#include "Marlin.h" #include "planner.h" #include "temperature.h" #include "ultralcd.h" #include "ConfigurationStore.h" void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) { do { eeprom_write_byte((unsigned char*)pos, *value); pos++; value++; }while(--size); } #define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value)) void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) { do { *value = eeprom_read_byte((unsigned char*)pos); pos++; value++; }while(--size); } #define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value)) //====================================================================================== #define EEPROM_OFFSET 100 // IMPORTANT: Whenever there are changes made to the variables stored in EEPROM // in the functions below, also increment the version number. This makes sure that // the default values are used whenever there is a change to the data, to prevent // wrong data being written to the variables. // ALSO: always make sure the variables in the Store and retrieve sections are in the same order. #define EEPROM_VERSION "V14" #ifdef EEPROM_SETTINGS void Config_StoreSettings() { char ver[4]= "000"; int i=EEPROM_OFFSET; EEPROM_WRITE_VAR(i,ver); // invalidate data first EEPROM_WRITE_VAR(i,axis_steps_per_unit); EEPROM_WRITE_VAR(i,max_feedrate); EEPROM_WRITE_VAR(i,max_acceleration_units_per_sq_second); EEPROM_WRITE_VAR(i,acceleration); EEPROM_WRITE_VAR(i,retract_acceleration); EEPROM_WRITE_VAR(i,minimumfeedrate); EEPROM_WRITE_VAR(i,mintravelfeedrate); EEPROM_WRITE_VAR(i,minsegmenttime); EEPROM_WRITE_VAR(i,max_xy_jerk); EEPROM_WRITE_VAR(i,max_z_jerk); EEPROM_WRITE_VAR(i,max_e_jerk); EEPROM_WRITE_VAR(i,add_homing); #ifdef DELTA EEPROM_WRITE_VAR(i,endstop_adj); EEPROM_WRITE_VAR(i,delta_radius); EEPROM_WRITE_VAR(i,delta_diagonal_rod); EEPROM_WRITE_VAR(i,delta_segments_per_second); #endif//DELTA #ifndef ULTIPANEL int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED; int absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED; #endif//ULTIPANEL EEPROM_WRITE_VAR(i,plaPreheatHotendTemp); EEPROM_WRITE_VAR(i,plaPreheatHPBTemp); EEPROM_WRITE_VAR(i,plaPreheatFanSpeed); EEPROM_WRITE_VAR(i,absPreheatHotendTemp); EEPROM_WRITE_VAR(i,absPreheatHPBTemp); EEPROM_WRITE_VAR(i,absPreheatFanSpeed); EEPROM_WRITE_VAR(i,zprobe_zoffset); #ifdef PIDTEMP float dummy = 0.0f; for (int e = 0; e < 4; e++) { if (e < EXTRUDERS) { EEPROM_WRITE_VAR(i,PID_PARAM(Kp,e)); EEPROM_WRITE_VAR(i,PID_PARAM(Ki,e)); EEPROM_WRITE_VAR(i,PID_PARAM(Kd,e)); #ifdef PID_ADD_EXTRUSION_RATE EEPROM_WRITE_VAR(i,PID_PARAM(Kc,e)); #else//PID_ADD_EXTRUSION_RATE dummy = 1.0f; // 1.0 = default kc EEPROM_WRITE_VAR(dummmy); #endif//PID_ADD_EXTRUSION_RATE } else { dummy = 3000.0f; EEPROM_WRITE_VAR(i, dummy); dummy = 0.0f; EEPROM_WRITE_VAR(i,dummy); EEPROM_WRITE_VAR(i,dummy); EEPROM_WRITE_VAR(i,dummy); } } #else//PIDTEMP float dummy = 3000.0f; EEPROM_WRITE_VAR(i,dummy); dummy = 0.0f; EEPROM_WRITE_VAR(i,dummy); EEPROM_WRITE_VAR(i,dummy); EEPROM_WRITE_VAR(i,dummy); #endif//PIDTEMP #ifndef DOGLCD int lcd_contrast = 32; #endif//DOGLCD EEPROM_WRITE_VAR(i,lcd_contrast); #ifdef SCARA EEPROM_WRITE_VAR(i,axis_scaling); // Add scaling for SCARA #endif//SCARA #ifdef FWRETRACT EEPROM_WRITE_VAR(i,autoretract_enabled); EEPROM_WRITE_VAR(i,retract_length); #if EXTRUDERS > 1 EEPROM_WRITE_VAR(i,retract_length_swap); #endif//EXTRUDERS > 1 EEPROM_WRITE_VAR(i,retract_feedrate); EEPROM_WRITE_VAR(i,retract_zlift); EEPROM_WRITE_VAR(i,retract_recover_length); #if EXTRUDERS > 1 EEPROM_WRITE_VAR(i,retract_recover_length_swap); #endif//EXTRUDERS > 1 EEPROM_WRITE_VAR(i,retract_recover_feedrate); #endif//FWRETRACT // Save filament sizes EEPROM_WRITE_VAR(i, volumetric_enabled); EEPROM_WRITE_VAR(i, filament_size[0]); #if EXTRUDERS > 1 EEPROM_WRITE_VAR(i, filament_size[1]); #if EXTRUDERS > 2 EEPROM_WRITE_VAR(i, filament_size[2]); #if EXTRUDERS > 3 EEPROM_WRITE_VAR(i, filament_size[3]); #endif //EXTRUDERS > 3 #endif //EXTRUDERS > 2 #endif //EXTRUDERS > 1 char ver2[4]=EEPROM_VERSION; i=EEPROM_OFFSET; EEPROM_WRITE_VAR(i,ver2); // validate data SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Settings Stored"); } #endif //EEPROM_SETTINGS #ifndef DISABLE_M503 void Config_PrintSettings() { // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Steps per unit:"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M92 X",axis_steps_per_unit[X_AXIS]); SERIAL_ECHOPAIR(" Y",axis_steps_per_unit[Y_AXIS]); SERIAL_ECHOPAIR(" Z",axis_steps_per_unit[Z_AXIS]); SERIAL_ECHOPAIR(" E",axis_steps_per_unit[E_AXIS]); SERIAL_ECHOLN(""); SERIAL_ECHO_START; #ifdef SCARA SERIAL_ECHOLNPGM("Scaling factors:"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M365 X",axis_scaling[X_AXIS]); SERIAL_ECHOPAIR(" Y",axis_scaling[Y_AXIS]); SERIAL_ECHOPAIR(" Z",axis_scaling[Z_AXIS]); SERIAL_ECHOLN(""); SERIAL_ECHO_START; #endif//SCARA SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M203 X", max_feedrate[X_AXIS]); SERIAL_ECHOPAIR(" Y", max_feedrate[Y_AXIS]); SERIAL_ECHOPAIR(" Z", max_feedrate[Z_AXIS]); SERIAL_ECHOPAIR(" E", max_feedrate[E_AXIS]); SERIAL_ECHOLN(""); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M201 X" ,max_acceleration_units_per_sq_second[X_AXIS] ); SERIAL_ECHOPAIR(" Y" , max_acceleration_units_per_sq_second[Y_AXIS] ); SERIAL_ECHOPAIR(" Z" ,max_acceleration_units_per_sq_second[Z_AXIS] ); SERIAL_ECHOPAIR(" E" ,max_acceleration_units_per_sq_second[E_AXIS]); SERIAL_ECHOLN(""); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Acceleration: S=acceleration, T=retract acceleration"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M204 S",acceleration ); SERIAL_ECHOPAIR(" T" ,retract_acceleration); SERIAL_ECHOLN(""); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M205 S",minimumfeedrate ); SERIAL_ECHOPAIR(" T" ,mintravelfeedrate ); SERIAL_ECHOPAIR(" B" ,minsegmenttime ); SERIAL_ECHOPAIR(" X" ,max_xy_jerk ); SERIAL_ECHOPAIR(" Z" ,max_z_jerk); SERIAL_ECHOPAIR(" E" ,max_e_jerk); SERIAL_ECHOLN(""); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Home offset (mm):"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M206 X",add_homing[X_AXIS] ); SERIAL_ECHOPAIR(" Y" ,add_homing[Y_AXIS] ); SERIAL_ECHOPAIR(" Z" ,add_homing[Z_AXIS] ); SERIAL_ECHOLN(""); #ifdef DELTA SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Endstop adjustement (mm):"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M666 X",endstop_adj[X_AXIS] ); SERIAL_ECHOPAIR(" Y" ,endstop_adj[Y_AXIS] ); SERIAL_ECHOPAIR(" Z" ,endstop_adj[Z_AXIS] ); SERIAL_ECHOLN(""); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Delta settings: L=delta_diagonal_rod, R=delta_radius, S=delta_segments_per_second"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M665 L",delta_diagonal_rod ); SERIAL_ECHOPAIR(" R" ,delta_radius ); SERIAL_ECHOPAIR(" S" ,delta_segments_per_second ); SERIAL_ECHOLN(""); #endif//DELTA #ifdef PIDTEMP SERIAL_ECHO_START; SERIAL_ECHOLNPGM("PID settings:"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp,0)); // for compatibility with hosts, only echos values for E0 SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0))); SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0))); SERIAL_ECHOLN(""); #endif//PIDTEMP #ifdef FWRETRACT SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M207 S",retract_length); SERIAL_ECHOPAIR(" F" ,retract_feedrate*60); SERIAL_ECHOPAIR(" Z" ,retract_zlift); SERIAL_ECHOLN(""); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M208 S",retract_recover_length); SERIAL_ECHOPAIR(" F", retract_recover_feedrate*60); SERIAL_ECHOLN(""); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M209 S", (unsigned long)(autoretract_enabled ? 1 : 0)); SERIAL_ECHOLN(""); #if EXTRUDERS > 1 SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Multi-extruder settings:"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" Swap retract length (mm): ", retract_length_swap); SERIAL_ECHOLN(""); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" Swap rec. addl. length (mm): ", retract_recover_length_swap); SERIAL_ECHOLN(""); #endif//EXTRUDERS > 1 #endif//FWRETRACT SERIAL_ECHO_START; if (volumetric_enabled) { SERIAL_ECHOLNPGM("Filament settings:"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M200 D", filament_size[0]); SERIAL_ECHOLN(""); #if EXTRUDERS > 1 SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]); SERIAL_ECHOLN(""); #if EXTRUDERS > 2 SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]); SERIAL_ECHOLN(""); #if EXTRUDERS > 3 SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]); SERIAL_ECHOLN(""); #endif //EXTRUDERS > 3 #endif //EXTRUDERS > 2 #endif //EXTRUDERS > 1 } else { SERIAL_ECHOLNPGM("Filament settings: Disabled"); } #ifdef CUSTOM_M_CODES SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Z-Probe Offset (mm):"); SERIAL_ECHO_START; SERIAL_ECHO(" M"); SERIAL_ECHO(CUSTOM_M_CODE_SET_Z_PROBE_OFFSET); SERIAL_ECHOPAIR(" Z",-zprobe_zoffset); SERIAL_ECHOLN(""); #endif } #endif//DISABLE_M503 #ifdef EEPROM_SETTINGS void Config_RetrieveSettings() { int i=EEPROM_OFFSET; char stored_ver[4]; char ver[4]=EEPROM_VERSION; EEPROM_READ_VAR(i,stored_ver); //read stored version // SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]"); if (strncmp(ver,stored_ver,3) == 0) { // version number match EEPROM_READ_VAR(i,axis_steps_per_unit); EEPROM_READ_VAR(i,max_feedrate); EEPROM_READ_VAR(i,max_acceleration_units_per_sq_second); // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) reset_acceleration_rates(); EEPROM_READ_VAR(i,acceleration); EEPROM_READ_VAR(i,retract_acceleration); EEPROM_READ_VAR(i,minimumfeedrate); EEPROM_READ_VAR(i,mintravelfeedrate); EEPROM_READ_VAR(i,minsegmenttime); EEPROM_READ_VAR(i,max_xy_jerk); EEPROM_READ_VAR(i,max_z_jerk); EEPROM_READ_VAR(i,max_e_jerk); EEPROM_READ_VAR(i,add_homing); #ifdef DELTA EEPROM_READ_VAR(i,endstop_adj); EEPROM_READ_VAR(i,delta_radius); EEPROM_READ_VAR(i,delta_diagonal_rod); EEPROM_READ_VAR(i,delta_segments_per_second); #endif//DELTA #ifndef ULTIPANEL int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed; int absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed; #endif//ULTIPANEL EEPROM_READ_VAR(i,plaPreheatHotendTemp); EEPROM_READ_VAR(i,plaPreheatHPBTemp); EEPROM_READ_VAR(i,plaPreheatFanSpeed); EEPROM_READ_VAR(i,absPreheatHotendTemp); EEPROM_READ_VAR(i,absPreheatHPBTemp); EEPROM_READ_VAR(i,absPreheatFanSpeed); EEPROM_READ_VAR(i,zprobe_zoffset); #ifdef PIDTEMP float dummy = 0.0f; for (int e = 0; e < 4; e++) // 4 = max extruders supported by marlin { if (e < EXTRUDERS) { // do not need to scale PID values as the values in EEPROM are already scaled EEPROM_READ_VAR(i,PID_PARAM(Kp,e)); EEPROM_READ_VAR(i,PID_PARAM(Ki,e)); EEPROM_READ_VAR(i,PID_PARAM(Kd,e)); #ifdef PID_ADD_EXTRUSION_RATE EEPROM_READ_VAR(i,PID_PARAM(Kc,e)); #else//PID_ADD_EXTRUSION_RATE EEPROM_READ_VAR(i,dummy); #endif//PID_ADD_EXTRUSION_RATE } else { EEPROM_READ_VAR(i,dummy); EEPROM_READ_VAR(i,dummy); EEPROM_READ_VAR(i,dummy); EEPROM_READ_VAR(i,dummy); } } #else//PIDTEMP // 4 x 3 = 12 slots for PID parameters float dummy = 0.0f; EEPROM_READ_VAR(i,dummy); EEPROM_READ_VAR(i,dummy); EEPROM_READ_VAR(i,dummy); EEPROM_READ_VAR(i,dummy); EEPROM_READ_VAR(i,dummy); EEPROM_READ_VAR(i,dummy); EEPROM_READ_VAR(i,dummy); EEPROM_READ_VAR(i,dummy); EEPROM_READ_VAR(i,dummy); EEPROM_READ_VAR(i,dummy); EEPROM_READ_VAR(i,dummy); EEPROM_READ_VAR(i,dummy); #endif//PIDTEMP #ifndef DOGLCD int lcd_contrast; #endif//DOGLCD EEPROM_READ_VAR(i,lcd_contrast); #ifdef SCARA EEPROM_READ_VAR(i,axis_scaling); #endif//SCARA #ifdef FWRETRACT EEPROM_READ_VAR(i,autoretract_enabled); EEPROM_READ_VAR(i,retract_length); #if EXTRUDERS > 1 EEPROM_READ_VAR(i,retract_length_swap); #endif//EXTRUDERS > 1 EEPROM_READ_VAR(i,retract_feedrate); EEPROM_READ_VAR(i,retract_zlift); EEPROM_READ_VAR(i,retract_recover_length); #if EXTRUDERS > 1 EEPROM_READ_VAR(i,retract_recover_length_swap); #endif//EXTRUDERS > 1 EEPROM_READ_VAR(i,retract_recover_feedrate); #endif//FWRETRACT EEPROM_READ_VAR(i, volumetric_enabled); EEPROM_READ_VAR(i, filament_size[0]); #if EXTRUDERS > 1 EEPROM_READ_VAR(i, filament_size[1]); #if EXTRUDERS > 2 EEPROM_READ_VAR(i, filament_size[2]); #if EXTRUDERS > 3 EEPROM_READ_VAR(i, filament_size[3]); #endif //EXTRUDERS > 3 #endif //EXTRUDERS > 2 #endif //EXTRUDERS > 1 calculate_volumetric_multipliers(); // Call updatePID (similar to when we have processed M301) updatePID(); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Stored settings retrieved"); } else { Config_ResetDefault(); } #ifdef EEPROM_CHITCHAT Config_PrintSettings(); #endif//EEPROM_CHITCHAT } #endif//EEPROM_SETTINGS void Config_ResetDefault() { float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT; float tmp2[]=DEFAULT_MAX_FEEDRATE; long tmp3[]=DEFAULT_MAX_ACCELERATION; for (short i=0;i<4;i++) { axis_steps_per_unit[i]=tmp1[i]; max_feedrate[i]=tmp2[i]; max_acceleration_units_per_sq_second[i]=tmp3[i]; #ifdef SCARA axis_scaling[i]=1; #endif//SCARA } // steps per sq second need to be updated to agree with the units per sq second reset_acceleration_rates(); acceleration=DEFAULT_ACCELERATION; retract_acceleration=DEFAULT_RETRACT_ACCELERATION; minimumfeedrate=DEFAULT_MINIMUMFEEDRATE; minsegmenttime=DEFAULT_MINSEGMENTTIME; mintravelfeedrate=DEFAULT_MINTRAVELFEEDRATE; max_xy_jerk=DEFAULT_XYJERK; max_z_jerk=DEFAULT_ZJERK; max_e_jerk=DEFAULT_EJERK; add_homing[X_AXIS] = add_homing[Y_AXIS] = add_homing[Z_AXIS] = 0; #ifdef DELTA endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0; delta_radius= DELTA_RADIUS; delta_diagonal_rod= DELTA_DIAGONAL_ROD; delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND; recalc_delta_settings(delta_radius, delta_diagonal_rod); #endif//DELTA #ifdef ULTIPANEL plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP; plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP; plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED; absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP; absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP; absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED; #endif//ULTIPANEL #ifdef ENABLE_AUTO_BED_LEVELING zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER; #endif//ENABLE_AUTO_BED_LEVELING #ifdef DOGLCD lcd_contrast = DEFAULT_LCD_CONTRAST; #endif//DOGLCD #ifdef PIDTEMP #ifdef PID_PARAMS_PER_EXTRUDER for (int e = 0; e < EXTRUDERS; e++) #else // PID_PARAMS_PER_EXTRUDER int e = 0; // only need to write once #endif // PID_PARAMS_PER_EXTRUDER { PID_PARAM(Kp,e) = DEFAULT_Kp; PID_PARAM(Ki,e) = scalePID_i(DEFAULT_Ki); PID_PARAM(Kd,e) = scalePID_d(DEFAULT_Kd); #ifdef PID_ADD_EXTRUSION_RATE PID_PARAM(Kc,e) = DEFAULT_Kc; #endif//PID_ADD_EXTRUSION_RATE } // call updatePID (similar to when we have processed M301) updatePID(); #endif//PIDTEMP #ifdef FWRETRACT autoretract_enabled = false; retract_length = RETRACT_LENGTH; #if EXTRUDERS > 1 retract_length_swap = RETRACT_LENGTH_SWAP; #endif//EXTRUDERS > 1 retract_feedrate = RETRACT_FEEDRATE; retract_zlift = RETRACT_ZLIFT; retract_recover_length = RETRACT_RECOVER_LENGTH; #if EXTRUDERS > 1 retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; #endif//EXTRUDERS > 1 retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE; #endif//FWRETRACT volumetric_enabled = false; filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA; #if EXTRUDERS > 1 filament_size[1] = DEFAULT_NOMINAL_FILAMENT_DIA; #if EXTRUDERS > 2 filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA; #if EXTRUDERS > 3 filament_size[3] = DEFAULT_NOMINAL_FILAMENT_DIA; #endif //EXTRUDERS > 3 #endif //EXTRUDERS > 2 #endif //EXTRUDERS > 1 calculate_volumetric_multipliers(); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded"); }