/**************************************\ * * * OpenSCAD Mesh Display * * by Thinkyhead - April 2017 * * * * Copy the grid output from Marlin, * * paste below as shown, and use * * OpenSCAD to see a visualization * * of your mesh. * * * \**************************************/ //$t = 0.15; // comment out during animation // // Mesh info and points // mesh_width = 200; // X Size in mm of the probed area mesh_height = 200; // Y Size... zprobe_offset = 0; // Added to the points NAN = 0; // Z to use for un-measured points measured_z = [ [ -1.20, -1.13, -1.09, -1.03, -1.19 ], [ -1.16, -1.25, -1.27, -1.25, -1.08 ], [ -1.13, -1.26, -1.39, -1.31, -1.18 ], [ -1.09, -1.20, -1.26, -1.21, -1.18 ], [ -1.13, -0.99, -1.03, -1.06, -1.32 ] ]; // // Geometry // max_z_scale = 100; // Scale at Time 0.5 min_z_scale = 10; // Scale at Time 0.0 and 1.0 thickness = 0.5; // thickness of the mesh triangles tesselation = 1; // levels of tesselation from 0-2 alternation = 2; // direction change modulus (try it) // // Appearance // show_plane = true; show_labels = true; arrow_length = 5; label_font_lg = "Arial"; label_font_sm = "Arial"; mesh_color = [1,1,1,0.5]; plane_color = [0.4,0.6,0.9,0.6]; //================================================ Derive useful values big_z = max_2D(measured_z,0); lil_z = min_2D(measured_z,0); mean_value = (big_z + lil_z) / 2.0; mesh_points_y = len(measured_z); mesh_points_x = len(measured_z[0]); xspace = mesh_width / (mesh_points_x - 1); yspace = mesh_height / (mesh_points_y - 1); // At $t=0 and $t=1 scale will be 100% z_scale_factor = min_z_scale + (($t > 0.5) ? 1.0 - $t : $t) * (max_z_scale - min_z_scale) * 2; // // Min and max recursive functions for 1D and 2D arrays // Return the smallest or largest value in the array // function min_1D(b,i) = (i<len(b)-1) ? min(b[i], min_1D(b,i+1)) : b[i]; function min_2D(a,j) = (j<len(a)-1) ? min_2D(a,j+1) : min_1D(a[j], 0); function max_1D(b,i) = (i<len(b)-1) ? max(b[i], max_1D(b,i+1)) : b[i]; function max_2D(a,j) = (j<len(a)-1) ? max_2D(a,j+1) : max_1D(a[j], 0); // // Get the corner probe points of a grid square. // // Input : x,y grid indexes // Output : An array of the 4 corner points // function grid_square(x,y) = [ [x * xspace, y * yspace, z_scale_factor * (measured_z[y][x] - mean_value)], [x * xspace, (y+1) * yspace, z_scale_factor * (measured_z[y+1][x] - mean_value)], [(x+1) * xspace, (y+1) * yspace, z_scale_factor * (measured_z[y+1][x+1] - mean_value)], [(x+1) * xspace, y * yspace, z_scale_factor * (measured_z[y][x+1] - mean_value)] ]; // The corner point of a grid square with Z centered on the mean function pos(x,y,z) = [x * xspace, y * yspace, z_scale_factor * (z - mean_value)]; // // Draw the point markers and labels // module point_markers(show_home=true) { // Mark the home position 0,0 color([0,0,0,0.25]) translate([1,1]) cylinder(r=1, h=z_scale_factor, center=true); for (x=[0:mesh_points_x-1], y=[0:mesh_points_y-1]) { z = measured_z[y][x]; down = z < mean_value; translate(pos(x, y, z)) { // Label each point with the Z if (show_labels) { v = z - mean_value; color(abs(v) < 0.1 ? [0,0.5,0] : [0.25,0,0]) translate([0,0,down?-10:10]) { $fn=8; rotate([90,0]) text(str(z), 6, label_font_lg, halign="center", valign="center"); translate([0,0,down?-6:6]) rotate([90,0]) text(str(down ? "" : "+", v), 3, label_font_sm, halign="center", valign="center"); } } // Show an arrow pointing up or down rotate([0, down ? 180 : 0]) translate([0,0,-1]) cylinder( r1=0.5, r2=0.1, h=arrow_length, $fn=12, center=1 ); } } } // // Split a square on the diagonal into // two triangles and render them. // // s : a square // alt : a flag to split on the other diagonal // module tesselated_square(s, alt=false) { add = [0,0,thickness]; p1 = [ s[0], s[1], s[2], s[3], s[0]+add, s[1]+add, s[2]+add, s[3]+add ]; f1 = alt ? [ [0,1,3], [4,5,1,0], [4,7,5], [5,7,3,1], [7,4,0,3] ] : [ [0,1,2], [4,5,1,0], [4,6,5], [5,6,2,1], [6,4,0,2] ]; f2 = alt ? [ [1,2,3], [5,6,2,1], [5,6,7], [6,7,3,2], [7,5,1,3] ] : [ [0,2,3], [4,6,2,0], [4,7,6], [6,7,3,2], [7,4,0,3] ]; // Use the other diagonal polyhedron(points=p1, faces=f1); polyhedron(points=p1, faces=f2); } /** * The simplest mesh display */ module simple_mesh(show_plane=show_plane) { if (show_plane) color(plane_color) cube([mesh_width, mesh_height, thickness]); color(mesh_color) for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2]) tesselated_square(grid_square(x, y)); } /** * Subdivide the mesh into smaller squares. */ module bilinear_mesh(show_plane=show_plane,tesselation=tesselation) { if (show_plane) color(plane_color) translate([-5,-5]) cube([mesh_width+10, mesh_height+10, thickness]); tesselation = tesselation % 4; color(mesh_color) for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2]) { square = grid_square(x, y); if (tesselation < 1) { tesselated_square(square,(x%alternation)-(y%alternation)); } else { subdiv_4 = subdivided_square(square); if (tesselation < 2) { for (i=[0:3]) tesselated_square(subdiv_4[i],i%alternation); } else { for (i=[0:3]) { subdiv_16 = subdivided_square(subdiv_4[i]); if (tesselation < 3) { for (j=[0:3]) tesselated_square(subdiv_16[j],j%alternation); } else { for (j=[0:3]) { subdiv_64 = subdivided_square(subdiv_16[j]); if (tesselation < 4) { for (k=[0:3]) tesselated_square(subdiv_64[k]); } } } } } } } } // // Subdivision helpers // function ctrz(a) = (a[0][2]+a[1][2]+a[3][2]+a[2][2])/4; function avgx(a,i) = (a[i][0]+a[(i+1)%4][0])/2; function avgy(a,i) = (a[i][1]+a[(i+1)%4][1])/2; function avgz(a,i) = (a[i][2]+a[(i+1)%4][2])/2; // // Convert one square into 4, applying bilinear averaging // // Input : 1 square (4 points) // Output : An array of 4 squares // function subdivided_square(a) = [ [ // SW square a[0], // SW [a[0][0],avgy(a,0),avgz(a,0)], // CW [avgx(a,1),avgy(a,0),ctrz(a)], // CC [avgx(a,1),a[0][1],avgz(a,3)] // SC ], [ // NW square [a[0][0],avgy(a,0),avgz(a,0)], // CW a[1], // NW [avgx(a,1),a[1][1],avgz(a,1)], // NC [avgx(a,1),avgy(a,0),ctrz(a)] // CC ], [ // NE square [avgx(a,1),avgy(a,0),ctrz(a)], // CC [avgx(a,1),a[1][1],avgz(a,1)], // NC a[2], // NE [a[2][0],avgy(a,0),avgz(a,2)] // CE ], [ // SE square [avgx(a,1),a[0][1],avgz(a,3)], // SC [avgx(a,1),avgy(a,0),ctrz(a)], // CC [a[2][0],avgy(a,0),avgz(a,2)], // CE a[3] // SE ] ]; //================================================ Run the plan translate([-mesh_width / 2, -mesh_height / 2]) { $fn = 12; point_markers(); bilinear_mesh(); }