); // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds. if (cos_theta > -0.95) { // Compute maximum junction velocity based on maximum acceleration and junction deviation double sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive. vmax_junction = min(vmax_junction, sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2))); } } } #endif // Start with a safe speed float vmax_junction = max_jerk[X_AXIS] * 0.5, vmax_junction_factor = 1.0; if (max_jerk[Y_AXIS] * 0.5 < fabs(current_speed[Y_AXIS])) NOMORE(vmax_junction, max_jerk[Y_AXIS] * 0.5); if (max_jerk[Z_AXIS] * 0.5 < fabs(current_speed[Z_AXIS])) NOMORE(vmax_junction, max_jerk[Z_AXIS] * 0.5); if (max_jerk[E_AXIS] * 0.5 < fabs(current_speed[E_AXIS])) NOMORE(vmax_junction, max_jerk[E_AXIS] * 0.5); NOMORE(vmax_junction, block->nominal_speed); float safe_speed = vmax_junction; if (moves_queued > 1 && previous_nominal_speed > 0.0001) { //if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) { vmax_junction = block->nominal_speed; //} float dsx = fabs(current_speed[X_AXIS] - previous_speed[X_AXIS]), dsy = fabs(current_speed[Y_AXIS] - previous_speed[Y_AXIS]), dsz = fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]), dse = fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]); if (dsx > max_jerk[X_AXIS]) NOMORE(vmax_junction_factor, max_jerk[X_AXIS] / dsx); if (dsy > max_jerk[Y_AXIS]) NOMORE(vmax_junction_factor, max_jerk[Y_AXIS] / dsy); if (dsz > max_jerk[Z_AXIS]) NOMORE(vmax_junction_factor, max_jerk[Z_AXIS] / dsz); if (dse > max_jerk[E_AXIS]) NOMORE(vmax_junction_factor, max_jerk[E_AXIS] / dse); vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed } block->max_entry_speed = vmax_junction; // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED. double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters); block->entry_speed = min(vmax_junction, v_allowable); // Initialize planner efficiency flags // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then // the current block and next block junction speeds are guaranteed to always be at their maximum // junction speeds in deceleration and acceleration, respectively. This is due to how the current // block nominal speed limits both the current and next maximum junction speeds. Hence, in both // the reverse and forward planners, the corresponding block junction speed will always be at the // the maximum junction speed and may always be ignored for any speed reduction checks. block->nominal_length_flag = (block->nominal_speed <= v_allowable); block->recalculate_flag = true; // Always calculate trapezoid for new block // Update previous path unit_vector and nominal speed memcpy(previous_speed, current_speed, sizeof(previous_speed)); previous_nominal_speed = block->nominal_speed; #if ENABLED(LIN_ADVANCE) // block->steps[E_AXIS] == block->step_event_count: A problem occurs when there's a very tiny move before a retract. // In this case, the retract and the move will be executed together. // This leads to an enormous number of advance steps due to a huge e_acceleration. // The math is correct, but you don't want a retract move done with advance! // So this situation is filtered out here. if (!block->steps[E_AXIS] || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) || stepper.get_advance_k() == 0 || (uint32_t) block->steps[E_AXIS] == block->step_event_count) { block->use_advance_lead = false; } else { block->use_advance_lead = true; block->e_speed_multiplier8 = (block->steps[E_AXIS] << 8) / block->step_event_count; } #elif ENABLED(ADVANCE) // Calculate advance rate if (!block->steps[E_AXIS] || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS])) { block->advance_rate = 0; block->advance = 0; } else { long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2); float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * HYPOT(current_speed[E_AXIS], EXTRUSION_AREA) * 256; block->advance = advance; block->advance_rate = acc_dist ? advance / (float)acc_dist : 0; } /** SERIAL_ECHO_START; SERIAL_ECHOPGM("advance :"); SERIAL_ECHO(block->advance/256.0); SERIAL_ECHOPGM("advance rate :"); SERIAL_ECHOLN(block->advance_rate/256.0); */ #endif // ADVANCE or LIN_ADVANCE calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed); // Move buffer head block_buffer_head = next_buffer_head; // Update the position (only when a move was queued) memcpy(position, target, sizeof(position)); recalculate(); stepper.wake_up(); } // buffer_line() /** * Directly set the planner XYZ position (and stepper positions) * converting mm (or angles for SCARA) into steps. * * On CORE machines stepper ABC will be translated from the given XYZ. */ void Planner::set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) { #if PLANNER_LEVELING apply_leveling(lx, ly, lz); #endif long nx = position[X_AXIS] = lround(lx * axis_steps_per_mm[X_AXIS]), ny = position[Y_AXIS] = lround(ly * axis_steps_per_mm[Y_AXIS]), nz = position[Z_AXIS] = lround(lz * axis_steps_per_mm[Z_AXIS]), ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]); stepper.set_position(nx, ny, nz, ne); previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. memset(previous_speed, 0, sizeof(previous_speed)); } /** * Sync from the stepper positions. (e.g., after an interrupted move) */ void Planner::sync_from_steppers() { LOOP_XYZE(i) position[i] = stepper.position((AxisEnum)i); } /** * Setters for planner position (also setting stepper position). */ void Planner::set_position_mm(const AxisEnum axis, const float& v) { position[axis] = lround(v * axis_steps_per_mm[axis]); stepper.set_position(axis, v); previous_speed[axis] = 0.0; } // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2 void Planner::reset_acceleration_rates() { LOOP_XYZE(i) max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i]; } // Recalculate position, steps_to_mm if axis_steps_per_mm changes! void Planner::refresh_positioning() { LOOP_XYZE(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i]; #if IS_KINEMATIC inverse_kinematics(current_position); set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]); #else set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); #endif reset_acceleration_rates(); } #if ENABLED(AUTOTEMP) void Planner::autotemp_M109() { autotemp_enabled = code_seen('F'); if (autotemp_enabled) autotemp_factor = code_value_temp_diff(); if (code_seen('S')) autotemp_min = code_value_temp_abs(); if (code_seen('B')) autotemp_max = code_value_temp_abs(); } #endif