/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * planner.cpp * * Buffer movement commands and manage the acceleration profile plan * * Derived from Grbl * Copyright (c) 2009-2011 Simen Svale Skogsrud * * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. * * * Reasoning behind the mathematics in this module (in the key of 'Mathematica'): * * s == speed, a == acceleration, t == time, d == distance * * Basic definitions: * Speed[s_, a_, t_] := s + (a*t) * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t] * * Distance to reach a specific speed with a constant acceleration: * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t] * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance() * * Speed after a given distance of travel with constant acceleration: * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t] * m -> Sqrt[2 a d + s^2] * * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2] * * When to start braking (di) to reach a specified destination speed (s2) after accelerating * from initial speed s1 without ever stopping at a plateau: * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di] * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance() * * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) * */ #include "MarlinConfig.h" #include "planner.h" #include "stepper.h" #include "temperature.h" #include "ultralcd.h" #include "language.h" #include "ubl.h" #include "gcode.h" #include "Marlin.h" #if ENABLED(MESH_BED_LEVELING) #include "mesh_bed_leveling.h" #endif Planner planner; // public: /** * A ring buffer of moves described in steps */ block_t Planner::block_buffer[BLOCK_BUFFER_SIZE]; volatile uint8_t Planner::block_buffer_head = 0, // Index of the next block to be pushed Planner::block_buffer_tail = 0; float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second Planner::axis_steps_per_mm[XYZE_N], Planner::steps_to_mm[XYZE_N]; #if ENABLED(DISTINCT_E_FACTORS) uint8_t Planner::last_extruder = 0; // Respond to extruder change #endif int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder float Planner::e_factor[EXTRUDERS]; // The flow percentage and volumetric multiplier combine to scale E movement #if DISABLED(NO_VOLUMETRICS) float Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner #endif uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N], Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software uint32_t Planner::min_segment_time_us; // Initialized by settings.load() float Planner::min_feedrate_mm_s, Planner::acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX Planner::retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX Planner::travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX Planner::max_jerk[XYZE], // The largest speed change requiring no acceleration Planner::min_travel_feedrate_mm_s; #if HAS_LEVELING bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled #if ABL_PLANAR matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level #endif #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) float Planner::z_fade_height, // Initialized by settings.load() Planner::inverse_z_fade_height, Planner::last_fade_z; #endif #else constexpr bool Planner::leveling_active; #endif #if ENABLED(SKEW_CORRECTION) #if ENABLED(SKEW_CORRECTION_GCODE) float Planner::xy_skew_factor; #else constexpr float Planner::xy_skew_factor; #endif #if ENABLED(SKEW_CORRECTION_FOR_Z) && ENABLED(SKEW_CORRECTION_GCODE) float Planner::xz_skew_factor, Planner::yz_skew_factor; #else constexpr float Planner::xz_skew_factor, Planner::yz_skew_factor; #endif #endif #if ENABLED(AUTOTEMP) float Planner::autotemp_max = 250, Planner::autotemp_min = 210, Planner::autotemp_factor = 0.1; bool Planner::autotemp_enabled = false; #endif // private: int32_t Planner::position[NUM_AXIS] = { 0 }; uint32_t Planner::cutoff_long; float Planner::previous_speed[NUM_AXIS], Planner::previous_nominal_speed; #if ENABLED(DISABLE_INACTIVE_EXTRUDER) uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 }; #endif #ifdef XY_FREQUENCY_LIMIT // Old direction bits. Used for speed calculations unsigned char Planner::old_direction_bits = 0; // Segment times (in µs). Used for speed calculations uint32_t Planner::axis_segment_time_us[2][3] = { { MAX_FREQ_TIME_US + 1, 0, 0 }, { MAX_FREQ_TIME_US + 1, 0, 0 } }; #endif #if ENABLED(LIN_ADVANCE) float Planner::extruder_advance_k, // Initialized by settings.load() Planner::advance_ed_ratio; // Initialized by settings.load() #endif #if ENABLED(ULTRA_LCD) volatile uint32_t Planner::block_buffer_runtime_us = 0; #endif /** * Class and Instance Methods */ Planner::Planner() { init(); } void Planner::init() { block_buffer_head = block_buffer_tail = 0; ZERO(position); ZERO(previous_speed); previous_nominal_speed = 0.0; #if ABL_PLANAR bed_level_matrix.set_to_identity(); #endif } #define MINIMAL_STEP_RATE 120 /** * Calculate trapezoid parameters, multiplying the entry- and exit-speeds * by the provided factors. */ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) { uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor), final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second) // Limit minimal step rate (Otherwise the timer will overflow.) NOLESS(initial_rate, MINIMAL_STEP_RATE); NOLESS(final_rate, MINIMAL_STEP_RATE); const int32_t accel = block->acceleration_steps_per_s2; // Steps required for acceleration, deceleration to/from nominal rate int32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)), decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)), // Steps between acceleration and deceleration, if any plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps; // Does accelerate_steps + decelerate_steps exceed step_event_count? // Then we can't possibly reach the nominal rate, there will be no cruising. // Use intersection_distance() to calculate accel / braking time in order to // reach the final_rate exactly at the end of this block. if (plateau_steps < 0) { accelerate_steps = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count)); NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero) plateau_steps = 0; } // block->accelerate_until = accelerate_steps; // block->decelerate_after = accelerate_steps+plateau_steps; CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section if (!TEST(block->flag, BLOCK_BIT_BUSY)) { // Don't update variables if block is busy. block->accelerate_until = accelerate_steps; block->decelerate_after = accelerate_steps + plateau_steps; block->initial_rate = initial_rate; block->final_rate = final_rate; } CRITICAL_SECTION_END; } // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks. // This method will calculate the junction jerk as the euclidean distance between the nominal // velocities of the respective blocks. //inline float junction_jerk(block_t *before, block_t *after) { // return SQRT( // POW((before->speed_x-after->speed_x), 2)+POW((before->speed_y-after->speed_y), 2)); //} // The kernel called by recalculate() when scanning the plan from last to first entry. void Planner::reverse_pass_kernel(block_t* const current, const block_t * const next) { if (!current || !next) return; // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and // check for maximum allowable speed reductions to ensure maximum possible planned speed. float max_entry_speed = current->max_entry_speed; if (current->entry_speed != max_entry_speed) { // If nominal length true, max junction speed is guaranteed to be reached. Only compute // for max allowable speed if block is decelerating and nominal length is false. current->entry_speed = (TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) || max_entry_speed <= next->entry_speed) ? max_entry_speed : min(max_entry_speed, max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters)); SBI(current->flag, BLOCK_BIT_RECALCULATE); } } /** * recalculate() needs to go over the current plan twice. * Once in reverse and once forward. This implements the reverse pass. */ void Planner::reverse_pass() { if (movesplanned() > 3) { const uint8_t endnr = BLOCK_MOD(block_buffer_tail + 2); // tail is running. tail+1 shouldn't be altered because it's connected to the running block. // tail+2 because the index is not yet advanced when checked uint8_t blocknr = prev_block_index(block_buffer_head); block_t* current = &block_buffer[blocknr]; do { const block_t * const next = current; blocknr = prev_block_index(blocknr); current = &block_buffer[blocknr]; if (TEST(current->flag, BLOCK_BIT_START_FROM_FULL_HALT)) // Up to this every block is already optimized. break; reverse_pass_kernel(current, next); } while (blocknr != endnr); } } // The kernel called by recalculate() when scanning the plan from first to last entry. void Planner::forward_pass_kernel(const block_t * const previous, block_t* const current) { if (!previous) return; // If the previous block is an acceleration block, but it is not long enough to complete the // full speed change within the block, we need to adjust the entry speed accordingly. Entry // speeds have already been reset, maximized, and reverse planned by reverse planner. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck. if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH)) { if (previous->entry_speed < current->entry_speed) { float entry_speed = min(current->entry_speed, max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters)); // Check for junction speed change if (current->entry_speed != entry_speed) { current->entry_speed = entry_speed; SBI(current->flag, BLOCK_BIT_RECALCULATE); } } } } /** * recalculate() needs to go over the current plan twice. * Once in reverse and once forward. This implements the forward pass. */ void Planner::forward_pass() { block_t* block[3] = { NULL, NULL, NULL }; for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { block[0] = block[1]; block[1] = block[2]; block[2] = &block_buffer[b]; forward_pass_kernel(block[0], block[1]); } forward_pass_kernel(block[1], block[2]); } /** * Recalculate the trapezoid speed profiles for all blocks in the plan * according to the entry_factor for each junction. Must be called by * recalculate() after updating the blocks. */ void Planner::recalculate_trapezoids() { int8_t block_index = block_buffer_tail; block_t *current, *next = NULL; while (block_index != block_buffer_head) { current = next; next = &block_buffer[block_index]; if (current) { // Recalculate if current block entry or exit junction speed has changed. if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) { // NOTE: Entry and exit factors always > 0 by all previous logic operations. const float nomr = 1.0 / current->nominal_speed; calculate_trapezoid_for_block(current, current->entry_speed * nomr, next->entry_speed * nomr); CBI(current->flag, BLOCK_BIT_RECALCULATE); // Reset current only to ensure next trapezoid is computed } } block_index = next_block_index(block_index); } // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated. if (next) { const float nomr = 1.0 / next->nominal_speed; calculate_trapezoid_for_block(next, next->entry_speed * nomr, (MINIMUM_PLANNER_SPEED) * nomr); CBI(next->flag, BLOCK_BIT_RECALCULATE); } } /* * Recalculate the motion plan according to the following algorithm: * * 1. Go over every block in reverse order... * * Calculate a junction speed reduction (block_t.entry_factor) so: * * a. The junction jerk is within the set limit, and * * b. No speed reduction within one block requires faster * deceleration than the one, true constant acceleration. * * 2. Go over every block in chronological order... * * Dial down junction speed reduction values if: * a. The speed increase within one block would require faster * acceleration than the one, true constant acceleration. * * After that, all blocks will have an entry_factor allowing all speed changes to * be performed using only the one, true constant acceleration, and where no junction * jerk is jerkier than the set limit, Jerky. Finally it will: * * 3. Recalculate "trapezoids" for all blocks. */ void Planner::recalculate() { reverse_pass(); forward_pass(); recalculate_trapezoids(); } #if ENABLED(AUTOTEMP) void Planner::getHighESpeed() { static float oldt = 0; if (!autotemp_enabled) return; if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero. float high = 0.0; for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { block_t* block = &block_buffer[b]; if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) { float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec; NOLESS(high, se); } } float t = autotemp_min + high * autotemp_factor; t = constrain(t, autotemp_min, autotemp_max); if (t < oldt) t = t * (1 - (AUTOTEMP_OLDWEIGHT)) + oldt * (AUTOTEMP_OLDWEIGHT); oldt = t; thermalManager.setTargetHotend(t, 0); } #endif // AUTOTEMP /** * Maintain fans, paste extruder pressure, */ void Planner::check_axes_activity() { unsigned char axis_active[NUM_AXIS] = { 0 }, tail_fan_speed[FAN_COUNT]; #if ENABLED(BARICUDA) #if HAS_HEATER_1 uint8_t tail_valve_pressure; #endif #if HAS_HEATER_2 uint8_t tail_e_to_p_pressure; #endif #endif if (blocks_queued()) { #if FAN_COUNT > 0 for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i]; #endif block_t* block; #if ENABLED(BARICUDA) block = &block_buffer[block_buffer_tail]; #if HAS_HEATER_1 tail_valve_pressure = block->valve_pressure; #endif #if HAS_HEATER_2 tail_e_to_p_pressure = block->e_to_p_pressure; #endif #endif for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { block = &block_buffer[b]; LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++; } } else { #if FAN_COUNT > 0 for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i]; #endif #if ENABLED(BARICUDA) #if HAS_HEATER_1 tail_valve_pressure = baricuda_valve_pressure; #endif #if HAS_HEATER_2 tail_e_to_p_pressure = baricuda_e_to_p_pressure; #endif #endif } #if ENABLED(DISABLE_X) if (!axis_active[X_AXIS]) disable_X(); #endif #if ENABLED(DISABLE_Y) if (!axis_active[Y_AXIS]) disable_Y(); #endif #if ENABLED(DISABLE_Z) if (!axis_active[Z_AXIS]) disable_Z(); #endif #if ENABLED(DISABLE_E) if (!axis_active[E_AXIS]) disable_e_steppers(); #endif #if FAN_COUNT > 0 #if FAN_KICKSTART_TIME > 0 static millis_t fan_kick_end[FAN_COUNT] = { 0 }; #define KICKSTART_FAN(f) \ if (tail_fan_speed[f]) { \ millis_t ms = millis(); \ if (fan_kick_end[f] == 0) { \ fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \ tail_fan_speed[f] = 255; \ } else if (PENDING(ms, fan_kick_end[f])) \ tail_fan_speed[f] = 255; \ } else fan_kick_end[f] = 0 #if HAS_FAN0 KICKSTART_FAN(0); #endif #if HAS_FAN1 KICKSTART_FAN(1); #endif #if HAS_FAN2 KICKSTART_FAN(2); #endif #endif // FAN_KICKSTART_TIME > 0 #ifdef FAN_MIN_PWM #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0) #else #define CALC_FAN_SPEED(f) tail_fan_speed[f] #endif #if ENABLED(FAN_SOFT_PWM) #if HAS_FAN0 thermalManager.soft_pwm_amount_fan[0] = CALC_FAN_SPEED(0); #endif #if HAS_FAN1 thermalManager.soft_pwm_amount_fan[1] = CALC_FAN_SPEED(1); #endif #if HAS_FAN2 thermalManager.soft_pwm_amount_fan[2] = CALC_FAN_SPEED(2); #endif #else #if HAS_FAN0 analogWrite(FAN_PIN, CALC_FAN_SPEED(0)); #endif #if HAS_FAN1 analogWrite(FAN1_PIN, CALC_FAN_SPEED(1)); #endif #if HAS_FAN2 analogWrite(FAN2_PIN, CALC_FAN_SPEED(2)); #endif #endif #endif // FAN_COUNT > 0 #if ENABLED(AUTOTEMP) getHighESpeed(); #endif #if ENABLED(BARICUDA) #if HAS_HEATER_1 analogWrite(HEATER_1_PIN, tail_valve_pressure); #endif #if HAS_HEATER_2 analogWrite(HEATER_2_PIN, tail_e_to_p_pressure); #endif #endif } #if DISABLED(NO_VOLUMETRICS) /** * Get a volumetric multiplier from a filament diameter. * This is the reciprocal of the circular cross-section area. * Return 1.0 with volumetric off or a diameter of 0.0. */ inline float calculate_volumetric_multiplier(const float &diameter) { return (parser.volumetric_enabled && diameter) ? 1.0 / CIRCLE_AREA(diameter * 0.5) : 1.0; } /** * Convert the filament sizes into volumetric multipliers. * The multiplier converts a given E value into a length. */ void Planner::calculate_volumetric_multipliers() { for (uint8_t i = 0; i < COUNT(filament_size); i++) { volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]); refresh_e_factor(i); } } #endif // !NO_VOLUMETRICS #if ENABLED(FILAMENT_WIDTH_SENSOR) /** * Convert the ratio value given by the filament width sensor * into a volumetric multiplier. Conversion differs when using * linear extrusion vs volumetric extrusion. */ void Planner::calculate_volumetric_for_width_sensor(const int8_t encoded_ratio) { // Reconstitute the nominal/measured ratio const float nom_meas_ratio = 1.0 + 0.01 * encoded_ratio, ratio_2 = sq(nom_meas_ratio); volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled ? ratio_2 / CIRCLE_AREA(filament_width_nominal * 0.5) // Volumetric uses a true volumetric multiplier : ratio_2; // Linear squares the ratio, which scales the volume refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM); } #endif #if PLANNER_LEVELING /** * rx, ry, rz - Cartesian positions in mm * Leveled XYZ on completion */ void Planner::apply_leveling(float &rx, float &ry, float &rz) { #if ENABLED(SKEW_CORRECTION) skew(rx, ry, rz); #endif if (!leveling_active) return; #if ABL_PLANAR float dx = rx - (X_TILT_FULCRUM), dy = ry - (Y_TILT_FULCRUM); apply_rotation_xyz(bed_level_matrix, dx, dy, rz); rx = dx + X_TILT_FULCRUM; ry = dy + Y_TILT_FULCRUM; #else #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) const float fade_scaling_factor = fade_scaling_factor_for_z(rz); if (!fade_scaling_factor) return; #elif HAS_MESH constexpr float fade_scaling_factor = 1.0; #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) const float raw[XYZ] = { rx, ry, 0 }; #endif rz += ( #if ENABLED(AUTO_BED_LEVELING_UBL) ubl.get_z_correction(rx, ry) * fade_scaling_factor #elif ENABLED(MESH_BED_LEVELING) mbl.get_z(rx, ry #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) , fade_scaling_factor #endif ) #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) bilinear_z_offset(raw) * fade_scaling_factor #else 0 #endif ); #endif } void Planner::unapply_leveling(float raw[XYZ]) { #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) const float fade_scaling_factor = fade_scaling_factor_for_z(raw[Z_AXIS]); #else constexpr float fade_scaling_factor = 1.0; #endif if (leveling_active && fade_scaling_factor) { #if ABL_PLANAR matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix); float dx = raw[X_AXIS] - (X_TILT_FULCRUM), dy = raw[Y_AXIS] - (Y_TILT_FULCRUM); apply_rotation_xyz(inverse, dx, dy, raw[Z_AXIS]); raw[X_AXIS] = dx + X_TILT_FULCRUM; raw[Y_AXIS] = dy + Y_TILT_FULCRUM; #else // !ABL_PLANAR raw[Z_AXIS] -= ( #if ENABLED(AUTO_BED_LEVELING_UBL) ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]) * fade_scaling_factor #elif ENABLED(MESH_BED_LEVELING) mbl.get_z(raw[X_AXIS], raw[Y_AXIS] #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) , fade_scaling_factor #endif ) #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) bilinear_z_offset(raw) * fade_scaling_factor #else 0 #endif ); #endif // !ABL_PLANAR } #if ENABLED(SKEW_CORRECTION) unskew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); #endif } #endif // PLANNER_LEVELING /** * Planner::_buffer_steps * * Add a new linear movement to the buffer (in terms of steps). * * target - target position in steps units * fr_mm_s - (target) speed of the move * extruder - target extruder */ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const uint8_t extruder) { const int32_t da = target[X_AXIS] - position[X_AXIS], db = target[Y_AXIS] - position[Y_AXIS], dc = target[Z_AXIS] - position[Z_AXIS]; int32_t de = target[E_AXIS] - position[E_AXIS]; /* <-- add a slash to enable SERIAL_ECHOPAIR(" _buffer_steps FR:", fr_mm_s); SERIAL_ECHOPAIR(" A:", target[A_AXIS]); SERIAL_ECHOPAIR(" (", da); SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]); SERIAL_ECHOPAIR(" (", db); SERIAL_ECHOPAIR(" steps) C:", target[C_AXIS]); SERIAL_ECHOPAIR(" (", dc); SERIAL_ECHOPAIR(" steps) E:", target[E_AXIS]); SERIAL_ECHOPAIR(" (", de); SERIAL_ECHOLNPGM(" steps)"); //*/ #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE) if (de) { #if ENABLED(PREVENT_COLD_EXTRUSION) if (thermalManager.tooColdToExtrude(extruder)) { position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part de = 0; // no difference SERIAL_ECHO_START(); SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); } #endif // PREVENT_COLD_EXTRUSION #if ENABLED(PREVENT_LENGTHY_EXTRUDE) if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part de = 0; // no difference SERIAL_ECHO_START(); SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); } #endif // PREVENT_LENGTHY_EXTRUDE } #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE // Compute direction bit-mask for this block uint8_t dm = 0; #if CORE_IS_XY if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis if (db < 0) SBI(dm, Y_HEAD); // ...and Y if (dc < 0) SBI(dm, Z_AXIS); if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction #elif CORE_IS_XZ if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis if (db < 0) SBI(dm, Y_AXIS); if (dc < 0) SBI(dm, Z_HEAD); // ...and Z if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction #elif CORE_IS_YZ if (da < 0) SBI(dm, X_AXIS); if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis if (dc < 0) SBI(dm, Z_HEAD); // ...and Z if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction #else if (da < 0) SBI(dm, X_AXIS); if (db < 0) SBI(dm, Y_AXIS); if (dc < 0) SBI(dm, Z_AXIS); #endif if (de < 0) SBI(dm, E_AXIS); const float esteps_float = de * e_factor[extruder]; const int32_t esteps = abs(esteps_float) + 0.5; // Calculate the buffer head after we push this byte const uint8_t next_buffer_head = next_block_index(block_buffer_head); // If the buffer is full: good! That means we are well ahead of the robot. // Rest here until there is room in the buffer. while (block_buffer_tail == next_buffer_head) idle(); // Prepare to set up new block block_t* block = &block_buffer[block_buffer_head]; // Clear all flags, including the "busy" bit block->flag = 0x00; // Set direction bits block->direction_bits = dm; // Number of steps for each axis // See http://www.corexy.com/theory.html #if CORE_IS_XY block->steps[A_AXIS] = labs(da + db); block->steps[B_AXIS] = labs(da - db); block->steps[Z_AXIS] = labs(dc); #elif CORE_IS_XZ block->steps[A_AXIS] = labs(da + dc); block->steps[Y_AXIS] = labs(db); block->steps[C_AXIS] = labs(da - dc); #elif CORE_IS_YZ block->steps[X_AXIS] = labs(da); block->steps[B_AXIS] = labs(db + dc); block->steps[C_AXIS] = labs(db - dc); #else // default non-h-bot planning block->steps[X_AXIS] = labs(da); block->steps[Y_AXIS] = labs(db); block->steps[Z_AXIS] = labs(dc); #endif block->steps[E_AXIS] = esteps; block->step_event_count = MAX4(block->steps[X_AXIS], block->steps[Y_AXIS], block->steps[Z_AXIS], esteps); // Bail if this is a zero-length block if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return; // For a mixing extruder, get a magnified step_event_count for each #if ENABLED(MIXING_EXTRUDER) for (uint8_t i = 0; i < MIXING_STEPPERS; i++) block->mix_event_count[i] = mixing_factor[i] * block->step_event_count; #endif #if FAN_COUNT > 0 for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i]; #endif #if ENABLED(BARICUDA) block->valve_pressure = baricuda_valve_pressure; block->e_to_p_pressure = baricuda_e_to_p_pressure; #endif block->active_extruder = extruder; //enable active axes #if CORE_IS_XY if (block->steps[A_AXIS] || block->steps[B_AXIS]) { enable_X(); enable_Y(); } #if DISABLED(Z_LATE_ENABLE) if (block->steps[Z_AXIS]) enable_Z(); #endif #elif CORE_IS_XZ if (block->steps[A_AXIS] || block->steps[C_AXIS]) { enable_X(); enable_Z(); } if (block->steps[Y_AXIS]) enable_Y(); #elif CORE_IS_YZ if (block->steps[B_AXIS] || block->steps[C_AXIS]) { enable_Y(); enable_Z(); } if (block->steps[X_AXIS]) enable_X(); #else if (block->steps[X_AXIS]) enable_X(); if (block->steps[Y_AXIS]) enable_Y(); #if DISABLED(Z_LATE_ENABLE) if (block->steps[Z_AXIS]) enable_Z(); #endif #endif // Enable extruder(s) if (esteps) { #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder #define DISABLE_IDLE_E(N) if (!g_uc_extruder_last_move[N]) disable_E##N(); for (uint8_t i = 0; i < EXTRUDERS; i++) if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--; switch(extruder) { case 0: enable_E0(); g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2; #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE) if (extruder_duplication_enabled) { enable_E1(); g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2; } #endif #if EXTRUDERS > 1 DISABLE_IDLE_E(1); #if EXTRUDERS > 2 DISABLE_IDLE_E(2); #if EXTRUDERS > 3 DISABLE_IDLE_E(3); #if EXTRUDERS > 4 DISABLE_IDLE_E(4); #endif // EXTRUDERS > 4 #endif // EXTRUDERS > 3 #endif // EXTRUDERS > 2 #endif // EXTRUDERS > 1 break; #if EXTRUDERS > 1 case 1: enable_E1(); g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2; DISABLE_IDLE_E(0); #if EXTRUDERS > 2 DISABLE_IDLE_E(2); #if EXTRUDERS > 3 DISABLE_IDLE_E(3); #if EXTRUDERS > 4 DISABLE_IDLE_E(4); #endif // EXTRUDERS > 4 #endif // EXTRUDERS > 3 #endif // EXTRUDERS > 2 break; #if EXTRUDERS > 2 case 2: enable_E2(); g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2; DISABLE_IDLE_E(0); DISABLE_IDLE_E(1); #if EXTRUDERS > 3 DISABLE_IDLE_E(3); #if EXTRUDERS > 4 DISABLE_IDLE_E(4); #endif #endif break; #if EXTRUDERS > 3 case 3: enable_E3(); g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2; DISABLE_IDLE_E(0); DISABLE_IDLE_E(1); DISABLE_IDLE_E(2); #if EXTRUDERS > 4 DISABLE_IDLE_E(4); #endif break; #if EXTRUDERS > 4 case 4: enable_E4(); g_uc_extruder_last_move[4] = (BLOCK_BUFFER_SIZE) * 2; DISABLE_IDLE_E(0); DISABLE_IDLE_E(1); DISABLE_IDLE_E(2); DISABLE_IDLE_E(3); break; #endif // EXTRUDERS > 4 #endif // EXTRUDERS > 3 #endif // EXTRUDERS > 2 #endif // EXTRUDERS > 1 } #else enable_E0(); enable_E1(); enable_E2(); enable_E3(); enable_E4(); #endif } if (esteps) NOLESS(fr_mm_s, min_feedrate_mm_s); else NOLESS(fr_mm_s, min_travel_feedrate_mm_s); /** * This part of the code calculates the total length of the movement. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed. */ #if IS_CORE float delta_mm[Z_HEAD + 1]; #if CORE_IS_XY delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS]; delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS]; delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS]; delta_mm[A_AXIS] = (da + db) * steps_to_mm[A_AXIS]; delta_mm[B_AXIS] = CORESIGN(da - db) * steps_to_mm[B_AXIS]; #elif CORE_IS_XZ delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS]; delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS]; delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS]; delta_mm[A_AXIS] = (da + dc) * steps_to_mm[A_AXIS]; delta_mm[C_AXIS] = CORESIGN(da - dc) * steps_to_mm[C_AXIS]; #elif CORE_IS_YZ delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS]; delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS]; delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS]; delta_mm[B_AXIS] = (db + dc) * steps_to_mm[B_AXIS]; delta_mm[C_AXIS] = CORESIGN(db - dc) * steps_to_mm[C_AXIS]; #endif #else float delta_mm[XYZE]; delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS]; delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS]; delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS]; #endif delta_mm[E_AXIS] = esteps_float * steps_to_mm[E_AXIS_N]; if (block->steps[X_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Y_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Z_AXIS] < MIN_STEPS_PER_SEGMENT) { block->millimeters = FABS(delta_mm[E_AXIS]); } else { block->millimeters = SQRT( #if CORE_IS_XY sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS]) #elif CORE_IS_XZ sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD]) #elif CORE_IS_YZ sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD]) #else sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS]) #endif ); } const float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides // Calculate inverse time for this move. No divide by zero due to previous checks. // Example: At 120mm/s a 60mm move takes 0.5s. So this will give 2.0. float inverse_secs = fr_mm_s * inverse_millimeters; const uint8_t moves_queued = movesplanned(); // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill #if ENABLED(SLOWDOWN) || ENABLED(ULTRA_LCD) || defined(XY_FREQUENCY_LIMIT) // Segment time im micro seconds uint32_t segment_time_us = LROUND(1000000.0 / inverse_secs); #endif #if ENABLED(SLOWDOWN) if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) { if (segment_time_us < min_segment_time_us) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more. const uint32_t nst = segment_time_us + LROUND(2 * (min_segment_time_us - segment_time_us) / moves_queued); inverse_secs = 1000000.0 / nst; #if defined(XY_FREQUENCY_LIMIT) || ENABLED(ULTRA_LCD) segment_time_us = nst; #endif } } #endif #if ENABLED(ULTRA_LCD) CRITICAL_SECTION_START block_buffer_runtime_us += segment_time_us; CRITICAL_SECTION_END #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) static float filwidth_e_count = 0, filwidth_delay_dist = 0; //FMM update ring buffer used for delay with filament measurements if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized constexpr int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10; // increment counters with next move in e axis filwidth_e_count += delta_mm[E_AXIS]; filwidth_delay_dist += delta_mm[E_AXIS]; // Only get new measurements on forward E movement if (!UNEAR_ZERO(filwidth_e_count)) { // Loop the delay distance counter (modulus by the mm length) while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM; // Convert into an index into the measurement array filwidth_delay_index[0] = int8_t(filwidth_delay_dist * 0.1); // If the index has changed (must have gone forward)... if (filwidth_delay_index[0] != filwidth_delay_index[1]) { filwidth_e_count = 0; // Reset the E movement counter const int8_t meas_sample = thermalManager.widthFil_to_size_ratio(); do { filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement } while (filwidth_delay_index[0] != filwidth_delay_index[1]); // More slots to fill? } } } #endif // Calculate and limit speed in mm/sec for each axis, calculate minimum acceleration ratio float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed float max_stepper_speed = 0, min_axis_accel_ratio = 1; // ratio < 1 means acceleration ramp needed LOOP_XYZE(i) { const float cs = FABS((current_speed[i] = delta_mm[i] * inverse_secs)); if (cs > max_jerk[i]) NOMORE(min_axis_accel_ratio, max_jerk[i] / cs); NOLESS(max_stepper_speed, cs); #if ENABLED(DISTINCT_E_FACTORS) if (i == E_AXIS) i += extruder; #endif if (cs > max_feedrate_mm_s[i]) NOMORE(speed_factor, max_feedrate_mm_s[i] / cs); } // Max segment time in µs. #ifdef XY_FREQUENCY_LIMIT // Check and limit the xy direction change frequency const unsigned char direction_change = block->direction_bits ^ old_direction_bits; old_direction_bits = block->direction_bits; segment_time_us = LROUND((float)segment_time_us / speed_factor); uint32_t xs0 = axis_segment_time_us[X_AXIS][0], xs1 = axis_segment_time_us[X_AXIS][1], xs2 = axis_segment_time_us[X_AXIS][2], ys0 = axis_segment_time_us[Y_AXIS][0], ys1 = axis_segment_time_us[Y_AXIS][1], ys2 = axis_segment_time_us[Y_AXIS][2]; if (TEST(direction_change, X_AXIS)) { xs2 = axis_segment_time_us[X_AXIS][2] = xs1; xs1 = axis_segment_time_us[X_AXIS][1] = xs0; xs0 = 0; } xs0 = axis_segment_time_us[X_AXIS][0] = xs0 + segment_time_us; if (TEST(direction_change, Y_AXIS)) { ys2 = axis_segment_time_us[Y_AXIS][2] = axis_segment_time_us[Y_AXIS][1]; ys1 = axis_segment_time_us[Y_AXIS][1] = axis_segment_time_us[Y_AXIS][0]; ys0 = 0; } ys0 = axis_segment_time_us[Y_AXIS][0] = ys0 + segment_time_us; const uint32_t max_x_segment_time = MAX3(xs0, xs1, xs2), max_y_segment_time = MAX3(ys0, ys1, ys2), min_xy_segment_time = min(max_x_segment_time, max_y_segment_time); if (min_xy_segment_time < MAX_FREQ_TIME_US) { const float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME_US); NOMORE(speed_factor, low_sf); } #endif // XY_FREQUENCY_LIMIT block->nominal_speed = max_stepper_speed; // (mm/sec) Always > 0 block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0 // Correct the speed if (speed_factor < 1.0) { LOOP_XYZE(i) current_speed[i] *= speed_factor; block->nominal_speed *= speed_factor; block->nominal_rate *= speed_factor; } float safe_speed = block->nominal_speed * min_axis_accel_ratio; static float previous_safe_speed; // Compute and limit the acceleration rate for the trapezoid generator. const float steps_per_mm = block->step_event_count * inverse_millimeters; uint32_t accel; if (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) { // convert to: acceleration steps/sec^2 accel = CEIL(retract_acceleration * steps_per_mm); } else { #define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \ if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \ const uint32_t comp = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count; \ if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \ } \ }while(0) #define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \ if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \ const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \ if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \ } \ }while(0) // Start with print or travel acceleration accel = CEIL((esteps ? acceleration : travel_acceleration) * steps_per_mm); #if ENABLED(DISTINCT_E_FACTORS) #define ACCEL_IDX extruder #else #define ACCEL_IDX 0 #endif // Limit acceleration per axis if (block->step_event_count <= cutoff_long) { LIMIT_ACCEL_LONG(X_AXIS, 0); LIMIT_ACCEL_LONG(Y_AXIS, 0); LIMIT_ACCEL_LONG(Z_AXIS, 0); LIMIT_ACCEL_LONG(E_AXIS, ACCEL_IDX); } else { LIMIT_ACCEL_FLOAT(X_AXIS, 0); LIMIT_ACCEL_FLOAT(Y_AXIS, 0); LIMIT_ACCEL_FLOAT(Z_AXIS, 0); LIMIT_ACCEL_FLOAT(E_AXIS, ACCEL_IDX); } } block->acceleration_steps_per_s2 = accel; block->acceleration = accel / steps_per_mm; block->acceleration_rate = (long)(accel * 16777216.0 / ((F_CPU) * 0.125)); // * 8.388608 // Initial limit on the segment entry velocity float vmax_junction; #if 0 // Use old jerk for now float junction_deviation = 0.1; // Compute path unit vector double unit_vec[XYZ] = { delta_mm[X_AXIS] * inverse_millimeters, delta_mm[Y_AXIS] * inverse_millimeters, delta_mm[Z_AXIS] * inverse_millimeters }; /* Compute maximum allowable entry speed at junction by centripetal acceleration approximation. Let a circle be tangent to both previous and current path line segments, where the junction deviation is defined as the distance from the junction to the closest edge of the circle, collinear with the circle center. The circular segment joining the two paths represents the path of centripetal acceleration. Solve for max velocity based on max acceleration about the radius of the circle, defined indirectly by junction deviation. This may be also viewed as path width or max_jerk in the previous grbl version. This approach does not actually deviate from path, but used as a robust way to compute cornering speeds, as it takes into account the nonlinearities of both the junction angle and junction velocity. */ vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles. if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) { // Compute cosine of angle between previous and current path. (prev_unit_vec is negative) // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity. const float cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS] - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS] - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS]; // Skip and use default max junction speed for 0 degree acute junction. if (cos_theta < 0.95) { vmax_junction = min(previous_nominal_speed, block->nominal_speed); // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds. if (cos_theta > -0.95) { // Compute maximum junction velocity based on maximum acceleration and junction deviation float sin_theta_d2 = SQRT(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive. NOMORE(vmax_junction, SQRT(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2))); } } } #endif if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) { // Estimate a maximum velocity allowed at a joint of two successive segments. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities, // then the machine is not coasting anymore and the safe entry / exit velocities shall be used. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting. vmax_junction = min(block->nominal_speed, previous_nominal_speed); // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities. float v_factor = 1; uint8_t limited = 0; // Now limit the jerk in all axes. const float smaller_speed_factor = vmax_junction / previous_nominal_speed; LOOP_XYZE(axis) { // Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop. float v_exit = previous_speed[axis] * smaller_speed_factor, v_entry = current_speed[axis]; if (limited) { v_exit *= v_factor; v_entry *= v_factor; } // Calculate jerk depending on whether the axis is coasting in the same direction or reversing. const float jerk = (v_exit > v_entry) ? // coasting axis reversal ( (v_entry > 0 || v_exit < 0) ? (v_exit - v_entry) : max(v_exit, -v_entry) ) : // v_exit <= v_entry coasting axis reversal ( (v_entry < 0 || v_exit > 0) ? (v_entry - v_exit) : max(-v_exit, v_entry) ); if (jerk > max_jerk[axis]) { v_factor *= max_jerk[axis] / jerk; ++limited; } } if (limited) vmax_junction *= v_factor; // Now the transition velocity is known, which maximizes the shared exit / entry velocity while // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints. const float vmax_junction_threshold = vmax_junction * 0.99f; if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) { // Not coasting. The machine will stop and start the movements anyway, // better to start the segment from start. SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT); vmax_junction = safe_speed; } } else { SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT); vmax_junction = safe_speed; } // Max entry speed of this block equals the max exit speed of the previous block. block->max_entry_speed = vmax_junction; // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED. const float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters); block->entry_speed = min(vmax_junction, v_allowable); // Initialize planner efficiency flags // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then // the current block and next block junction speeds are guaranteed to always be at their maximum // junction speeds in deceleration and acceleration, respectively. This is due to how the current // block nominal speed limits both the current and next maximum junction speeds. Hence, in both // the reverse and forward planners, the corresponding block junction speed will always be at the // the maximum junction speed and may always be ignored for any speed reduction checks. block->flag |= BLOCK_FLAG_RECALCULATE | (block->nominal_speed <= v_allowable ? BLOCK_FLAG_NOMINAL_LENGTH : 0); // Update previous path unit_vector and nominal speed COPY(previous_speed, current_speed); previous_nominal_speed = block->nominal_speed; previous_safe_speed = safe_speed; #if ENABLED(LIN_ADVANCE) /** * * Use LIN_ADVANCE for blocks if all these are true: * * esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS]) : This is a print move * * extruder_advance_k : There is an advance factor set. * * esteps != block->step_event_count : A problem occurs if the move before a retract is too small. * In that case, the retract and move will be executed together. * This leads to too many advance steps due to a huge e_acceleration. * The math is good, but we must avoid retract moves with advance! * de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves) */ block->use_advance_lead = esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS]) && extruder_advance_k && (uint32_t)esteps != block->step_event_count && de > 0; if (block->use_advance_lead) block->abs_adv_steps_multiplier8 = LROUND( extruder_advance_k * (UNEAR_ZERO(advance_ed_ratio) ? de * steps_to_mm[E_AXIS_N] / HYPOT(da * steps_to_mm[X_AXIS], db * steps_to_mm[Y_AXIS]) : advance_ed_ratio) // Use the fixed ratio, if set * (block->nominal_speed / (float)block->nominal_rate) * axis_steps_per_mm[E_AXIS_N] * 256.0 ); #endif // LIN_ADVANCE const float bnsr = 1.0 / block->nominal_speed; calculate_trapezoid_for_block(block, block->entry_speed * bnsr, safe_speed * bnsr); // Move buffer head block_buffer_head = next_buffer_head; // Update the position (only when a move was queued) static_assert(COUNT(target) > 1, "Parameter to _buffer_steps must be (&target)[XYZE]!"); COPY(position, target); recalculate(); } // _buffer_steps() /** * Planner::buffer_segment * * Add a new linear movement to the buffer in axis units. * * Leveling and kinematics should be applied ahead of calling this. * * a,b,c,e - target positions in mm and/or degrees * fr_mm_s - (target) speed of the move * extruder - target extruder */ void Planner::buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder) { // When changing extruders recalculate steps corresponding to the E position #if ENABLED(DISTINCT_E_FACTORS) if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) { position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]); last_extruder = extruder; } #endif // The target position of the tool in absolute steps // Calculate target position in absolute steps const int32_t target[XYZE] = { LROUND(a * axis_steps_per_mm[X_AXIS]), LROUND(b * axis_steps_per_mm[Y_AXIS]), LROUND(c * axis_steps_per_mm[Z_AXIS]), LROUND(e * axis_steps_per_mm[E_AXIS_N]) }; /* <-- add a slash to enable SERIAL_ECHOPAIR(" buffer_segment FR:", fr_mm_s); #if IS_KINEMATIC SERIAL_ECHOPAIR(" A:", a); SERIAL_ECHOPAIR(" (", position[A_AXIS]); SERIAL_ECHOPAIR("->", target[A_AXIS]); SERIAL_ECHOPAIR(") B:", b); #else SERIAL_ECHOPAIR(" X:", a); SERIAL_ECHOPAIR(" (", position[X_AXIS]); SERIAL_ECHOPAIR("->", target[X_AXIS]); SERIAL_ECHOPAIR(") Y:", b); #endif SERIAL_ECHOPAIR(" (", position[Y_AXIS]); SERIAL_ECHOPAIR("->", target[Y_AXIS]); #if ENABLED(DELTA) SERIAL_ECHOPAIR(") C:", c); #else SERIAL_ECHOPAIR(") Z:", c); #endif SERIAL_ECHOPAIR(" (", position[Z_AXIS]); SERIAL_ECHOPAIR("->", target[Z_AXIS]); SERIAL_ECHOPAIR(") E:", e); SERIAL_ECHOPAIR(" (", position[E_AXIS]); SERIAL_ECHOPAIR("->", target[E_AXIS]); SERIAL_ECHOLNPGM(")"); //*/ // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied if (DEBUGGING(DRYRUN)) position[E_AXIS] = target[E_AXIS]; // Always split the first move into two (if not homing or probing) if (!blocks_queued()) { #define _BETWEEN(A) (position[A##_AXIS] + target[A##_AXIS]) >> 1 const int32_t between[XYZE] = { _BETWEEN(X), _BETWEEN(Y), _BETWEEN(Z), _BETWEEN(E) }; DISABLE_STEPPER_DRIVER_INTERRUPT(); _buffer_steps(between, fr_mm_s, extruder); const uint8_t next = block_buffer_head; _buffer_steps(target, fr_mm_s, extruder); SBI(block_buffer[next].flag, BLOCK_BIT_CONTINUED); ENABLE_STEPPER_DRIVER_INTERRUPT(); } else _buffer_steps(target, fr_mm_s, extruder); stepper.wake_up(); } // buffer_segment() /** * Directly set the planner XYZ position (and stepper positions) * converting mm (or angles for SCARA) into steps. * * On CORE machines stepper ABC will be translated from the given XYZ. */ void Planner::_set_position_mm(const float &a, const float &b, const float &c, const float &e) { #if ENABLED(DISTINCT_E_FACTORS) #define _EINDEX (E_AXIS + active_extruder) last_extruder = active_extruder; #else #define _EINDEX E_AXIS #endif const int32_t na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]), nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]), nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]), ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]); stepper.set_position(na, nb, nc, ne); previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. ZERO(previous_speed); } void Planner::set_position_mm_kinematic(const float (&cart)[XYZE]) { #if PLANNER_LEVELING float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] }; apply_leveling(raw); #else const float (&raw)[XYZE] = cart; #endif #if IS_KINEMATIC inverse_kinematics(raw); _set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS]); #else _set_position_mm(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS]); #endif } /** * Sync from the stepper positions. (e.g., after an interrupted move) */ void Planner::sync_from_steppers() { LOOP_XYZE(i) position[i] = stepper.position((AxisEnum)i); } /** * Setters for planner position (also setting stepper position). */ void Planner::set_position_mm(const AxisEnum axis, const float &v) { #if ENABLED(DISTINCT_E_FACTORS) const uint8_t axis_index = axis + (axis == E_AXIS ? active_extruder : 0); last_extruder = active_extruder; #else const uint8_t axis_index = axis; #endif position[axis] = LROUND(v * axis_steps_per_mm[axis_index]); stepper.set_position(axis, v); previous_speed[axis] = 0.0; } // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2 void Planner::reset_acceleration_rates() { #if ENABLED(DISTINCT_E_FACTORS) #define HIGHEST_CONDITION (i < E_AXIS || i == E_AXIS + active_extruder) #else #define HIGHEST_CONDITION true #endif uint32_t highest_rate = 1; LOOP_XYZE_N(i) { max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i]; if (HIGHEST_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]); } cutoff_long = 4294967295UL / highest_rate; } // Recalculate position, steps_to_mm if axis_steps_per_mm changes! void Planner::refresh_positioning() { LOOP_XYZE_N(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i]; set_position_mm_kinematic(current_position); reset_acceleration_rates(); } #if ENABLED(AUTOTEMP) void Planner::autotemp_M104_M109() { autotemp_enabled = parser.seen('F'); if (autotemp_enabled) autotemp_factor = parser.value_celsius_diff(); if (parser.seen('S')) autotemp_min = parser.value_celsius(); if (parser.seen('B')) autotemp_max = parser.value_celsius(); } #endif